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Melting and magnetic ordering in transition-metal microclusters
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Melting behavior of transition-metal clusters is studied by extensive Monte Carlo simulation for
cluster sizes from N=7 to 17 atoms. Physical quantities such as internal energy, specific heat,
bond-length average, and bond-length fluctuations are shown. A long-range magnetic interaction
between spins assumed to be localized on the atoms is then included for the first time in melting
studies. The interplay between magnetic and cohesive interactions is shown to give rise to interest-
ing effects such as cluster volume contraction and sharper melting, as well as a magnetic transition
at low temperature. Application to Ni, Co, and Fe clusters is discussed.

I. INTRODUCTION

Microclusters have been subject recently to extensive
studies, both theoretically and experimentally. Many as-
pects and properties have been investigated by various
methods from different points of view. The interest in
microclusters is no doubt due to potential applications in
microdevices. For a recent bibiliography, the reader is
referred to Ref. 1.

As for the atomic structure of a microcluster contain-
ing 10-10° atoms where the number of surface atoms is
larger than or comparable to that of inside atoms, the fol-
lowing questions have been raised. Is it like a solid in
which atoms are oscillating around their respective equi-
librium positions or is it like a liquid in which atoms
diffuse on the surface and/or inside of the system? Or, is
it like a solid whose structure is fluctuating among
different configurations? Recently, temporal changes of
the atomic structure of a gold cluster of 10> atoms on a
SiO, surface have been observed by using a high-
resolution electron microscope.>? The result shows that
the structure is fluctuating among  different
configurations, in particular those of a cuboctahedron, an
icosahedron, and a liquid droplet. It has been discussed®
that such a structural fluctuation may be induced by
charge fluctuations. However, more recent experiments
have shown that the structural change is due to the inter-
nal temperature.’

In this paper, we investigate the melting transition in
microclusters made of transition-metal atoms. The melt-
ing transition was studied many years ago by molecular
dynamics* (MD) and Monte Carlo (MC) simulations.>®
More recently, progress has been made by Berry and co-
workers,” "' and Quirke'' among others.! These works
focused on clusters of rare-gas atoms using the well-
known Lennard-Jones (LJ) potential. In particular, from
their MD results, Berry and co-workers have suggested
that solid- and liquidlike phases coexist between what
they called the freezing temperature and the melting tem-
perature, first for 13-atom clusters®® and later for other
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sizes.! Sawada'? has found that in transition-metal clus-
ters of six and seven atoms, the structure oscillates be-
tween the ground state and the metastable states in the
temperature range between the solid and the liquid
phases. Quirke has reported, on the other hand, that
while the melting transition is continuous for a 13-atom
cluster in spherical cavities, it is of first order for 201-
and 209-atom clusters, using MC simulation.!!

The purpose of this work is twofold: (i) By using a po-
tential appropriate for transition metals, we investigate
the melting behavior of small clusters of sizes from 7 to
17 atoms and compare the results to those obtained with
LJ potential; (ii) next, by including for the first time in
melting studies a long-range magnetic interaction to
simulate real magnetic clusters such as Ni, Co, and Fe,
we study the magnetic ordering and the interplay be-
tween melting and magnetic phase transitions.

Interest in magnetic clusters has been found in
different domains. Recently, clusters of Co have been ex-
perimentally studied in connection with fractal dimen-
sion!® where the role of magnetic coupling between clus-
ters has been shown. This has been found in agreement
with numerical simulations'* assuming magnetic dipolar
interaction between clusters. Quantum tunneling of mag-
netization in small ferromagnetic particles has also been
investigated.!> In the present work, magnetic moments
are assumed to be localized on atoms in a cluster and in-
teract with each other. This model is somewhat justified
by a recent microscopic calculation of the electronic
structure of small transition-metal clusters by Fujima and
Yamaguchi.!® Magnetic ordering found in the present
work for small clusters justifies the assumption of cluster
ma%le'fisc moments used in the above-mentioned stud-
ies.

For our purposes, extensive MC simulations have been
performed on the Supercomputer SX-2 at the NEC Cor-
poration through a highly vectorized program. The re-
sults in the case without magnetic interaction show that
for very small clusters, our potential [see (1) below] yields
many features similar to those obtained from the LJ po-
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tential with the melting temperature oscillating with in-
creasing cluster size. These clusters can be classified into
two groups corresponding to stable and metastable struc-
tures characterized by different melting behaviors. When
magnetic interactions are included, several interesting as-
pects are found. In particular, magnetic interactions
make the melting transition sharper and give rise to a
cluster volume contraction similar to the well-known
magnetostriction in bulk materials. Among the most
striking features is the existence of a magnetic ordering at
finite temperatures for very small clusters, which would
not be possible without the interaction between magnetic
and cohesive forces.

