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Pseudospin-phonon coupling model for martensitic transformation in bcc-based alloys
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We propose a new prescription to describe a general mechanism of the martensitic transforma-
tion in bcc-based alloys. We define a "three-state spin" variable which specifies local creation and
annihilation of the "pseudospin" of the low-temperature phase and take into account the coupling
of the spins to the lateral displacements of pseudospins thereby greatly reducing the degrees of free-
dom of the whole system. We obtain an eA'ective Hamiltonian of the system given in terms of the
pseudospin-creation energy and the pseudospin-pseudospin interaction energy via phonons. The
phase-transition scheme is investigated based upon the model Hamiltonian. Overall characteristics
of rnartensitic transformations including the premartensitic phenomena are successfully explained.
Applications to the so-called 7R martensite in NiA1 as well as premartensitic phenomena in AuCd
are discussed.

I. INTRODUCTION

Many bcc metals (or /3-type alloys) are known to under-
go martensitic transformation, ' a transformation from
single phase to single phase without accompanying any
atomic diffusion, at low temperatures. These metals have
the following common characteristic features well estab-
lished by x-ray, electron, and neutron diffraction experi-
ments: (1) Phonon dispersion curves show TA
branches with a dip at q =qo (qo&0), a wave number
characteristic of low-temperature phases, which slightly
deepens with decreasing temperature. However, the fre-
quencies of relevant phonon modes never tend to zero
even at the transition temperature. (2) "Precursor" phe-
nomena such as tweed patterns in electron micrograph
and diffuse incommensurate spots in x-ray diffraction pat-
terns have been observed well above the transition tem-
perature. In spite of these experimental features and sup-
plemental knowledge about certain crystallographic
orientation relationships between martensite phases and
the parent phase, there has still been much controversy
about a general microscopic description of these
diffusionless phase transformations.

Recently, however, significant progress in understand-
ing of the nature of martensite transformation has been
made, in which all of the ideas are more or less based on
the lattice instability against {110}(110) shear strains.
Krumhansl has claimed that, in contrast to the soft-
mode mechanisms based on charge-density waves or
Fermi-surface eft'ects put forth by many authors, intrinsic
bistable slow thermal Auctuations of the {110} planes in
(110) direction due to the extreme phonon anisotropy
can just be the microscopic origin of the transformation.
Clapp and Guenin and Ciobin' discussed the presence of
stresses and strains around the impurities of the lattice
which can induce a local mechanical instability against
{110}( 110) shear strains, thus leading to the

"localized —soft-mode" concept. Later, this picture was
incorporated" with the strain spinodal treatment
developed by Suzuki and Wuttig' for martensitic trans-
formations. Their treatment gives a possibility of the ex-
istence of "pseudospins" above the transition tempera-
ture induced around defects such as vacancies, intersti-
tials, etc. A complete description comparable with exper-
imental data is still lacking, however. The bcc lattice in-
stability and its consequence to pretransformation mor-
phologies are studied by Clapp et al. ' by using a
molecular-dynamics method to obtain "tweedlike"
diff'raction patterns.

With respect to those transient "precursor" phenome-
na Yamada et al. ' ' have proposed the modulated-
lattice-relaxation (MLR) model which was based on the
dip in phonon dispersion mentioned above and the ex-
istence of thermally induced pseudospins, and have suc-
ceeded in explaining experimentally observed characteris-
tics of the x-ray diffraction pattern in the TiNi(Fe) (Ref.
2) and AuCd.

According to the MLR picture, the process of marten-
sitic transformation is viewed as follows: at temperatures
far above the transition temperature, pseudospins are fre-
quently created by thermal excitation, but will soon be

b, /k~ T
annihilated with a relaxation time ~,-e, where 5
is an energy barrier height to form a pseudospin. More-
over, the pseudospin will stay "bare" because ~, is too
short to induce the strain field around the pseudospins.
As the temperature is lowered, so that the pseudospins
become long lived, they can be "dressed, " i.e., they can
accompany the strain field around themselves. In the
temperature range where pseudospin density is not still
very high, the pseudospins are oriented randomly within
equivalent directions satisfying cubic symmetry on aver-
age. This state may be identified to be the "premarten-
site" state. As the temperature is further decreased, the
creation energy of the pseudospin will be decreased. At
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the same time, interaction between pseudospins will be-
come stronger, and eventually the whole lattice is
cooperatively covered by the "ordered" pseudospins,
which is nothing but the low-temperature phase. The
transition temperature is well defined in view of the
cooperative nature of the process.