Section II is devoted to the description of the model
and MC technique. Results without and with magnetic
interaction are shown and discussed in Sec. III. Conclud-
ing remarks are given in Sec. IV.

II. MODEL AND MONTE CARLO TECHNIQUE

We use the following model potential which has been
employed to study properties of transition-metal sur-
faces!” and clusters, 1912
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where r;; is the distance between the two atoms at r; and
r;, ro is the nearest-neighbor distance of the bulk crystal
(fcc), and U, A, p, and g are parameters. The sums are
performed over all atoms in the cluster. The value of 4
is determined by minimizing the cohesive energy of the
bulk crystal with nearest-neighbor distance r(, while the
values of U, p, and g are determined in such a way that
the bulk cohesive energy and the bulk modulus calculated
by using (1) and the experimental value of r, are in good
agreement with the corresponding experimental results.
The values p=9/r, and ¢q=3/r, are found to be ap-
propriate for transition metals.!” Using 4=0.101035,
the bulk cohesive energy is given by Ey ., =1.176 74U.
In the following, we shall use 7y and U as the units of dis-
tance and energy, respectively. In the potential (1),
many-body interactions are included through the square
root of the second sum. The square-root form of the in-
teraction sum has also been used in transition-metal stud-
ies by Finnis and coworkers.? For a detailed discussion
of (1), the reader is referred to Refs. 17-19.

For the first time in melting studies, we include a long-
range magnetic interaction between spins associated with
the atoms. The magnetic Hamiltonian is given by

LJ

J ’
where the spin S; at the ith atom is assumed for simplici-
ty to be Ising-type with values *1, and the distance-
dependent exchange integral J(r;;) between the ith and
Jjth spins is given by the following simple form:

J(rj)=Joexp(—ar;) , (3)
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where J, and a are parameters chosen in such a way as to
fit the bulk Curie temperature. For bulk Ni, Co, and Fe,
the Curie temperatures T are 631, 1404, and 1043 K,
and the melting temperatures 7T,, are 1726, 1766, and
1808 K, respectively, which correspond to 0.0388,
0.0400, and 0.04236 in our units of energy. For the
respective materials, the cohesive energies are 102.7,
102.2, and 99.5 kcal/mol or 4.455, 4.433, and 4.316 eV
per atom. From the mean-field approximation
Tc=2S(S+1)zJ,/3ky where S is the spin magnitude, z
the number of nearest neighbors (NN), and kg the
Boltzmann constant, one obtains the values of
0.3398X 1072, 0.4032X 1072, and 0.2808X 1072 eV for
the exchange integral J, between NN in Ni, Co, and Fe,
respectively (§=1 and z=12 for Ni, S=32 and z=12 for
Co, and S=2 and z=38 for Fe have been used). These
values by the mean field are certainly not accurate; in
reality they may be several times larger because it is
known that the factor in the expression of T is overes-
timated. We caution that apart from the inaccuracy of
mean field, these values may be different in clusters due to
possible changes of electronic structures. However, for
the purpose of the present work, the order of magnitude
suffices. The ratios between magnetic and cohesive ener-
gies at equilibrium are then 0.07%, 0.1%, and 0.07%, ap-
proximately for Ni, Co, and Fe.

One has only one condition to satisfy, i.e., the ratio
[J(rg)1/[V(ry)], but two parameters J, and a to choose.
Note that positive and negative J, corresponds to fer-
romagnetic and antiferromagnetic interactions, respec-
tively. We limit ourselves to the former case because
long-range antiferromagnetic interactions will cause frus-
tration®! whose effects are very interesting but complicat-
ed for the present study; this case is left for future investi-
gations. Choosing arbitrarily J, to be 5 and a equal to
6.9, the ratio between magnetic and cohesive energies at
equilibrium is approximately equal to 0.5%. In our simu-
lations, we take this ratio which is larger than those cal-
culated for Ni, Co, and Fe above to recompensate the un-
derestimated values of J, by the mean field already dis-
cussed. Figure 1 shows V and J(r;;) as functions of dis-
tance for two atoms. Note that one can have another
choice of J; and a keeping unchanged the ratio between
magnetic and cohesive energies at equilibrium. In this
case, the new values of J, and a will affect the curvature
of J(r;) in Fig. 1. It is, however, believed that general
aspects of the results shown later in this paper will not be
altered. We will return to this point later.

Extensive MC simulations have been carried out using
(1) with and without the magnetic interaction (2) for com-
parison. The MC method used can be briefly described
by the following steps: (i) generating a random
configuration of atom positions and spin orientations; (ii)
equilibrating the system at a fixed temperature T by
single-atom moving and spin-flipping over 2X10° MC
steps per atom (the updating procedure is detailed below);
and (iii) averaging physical quantities over the next
2X 10° MC steps per atom. Many independent runs (up
to 10) have been performed for each size to ensure the
reproducibility of the results shown later in this paper,
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FIG. 1. Cohesive potential ¥ and exchange integral J vs in-
teratomic distance 7 for two-atom cluster. The total potential
V +J is shown by the dashed line. The parameters for J are
Jo=5 and «=6.9. For clarity, J was multiplied by 4 in the
figure so that the dashed line is seen.

especially the most stable structures in the solid phase.

The updating procedure is done as follows: (i) choos-
ing a random atom and calculating its total energy E,
(magnetic and cohesive interactions); (ii) moving it to a
random nearby position and taking a random new spin
orientation, then calculating its new total energy E,; and
(iii) if E, is lower than E then the new state is accepted,
otherwise it is accepted only with a probability
exp[ —B(E,—E,)] where B=(kzT)~!. Note that it is
the total energy that matters so magnetic and cohesive in-
teractions are taken into account simultaneously. The
following physical quantities are averaged: internal ener-
gy per atom E; magnetization per spin M, mean bond
length L, bond-length distribution P(r), specific heat per
atom C, magnetic susceptibility per spin } and bond
length fluctuations A. The last three quantities and L are
defined as

C=({E?)—(E)?*)/(NkyT?) , )

r=(M?)—(M)>)*)/(NT), (5

A=2F ((rf)—Cr )2 /(ry) IN(N—1) 6
ij

L=23(r;}/N(N—1), )
i’j

where N is the number of atoms in the cluster and ¢ . ..)

means averaged value taken during the total simulation
time after equilibration. In the following kp is set to be
1.

The cluster sizes studied in this paper are from N=7 to
17. Larger sizes are subject to future investigations.

III. RESULTS AND DISCUSSION

In this section results without and with the magnetic
interaction are shown and compared.
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FIG. 2. Internal energy E (open circles, left scale) and
specific heat C (solid circles, right scale) vs temperature T for
N=13 without magnetic interaction.

A. Nonmagnetic case

1. Melting behavior

Figure 2 shows in internal energy per atom E and
specific heat C calculated from energy fluctuations (4) as
functions of T in the case of N=13 without magnetic in-
teraction. The peak of C corresponds to the change of
curvature of E at 7' ~0.03. It is rather broad and shows
fluctuations especially on the low-temperature side. The
averaged bond length L and bond length fluctuations A
versus T are displayed in Fig. 3 for the same case. L un-
dergoes a gradual change of slope starting from the tem-
perature where A begins to jump (7 ~0.02) and ending
at the temperature where A saturates. Note that the
latter temperature, denoted as T, hereafter, corresponds
to the peak of C.

The large temperature region between the beginning
and the end of the jump of A has also been found in the
case of LJ potential by Berry and coworkers,”!° who in-
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FIG. 3. Mean bond length L (open circles, left scale) and
bondlength fluctuations A (solid circles, right scale) vs T for
N=13 without magnetic interaction.
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terpreted this as the coexistence region of solid and liquid
phases. The word ‘“‘coexistence” should not be under-
stood as solid and liquid phases coexisting at the same
time, as it is usually understood at first-order transition
point. Rather, it has been shown that the cluster (except
N=8 and 14) goes back and forth to and from two
different energy levels (bimodal energy distribution) dur-
ing a characteristic time.' For us, the physical picture is
rather clear: the cluster in the so-called coexistence re-
gion goes from one minimum free-energy valley to anoth-
er by climbing up some rather flat energy barrier during a
characteristic time; the energy values in the valley and up
on the barrier where the system stays for some time give
rise to the bimodal distribution. The frequent changes
from one minimum to another are certainly due to the
fact that there is a large number of nearly degenerate
states in small clusters. This situation is somewhat simi-
lar to spin glasses where the spin-glass transition is found,
in general, at a temperature lower than that at the peak
of C (see K. H. Fisher in Ref. 21). Note that Quirke'! has
used with some caution the peak position of C to identify
the melting temperatutre from solid to liquid phase for
clusters in cavity. At this stage, it is worthwhile to note
that while the physical picture in the coexistence region
is clear, the definition of two temperatures for freezing
and melting'® cannot be viewed as the existence of two
distinct transitions because of the lack of further evidence
such as two peaks in C, etc. To define two transitions,
one needs some other physical quantities (order parame-
ters) which characterize different phases.