The purpose of the present paper is to construct an ap-
propriate model which is consistent with the picture de-
scribed above, with specific applications to bcc (P) -mar-
tensite phase transformations. In the next section the
model Hamiltonian is introduced, which is formulated so
that the whole system is expressed e6'ectively as a spin-
phonon coupled system. In Sec. III the phase-transition
scheme is discussed based on the model Hamiltonian. In
particular, the quantities which characterize the pseu-
dospin picture, such as pseudospin creation energy,
pseudospin-pseudospin interaction, equilibrium pseudo-
spin density, etc., will be discussed. In Sec. IV a case of
practical importance, the bcc-7R transition, is treated as
an application. The last section is devoted to summary
and discussions.

II. MODEL HAMILTONIAN

To begin with, we explain our vie% using the example
of the bcc (P) -9R transition, since most of the bcc-
martensitic transformations belong to this class and the
situation is simple enough to elucidate our idea.

The 9R structure is well established and considered to
be deduced from the following two successive processes. '

(i) The symmetry change takes place due to small lat-
tice distortion caused by a TA-phonon mode condensa-
tion with the wave vector qo= —,

' [110].
(ii) The distorted lattice is then deformed into the 9R

type by introducing a 'macroscopic deformation, which is
composed of the inclination of the [110]axis (Bain strain)
and the elongation and contraction along the other two
axes normal to the [110]axis, which construct the hexag-
onal basal plane. '

We can develop an alternative view to construct 9R
structure as follows.

(i) Start from the small-amplitude phonon-condensed
state with qo= —,

' [110][see Fig. 1(a)].
(ii) Produce local fcc structure composed of three suc-

cessive layers by increasing the amplitude of the con-
densed phonon and/or distorting the shape of the wave
(or introducing higher harmonic waves) [Fig. 1(b)]. The
parent lattice thus simulates loca/ly the low-temperature
structure. We refer to this local fcc structure as a "clus-
ter."

(iii) Introduce an appropriate amount of slip at the
boundaries between the local fcc structure along the
[110] direction in order to relax the local stress [Figs.
1(b) and 1(c)]. Notice the relative atomic configuration at
the cluster boundaries in Fig. 1(b) is definitely unstable.

These procedures [(i)—(iii)] result in the 9R structure
[Fig. 1(c)].

This view is based on the assumption that the system
has the tendency to form locally the fcc-type ( ABC-type)
stacking composed of at least three successive layers
which acts as the pseudospin.
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FIG. 1. Schematic illustration of the construction process of
9R martensite from a bcc (P) or a CsCl (P') lattice. In the fol-
lowing figures, the large open circles denote the A-type atoms
on the plane of z =0 and small solid circles the B-type atoms on
the plane of z= —,'. (a) Atomic arrangement in the condensed
state of a TA phonon with q=

3 [110]. Arrows indicate the fur-

ther displacements of atoms introduced to form locally the fcc
structure. (b) The chain of fcc "clusters" (enclosed by the thick
lines) embedded in the resultant structure. Arrows indicate the
relative slips of the cluster to take place at the cluster boun-
daries in the [110]direction. The amount of the relative dis-
placement of the cluster due to the slip is 6. (c) The resultant
9R structure. The same cluster chain as indicated in (b) is
shown by the dashed lines. The rectangle enclosed by the solid
line is the unit cell of the 9R structure.

C = 0
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FIG. 2. Schematic illustration for the formation of the clus-
ter (pseudospin) when qo= —,'[110]. (a) Dashed lines represent
the small-amplitude phonon with q= —'[110]. Further displace-

ments of atoms to form local fcc cluster are indicated by the ar-
rows, which results in (b) a postulated cluster composed of six
(110) layers (shown by the shadowed area).

Apart from the specific case of 9R, when the system is
unstable against a phonon mode with q=qo along the
[110]direction i.e., when the system has a dip in phonon
dispersion at qo along the [110]direction, the same view
holds if the size of the pseudospin is taken appropriately.
For later convenience, we describe the postulated shape
of the pseudospin of the case for qo= —,

' [110]in Fig. 2.
If we consider, in general, that the cluster is the small-

est unit with physical meaning associated with the
phase-transition mechanism, the degree of the freedom of
motion of the whole system under consideration can be
reduced simply to the degree of freedom concerning the
clusters; the translation of the center of mass of the clus-
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ter along [110]and the shear deformation or the "tilt" of
the cluster.