Figure 4 shows the distribution of interatomic distance
P(r) for N=13 at T=0.11 and 0.020. The peaks corre-
spond to first-, second-, and third-neighbor distances.
For higher temperatures, the first peak is still seen but
the second and third ones collapse into a single broad
peak.

2. Structures at finite temperatures

Among the sizes from 7 to 17, the structure for N=13
is the most stable one (icosahedron). The stability is quite
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FIG. 4. Bond length distribution P(r) vs r for N=13 at
T=0.011 (open circles) and T=0.02 (solid circles).
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different for other sizes. From the viewpoint of melting
behavior, it is convenient to classify these structures into
two categories.

(i) The stable structures: They are characterized by a
change of curvature of E in the plot E versus T in the
transition region; this is also seen by a maximum of the
specific heat C calculated by energy fluctuations.

(i) The metastable structures: They show neither a
change of curvature of E nor a peak in C.

These two categories show, however, a jump in A. The
first category includes the following sizes: N=13, 12, 7,
and 11, in order of decreasing stability judged from the
peak intensity of C. The second category includes all
other sizes. As an example of this category, we show in
Fig. 5 the case of N=17.

The stable structures at finite T in the solid phase have
some simple pentagonal symmetries rather easy to recog-
nize. For example, the structure of N=7 in the solid
phase is a pentagonal bipyramid consisting of a ring of
five atoms with one atom on the top and another at the
bottom. The structure of N=11 at low T consists of two
rings of five atoms plus one atom on the top [Fig. 6(a)],
the 13-atom cluster has the well-known icosahedron
structure, and the structure of N=12 is that of N=13
minus one on the top. The metastable structures, on the
other hand, have either no particular symmetries, a mix-
ing of pentagonal and hexagonal symmetries [see Figs.
6(b) and 6(c) for N=14 and N=17, respectively], or other
symmetries such as trisquare pyramid for N=9 [Fig.
6(d)], hexagonal for N=15 [Fig. 6(e)] and N=16 [Fig.
6(f], Werfelmeier’s tetragonal hemihedron?? for N=38
and pentagonal bipyramid plus three for N=10 [Fig.
6(h)].

Note that the structures for the metastable category
are not the most stable ones in the ground state (GS)
given by Hoare and Pal?*? in the case of LJ potential. It
seems, therefore, interesting to study the GS with the po-
tential (1) for different N and to compare with the LJ case
and to the structures found at finite 7 shown above.
There are two foreseen possibilities: (i) If the GS deter-
mined with (1) are the same as in the LJ case, then the
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FIG. 5. N=17 without magnetic interaction: (a) E and C vs
T (open and solid circles, respectively); (b) L and A vs T (open
and solid circles, respectively).



9256

FIG. 6. Structures at finite T (T=0.002). Particular sym-
metries are highlighted by sphere colors: (a) N=11, (b) N=14,
() N=17,(d) N=9, (e) N=15, (f) N=16, (g) N=8 (shaded circle
and solid circle behind it have equivalent positions with respect
to the four solid circles), and (h) N=10 (structure of N=7 plus
three solid circles).

structures found here may be the most stable structures
selected by the entropy effect (maximum density of states)
though they do not have the lowest energies in the GS;
(ii) if the GS determined with (1) are the same as those
observed here at finite 7, then the difference with the LJ
case is very interesting. The study of GS structures is,
therefore, necessary. This requires extensive work and is
left for future investigations.