The first point to make is that there are two equivalent
tilted states (see Fig. 3). Thus, together with the unde-
formed state the states of the cluster are represented by a
"spin" variable with three eigenstates; cr =(1,0, —1),
among which o. =+1 are energetically degenerate by the
symmetry of the parent (bcc) phase. '

In order to describe appropriately the strain energy
stored at the cluster boundaries, both ends facing each
other of the two consecutive clusters are connected by
harmonic springs with spring constant lc (see Fig. 4). Let
u; be the lateral displacement (slip) of the ith cluster rela-
tive to the (i —1)th cluster. Furthermore, let u; be equal
to zero when two consecutive clusters are in high-
temperature structure position. The energy associated
with the cluster configuration can then be written as
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where the first term is simply an elastic energy. Note
that in the second term the coefficient u represents the
effect of coupling between Io.; } and I u; }. The ground-
state configuration for this interaction energy is easily
seen to be o; = —1, u

&

= —2a/Ic or cr; = 1, u; =2a/lc for
all i. In addition, however, there is the contribution of
creation energy c. associated with the local formation of
the tilted cluster states. The origin of c. is more precisely
understood by considering local potential energy V&„of
the cluster. As is shown in Fig. 5, we are considering
that the local potential of the configuration of the cluster
has "triple minimum" corresponding to the states o. =1,
0, or —1. The creation energy corresponds to the energy
difference between o. =0 and cr =+1. Including this ener-
gy, our microscopic Hamiltonian is of the form

How, , u, =}g oe;+U, Ic;T, u; }. (2)

Thus the cluster system is now expressed effectively by a
(three-state) spin-phonon coupled system. The effects of
the displacement field are readily renormalized through

e ' = Jd tu }e " ', /3=1/k~T, (3)

to give an effective Hamiltonian H to, } of the spin sys-
tem. H I o; } thus obtained is, apart from a trivial part,

H I cr; } =gecr2 —Jo;cr; (4)

where c and J are the renormalized creation energy and
the renormalized nearest-neighbor interaction between
spins ("pseudospins"), respectively, and are given by

c=c,—a /~,
J=a /~ .

(sa)

(5b)

It should be noted that we are actually treating the or-
dering problem in three-dimensional space. In the final
expression (4) cr; means not a state of particular cluster in
the one-dimensional (1D) cluster chain but an averaged
quantity with respect to all spins in a plane which con-
tains the ith cluster and is normal to the wave vector qo.
Thus the parameters such as E, o., and ~ are not strictly
of microscopic origin, but are semimacroscopic in the
sense that they are associated with the statistical average
within the layer.

FIG. 4. Schematic illustration of the model composed of
clusters (shaded region) connected by harmonic springs with
spring constant ~. Only two consecutive clusters with states, for
example, 0.=0 and o = 1 are shown.

III. PHASE-TRANSITION SCHEME

() ~ ()

FIG. 3. Assignment of a spin variable to three-types of clus-
ter states; o.=0 stands for the undeformed cluster state and
o.=+ I for the tilted cluster states.

In order to discuss the phase transition from the high-
temperature bcc phase, passing through the premartensi-
tic state to the low-temperature martensite phase, we uti-
lize the Hamiltonian obtained in the preceding section.
The relevant quantities with which we are concerned are
the cluster order parameter ( o ), and the average amount
of slip of a cluster ( u ). In addition, the quantity ( cr ) is
of special interest here, because this quantity corresponds
to the equilibrium pseudospin density which can be ex-
perimentally detected by quasielastic neutron scattering
or diffuse x-ray scattering. In fact Noda et al. have ob-
served strong x-ray scattering in the premartensitic re-
gion in AuCd, and inferred that the low-temperature
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pseudospins may exist with high density even above the
transition temperature.