As expected, there is a close relation between the struc-
ture symmetry and the melting behavior. The second
category has, in general, a very low melting temperature.
In the absence of a proper definition of the melting point,
let us show in Fig. 7 as a function of cluster size N the
temperatures at the limits of the coexistence region
defined at the lower and uppper limits of the jump in A.
Whenever it exists, the temperature at the maximum C,
T,,, corresponds more or less to the temperature at the
upper limit. The results of the LJ potential taken from
Beck et al.'° are also shown for comparison (only tem-
peratures at which A rises sharply are reported for the
clarity of the figure). For small sizes, our potential and
the LJ one give the same behavior, but there is a small
deviation for larger sizes (from N=14). This may be due
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FIG. 7. Characteristic temperatures vs N in the absence of
magnetic interaction. Vertical bars limited by solid circles are
limits of the jump of A and crosses indicate peak temperatures
of C (only four sizes, see text). Results with LJ potential from
Ref. 10 by open circles with right scale (in degrees Kelvin) are
shown for comparison.

to the many-body effect of our potential when N gets
large enough.

B. Magnetic case

1. Melting behavior

We show now the effects of the magnetic interaction.
For the sizes studied here, the magnetic interaction gives
somewhat similar effects. For a size in the stable
category (N=17, 11, 12, 13), one observes that the scatter-
ing of points in the nonmagnetic case is strongly
suppressed and the peak of C is sharper. But the effect of
magnetic interaction is markedly felt in the metastable
structures with the appearance of a change of curvature
in E corresponding to the maximum C, which does not
exist in the nonmagnetic case. Figure 8 shows E and C
versus T in the typical cases with N=13 and N=17.

It is now interesting to ask the question of why mag-
netic interaction makes the melting transition sharper. A
partial answer is found when one looks at the total poten-
tial shown in Fig. 1. The magnetic interaction enhances
the anharmonicity around the potential minimum. This
suppresses a number of metastable states, i.e., reduces
structural fluctuations and therefore makes the melting
transition sharper.

L and A, on the other hand, show behavior similar to
the nonmagnetic case, i.e., a large coexistence region (Fig.
9). However, the striking feature observed here is that L
is smaller in the presence of magnetic interactions at a
given temperature. For example, from 7=0.011 to
T=0.017, L varies on a straight line from 1.253 to 1.261
in the magnetic case, compared to values of L from 1.261
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FIG. 8. E (open circles, left scale) and C (solid circles, right
scale) vs T with magnetic interaction for N=13 (a) and N=17
®).

to 1.269 in the nonmagnetic case for the same range of
temperature. The contraction of the cluster volume due
to magnetic interaction is similar to the so-called magne-
tostriction effect observed in bulk magnetic materials. It
is noted that the structure remains that of the corre-
sponding nonmagnetic case.

2. Magnetic transition

One of the most interesting results in the magnetic case
is the existence of ferromagnetic ordering at low tempera-
tures. Figure 10 shows magnetization M and magnetic
susceptibility y versus 7 for N=7 and 13. The magnetic
transition takes place below the melting at T ~0.010
and ~0.018 for N=7 and 13, respectively. The jump of
X at the magnetic transition from the low-temperature
side is delta-functionlike. On the high temperature side,
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FIG. 9. L (open circles, left scale) and A (solid circles, right
scale) vs T with magnetic interaction for N=13 (a) and N=17
(b).
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FIG. 10. Magnetization M (open circles, left scale) and mag-
netic susceptibility x (solid circles, right scale) vs T for N=17 (a)
and N=13 (b).

it has a very smooth behavior. The same behavior is also
seen for the other sizes including the metastable category
defined above (see Fig. 11 for N=15 and 17). Note that
no peak in C is observed at the magnetic transition. This
is due to the fact that the magnetic energy is very small
compared to the cohesive energy, so the magnetic energy
fluctuations at T- are not pronounced enough to be seen.

The existence of magnetic ordering for clusters as
small as N=7 is a consequence of the interplay between
magnetic and cohesive interactions. For small clusters of
sizes studied here, magnetic ordering at finite T cannot
exist, at least from MC simulations, if the cohesive in-
teraction (1) is not included. The magnetic ordering
found here can therefore be called phonon-assisted mag-
netic ordering.