Before calculating the above quantities some attention
must be paid to the temperature dependences of the pa-
rameters in the Hamiltonian. As is mentioned in the In-
troduction, phonons belonging to the [110jTA branch are
weakly softened so that the spring constant v may have a
temperature dependence as a =Kp ( T Tp—) where Tp is a
fictitious critical temperature of intrinsic stability limit of
the cubic phase which is far lower than the transition
temperature. The creation energy c. of a single cluster
can also be temperature dependent since we interpret c. as
a semimacroscopic quantity. Going back to the local po-
tential as depicted in Fig. 5, it would be quite reasonable
to consider that c is increasing with increasing tempera-
ture in order to be consistent with T dependence of ~, be-
cause ~ is associated with the curvature of V&„at 0.=0,
while c is the energy di6'erence of the minima of the same
potential function. If this temperature dependence is
given in a form of A,T, one can readily see that, from the
equation in (6c) below, 5) 1 will be required since (o )
must vanish at temperatures far above the transition tem-
perature. The precise choice of 5, however, is inessential
for the equilibrium behaviors of ( o ), ( u ), and also
(o ) in the temperature region of interest. In fact, quali-
tatively the same results follow in our mean-field treat-
ment for 5) 1. Here we have set 5=2 rather arbitrarily.

To proceed, we use the mean-field approximation. Fol-
lowing the standard procedure, we have

where z is the coordination number which is equal to 2 in
our (pseudo) 1D system. We introduce a dimensionless
temperature r=&.T/ks and a dimensionless parameter
@=A, u /lrpkii. One of the typical results is shown in

Fig. 6 for the case of y =20. Here we have set Tp =0 for
simplicity. For this value of y the first-order transition
occurs at ~, =3.389. Below ~„ the system exhibits
cooperative ordering characterized by a nonzero value of
(o. ) and (u ), which means that the martensite phase
with the appropriate structure is stabilized below ~, .

As is seen from Eq. (6b), (u ) will tend to diverge as
the temperature approaches Tp. This has resulted from
the assumption of complete harmonicity of the springs
which link spins (clusters) together. In real systems this
intercluster interaction must have strong nonlinearity for
such a large displacement that exceeds the amplitude of
phonons, and at temperatures below ~, this nonlinearity
is considered to be responsible for the lock in of (u ) to
some value up.

In Fig. 6, it is noticeable that even above ~„where the
system retains cubic symmetry, (o ) remains finite and
slowly decays with increasing temperature as

( 2 ) e
—~+y/~ (7)

This feature is particularly important, because ( o ) is
proportional to the pseudospin density. The above
feature justifies that under proper circumstances, there
exists the equilibrium state where the low-temperature
microstructures are distributed randomly with consider-

and
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FIG. 5. Local potential V~„having "triple minimum" corre-
sponding to the states o.=0,+1. Note that states corresponding
to o.=+1 are energetically degenerate. The difference of
V&„(o.=O) and V~, (o.=+1) gives the creation energy of a sin-

gle tilted cluster (a pseudospin of the low-temperature phase).

FIG. 6. The calculated variation of the order parameter (o )
(solid line) and of the pseudospin density (o ) (dashed line)
with temperature. The abscissa is normalized by v, . Notice
&o ) remains finite even above r, and gradually decreases as
the temperature is increased. In the inset, the experimental re-
sult by the x-ray diffraction in Au-Cd (Ref. 3) is shown for com-
parison.
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ably high density before the phase transition takes place.
This temperature region, therefore, just corresponds to
the premartensitic state. The Hamiltonian (4) thus satis-
factorily describes the transition nature from the bcc
phase to the martensite phase including the presence of
premartensitic phenomena.

IV. APPLICATION TO NiAl

The low-temperature phase of NiA1 is of special in-
terest, since NiA1 undergoes martensitic transformation
from high-temperature P phase to a particular 7R-type
structure. Extensive experimental studies show that this
alloy has also the common features of martensitic trans-
formations mentioned in Sec. I. In fact, phonon disper-
sion curves for the [110](110)TAz branch in Ni Al,
reveal a pronounced minimum at q-0. 13 (x =0.63),
whose position in the q space has concentration depen-
dence, and substantial quasielastic scattering appears
above the transition temperature. The intensity of the sa-
tellite reAections increases with decreasing temperature,
and around T-253 K, the crystal transforms to a mar-
tensite phase with a monoclinic unit cell.

Martynov et al. ' studied the structures of the marten-
site phase by x-ray diffraction and proposed a specific
structural model characterized by so-called (5-2) stacking
of successive hexagonal layers (7R structure). Recently
Shapiro et al. performed detailed neutron diffraction
measurements. They studied intensity profiles of the sa-
tellite peaks and reconfirmed the presence of superlattice
reAections which are consistent with the 7R structure, ex-
cept that the peak positions shift slightly from the com-
mensurate positions of exact 7R periodicity. Schryvers
et al. also observed directly (5-2)-type stacking by elec-
tron microscopy. It would be an interesting challenge to
apply our model to this particular system.

Following the prescription described in Sec. II, we can
construct the structure of the low-temperature (ordered)
phase as follows. (i) Consider the small-amplitude TA-
phonon-condensed state with qo= —,'[110]. (ii) Simulate
locally the fcc structure by increasing the amplitude and
deforming the shape of the wave [Fig. 7(a)]. In this case
the pseudospin or the tilted cluster should be composed
of six layers as has been postulated in Fig. 2(b). (iii) In-
troduce the boundary slips between the neighboring clus-
ters [Figs. 7(b) and 7(c)]. As is illustrated in Fig. 7(c), this
procedure in fact constructs qualitatively the (5-2) struc-
ture. Notice that the resultant structure may be viewed
as composed of alternative stacking of six-layer fcc slabs
and three-layer distorted bcc slabs.

To be more quantitative, we allow the tilt angle 8 of
the fcc cluster to deviate slightly from the exact value to
form the ideal fcc stacking (8=71.57'). This is related to
the fact that in NiA1, the basal plane does not show com-
plete hexagonality in the martensite phase. In this con-
text, our model structure may be expressed more exactly
by the alternative stacking of (six-layer distorted
fcc)—(three-layer distorted bcc). In the following
analysis, we leave both the amount of slip uo and the tilt-
ed angle 0 as parameters.

We now try to adjust the parameters so as to obtain
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agreements with the experimental data. From the ob-
served monoclinic angle, the value of uo is determined to
be uo=0. 250. The tilt angle is then determined within a
relevant range of 8 (71.57'~8&90') so that the relative
intensity of superlattice rejections is fitted to the ob-
served profiles by neutron diffraction measurement. By
taking 0=81.34', we obtained fairly good agreement
along the [2+g 2+ g 0] line. The comparison between

(2+ (,2+(,0)

Iobs

C

U
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Ical

I

0.2 0.4 06 08 ~ 0

FIG. 8. Comparison between the calculated intensity profile
(below) and the experimental results (Fig. 2 in Ref. 22).

FIG. 7. Schematic illustration of the construction process of
the martensite structure of NiA1. (a) See captions of Fig. 2. (b)
Clusters are shown by the thick lines. Slips are introduced at
the cluster boundaries in the directions indicated by the arrows.
In this case the amount of the relative displacement due to the
slip is —'. (c) The resultant martensite structure, which is essen-

tially identical to the so-called (5-2) structure as is demonstrated
in (c'). The rhomboid enclosed by the thick line in (c ) is the
monoclinic unit cell. Note that resultant structure is viewed as
alternative stacking of a distorted fcc and a distorted bcc slabs.
(See also the text. )
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the calculated intensity and the observed profile is given
in Fig. 8. The obtained angle 8=81.34' is nearly equal to
the corresponding angle 0=80.54' of the (5-2) structure.

As far as the relative intensity is concerned, the results
seem to be satisfactory. However, as stated above, the
peak positions of experimental data are shifted from the
commensurate position. This deviation apparently has
no regularity either in magnitude or in direction. At the
present stage, we are not able to give the theoretical basis
of the shift pattern.

However, notice that we have considered the fully or-
dered ground-state configurations by taking (cr ) =1. It
would be quite possible that, at finite temperatures, the
positions of pseudospins, and hence the positions of
"slips" are more or less randomly distributed along the
[110] direction. This random configuration of pseudo-
spins and slips may be the origin of Hendricks-Teller
type irregularity of the diffraction pattern.

V. SUMMARY AND DISCUSSION

We summarize the results of the preceding sections as
follows.

(i) We focus our attention upon the thermally induced
pseudospins, which are considered to play an essential
role in the martensitic transformation, and retain the de-

grees of freedom concerning the pseudospin motion by
introducing a three-state spin variable o.. This leads to
an effective Hamiltonian composed of two parts; the one
stands for the creation energy of pseudospins and the oth-
er the interaction energy between pseudospins via pho-
nons.