We show in Fig. 12 the magnetic transition tempera-
ture T¢ and T, as function of N. A few remarks are in
order: (a) T,, is slightly increased compared to the non-
magnetic case (Fig. 7) but with similar tendency; (b) a
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FIG. 11. Magnetization M (open circles, left scale) and mag-
netic susceptibility x (solid circles, right scale) vs T for N=15
(a) and N=17 (b).
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FIG. 12. Characteristic temperatures vs N in the presence of
magnetic interaction. Vertical bars limited by solid circles are
limits of the jump of A, crosses indicate peak temperatures of C,
and open circles are Curie temperatures.

maximum in C is observed for all sizes and in the meta-
stable category (except N=8); the maximum of C is
found above the upper limit of the jump in A; (¢c) T in all
cases is below T,,, but in some sizes, it is above the upper
limit (N=14, for example) or below the lower limit of the
jump in A (N=13, for instance).

Now, in view of the smooth behavior of y above the
magnetic transition, it is interesting to calculate the criti-
cal exponent y associated with this transition for clusters.
Using the relation

X=R(T—T¢) 7, (8)

where R is a constant, the critical exponent y has been
calculated for different N studied in this work. As an ex-
ample, a log-log plot of (8) for the case N=13 is shown in
Fig. 13, using T-=0.018. From the slope of the straight
line drawn by a mean least-squares fit, one obtains

1.5+ :
-25 -2 -1.5

109, (T-T¢)

FIG. 13. Log-log plot of Eq. (8) for N=13. The slope of the
straight line obtained from a least-squares fit yields exponent
¥ =1.620.
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¥ =1.62+0.10. The error was calculated from the error
on the value of T which is estimated at +0.001. It is
noted that the deviation from the straight line when
T — T is expected: Due to the finite-size effect, ¥ does
not diverge at T following (8). Now, it is interesting to
notice that the value of ¥ obtained here is between the
values for Ising spin systems in two and three dimensions,
which are 1.75 and ~1.25, respectively.?> We emphasize,
however, that these values have been calculated for the
case of short-range interactions in the absence of cohesive
interactions.

We have also calculated y for other cluster sizes. The
results show that y oscillates between the bi- and tridi-
mensional values: For example, y =1.52, 1.70, 1.33, 1.56,
and 1.70 for N=7, 9, 11, 15, and 17, respectively (error
for all cases is +0.1). The oscillatory behavior may be
closely related to that of T,, shown in Fig. 12 due to
different structural stabilities.

IV. CONCLUDING REMARKS

To conclude, let us emphasize the following points.

(a) When only cohesive interaction (1) is taken into ac-
count (nonmagnetic case), the melting behavior depends
on the cluster size. It is convenient to distinguish two
categories, stable and less-stable structures, characterized
by different melting behaviors. The former, including
N=7, 11, 12, and 13, has a maximum in C while the
latter has not. The melting is recognized in this case by a
jump in A which occurs, in general, at very low T.

(b) Melting is preceded by a large region of tempera-
ture where strong fluctuations are observed. Similar
features have been found in the LJ case and were inter-
preted as coexistence of solid and liquid phases.'®

(c) A long-range magnetic interaction has been includ-
ed for the first time in melting studies. Its effects are re-

markably seen: sharper melting transition especially in

the less stable category where a maximum in C appears,
and cluster volume contraction (magnetostriction). How-
ever, the magnetic interaction leaves the cluster structure
unchanged

(d) One of the most striking results is the existence of
magnetic ordering at finite 7' for clusters as small as
N=17. The magnetic transition occurring below the melt-
ing is characterized by the loss of magnetization and an
anomaly in the magnetic susceptibility. The associated
“critical” exponent ¥ is found to depend on the cluster
size. For N=7 to 17, ¥ has values between those of Ising
spin systems in two and three dimensions.

The magnetic ordering at finite T for such small clus-
ters is possible only in the presence of the cohesive poten-
tial. In this sense, one can say that the magnetic and
cohesive interactions help each other to eliminate fluctua-
tions and therefore enhance the stability of the cluster.

As the last remarks, let us mention that the results
have been shown for «=6.9 and J, =35, which reproduces
approximately the order of magnitude of the ratio be-
tween magnetic and cohesive energies at equilibrium in
bulk transition metals such as Ni, Co, and Fe. Another
choice of these parameters for the same ratio will change
the curvature of J(r;;) in Fig. 1. Stronger curvature will
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likely enhance the volume contraction and, furthermore,
suppress structure fluctuations, making melting transi-
tion sharper. Besides, the simple magnetic model used
here can be improved in future work to represent real
transition-metal clusters. Finally, it is hoped that this pa-
per will stimulate more experiments and theoretical in-
vestigations on melting in magnetic clusters.
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