(ii) Using the Hamiltonian, the phase-transition scheme
is investigated with the mean-field approximation to ob-
tain the pseudospin order parameter (o ), the average
amount of slip ( u ), and the equilibrium pseudospin den-

sity (o. ). With a suitable choice of the parameters, a
first-order transition takes place. Below the transition
temperature, ( o ) as well as ( u ) shows cooperative or-
dering, which correctly gives the martensite structure.
On the other hand, (o ) is found to remain finite even

above the transition temperature. This feature justifies
the existence of the equilibrium state where the micro-
structure (pseudospins) of the low-temperature phase are
distributed randomly within the parent phase, which is

nothing but the premartensite phase.
(iii) We applied our model to interpret the low-

temperature structure of NiA1. The so-called (5-2) struc-
ture is reproduced as the "ordered state" with respect to
o and u. Qualitative agreements of the calculated inten-
sity profile based on this model structure and the experi-
mentally observed neutron intensity spectra are obtained.

In spite of the simplicity, our model seems to be able to
explain primary features of the martensite transformation
including premartensite behavior.

On the other hand, Gooding and Krumhansl have
treated the bcc-9R transition in Li from a different stand-
point, in which the discussions are based upon the phe-

nomenological Landau theory. In their free energy ex-
pansion, the uniform strain field e couples to the primary
order parameter Q= Ae ' (qo= —,'[110],e~~[110]) in

the form eg . Much attention is paid to the ground-state
solutions which minimize the free-energy functional and
to the domain-wall structures when the Ginzburg-like
term for the order parameter is included.

Recently, they have further extended the above theory
to the NiA1 case. They specify the two independent or-
der parameters; g, = A, e' "o ' ~' and g2= A2e'
among which g2 is not associated with any soft mode.
The coupling to the uniform strain can then be described
by the term eg, t/i2. They have obtained parameters to be
fitted to the observed macroscopic strains. However, the
values of A, and A2 which should determine the relative
displacement of each layer are left undetermined.

As far as the low-temperature structure is concerned,
there would be no essential difference between the results
obtained by Gooding and Krumhansl's treatments and
the present "pseudospin ordering" picture. The
difference is primarily seen in the premartensite phase.
In the present treatment, the local variable o., is explicitly
introduced. Hence, it seems to have the advantage of
describing more naturally the pretransitional state in
which the local symmetry has been already broken while
the overall cubic symmetry is still retained.

Returning to our model, let us make some comments
on our treatment. We have considered the ordering
problem in one-dimensional space along a particular
[110]axis by averaging out all fiuctuations normal to this
axis. As is pointed out in Ref. 19, there are six equivalent
(110) orientations, and there is no particular reason to
regard a single [110] direction as a special one. In real
materials, pseudospins should be oriented randomly in all
equivalent directions. In fact, a "swirl" shift pattern of
satellite peaks observed in NiTi(Fe) and AuCd are suc-
cessfully explained by introducing pseudospins having
two different orientations. Allowing the six possible
(110) orientations, the pseudospins should have the 12-
fold degenerated excited states. We conjecture, however,
that this will not cause any qualitative difference in the
phase-transition scheme described in this paper.

Our Hamiltonian is still semimacroscopic in the sense
that ad hoc temperature dependence of the pseudospin
creation energy has been assumed. More microscopic
basis is needed to understand the properties of the local
potential V&„. In addition, anharmonicity for the dis-
placement field must be taken into consideration to
suppress the unphysical divergence as has been men-
tioned in Sec. III.

We make some remarks on the low-temperature struc-
ture of NiA1. As is mentioned in Sec. IV, we regard the
amount of slip uo and the tilt angle 0 as parameters; the
former is determined by the observed monoclinic angle
while the latter by comparing the calculated intensities
with the experimental results in such a parameter range
that 71.57 ~0~90'. The (5-2) structure is then almost
uniquely determined in this parameter range. However,
it is necessary for the complete understanding of the
structure to investigate the satellite peak intensity profile
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in many Brillouin zones. Once again we emphasize that
we refer just to the ground-state configuration. Notice
our standpoint is that the ground-state configuration re-
sults from the cooperating effect between pseudospins
formed by local deformation or distortion. Hence it is
rather likely that the system includes stacking faults (de-
formation and growth faults) at finite temperatures. The
analyses performed by Berliner and Werner will there-
fore be needed to explain precisely the experimentally ob-
served diffraction patterns.
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