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The distribution of currents in random resistor networks is studied numerically, and the results
are compared with recent predictions. The configuration of resistors in the neighborhood of large

currents is shown to have a “funnel” shape.

I. INTRODUCTION

This report presents numerical results on the distribu-
tion of currents in random resistor networks and com-
pares them with recent theoretical predictions.’? We
study L X L square networks composed of conductors of
two sizes, 1 and G, with 0 <G < 1. The fraction of large
conductors in each network is p; the fraction of small
conductors is 1—p. We consider values of p away from
the percolation threshold.

One motivation for studying the distribution of large
currents in random resistor networks is to understand the
electrical and mechanical breakdown properties of com-
posite materials. The random fuse network, introduced
by de Arcangelis et al.® and studied by Duxbury, Beale,
and Leath,* is a simple model in which to study break-
down phenomena. The random fuse network is obtained
from a random resistor network by introducing a critical
current at which the conductance of any resistor irrever-
sibly drops to zero. As the voltage across the network is
increased, breakdown first occurs at the resistor carrying
the largest current. After the breakdown of the first
resistor, there is new distribution of currents. The distri-
bution of large currents thus plays a central role in un-
derstanding the random fuse model.

Li and Duxbury? (LD) studied random resistor net-
works with bond dilution, G=0, and showed that the ex-
pected largest current in a network, (i, ), increases
with the size of the network L as

Cipae Y ~igy(InL)* (1)

where i,, is the average current in the lattice. The ex-
ponent a depends on the dimension d of the network and
is bounded by 1(d —1)<a=<1. For d=2 they find

a=1 (G=0). )

Machta and Guyer! (MG) studied the case where all
resistors in the network are finite, 0 <G <1. They found
the same form, Eq. (1), for the largest current, but the
value of a is now a function of G and d. For two-
dimensional networks a is given by

a=11—(4/mitan"(G'?)] (0<G <1). (3)

It should be noted that « is not continuous at G=0.
In this paper we test the prediction for a given in Eq.
(3) and some of the assumptions which underly this pre-
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diction. Rather than considering the maximum current
in each realization of a network we examine the closely
related question of the distribution of large currents.

II. THEORY

We begin by reviewing the theoretical ideas of Refs. 1
and 2. The first assumption is that the magnitude of the
current in a given bond is determined by the
configuration of the resistors in the neighborhood of that
bond. The large currents in a network are found in
neighborhoods which have the ability to focus current
from a large cross section into a single bond. The proba-
bility of finding a given local configuration decreases ex-
ponentially in the number of specified resistors. Thus,
the large currents in the network are almost always found
in those configurations which are most effective in focus-
ing current for a given number of specified resistors. We
refer to these neighborhoods as critical defects, these are
the sites where breakdown will be initiated in the random
fuse model. For two-dimensional networks with
0<G<1, MG show that the critical defect is an hour-
glass or funnel-shaped region with large conductors along
the axis of the average current and small conductors
along the axis perpendicular to the average current, see
Fig. 1. The largest currents occur in resistors near the
center of the funnel. For the site dilution case, G=0, LD
show that the critical defect is a line of insulators with a
conducting hole in the center; see Fig. 1. In both cases,
the magnitude of the current at the center of the defect
can be obtained using continuum methods.

The current i (/) in the bond at the center of a funnel of
size ] behaves as

i(I)~iuel'"" (funnel defect) )

with v, the smallest eigenvalue of Laplace’s equation with
boundary conditions prescribed by current conservation
and Ohm’s law, given by

v=(4/m)tan” (G 1/?) . (5)

On the other hand, LD used conformal mapping methods
to show that the current i (/) in the central bond of a line
defect behaves as

i(l)~i,I/2 (line defect) . (6)

The next ingredient needed for obtaining the distribu-
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FIG. 1. A square network of size L with a funnel defect and a
line defect depicted in it. The gray region is of conductivity
one; the dotted region is of conductivity G; and the white region
is of average conductivity. The funnel defect is [ X [; the line de-
fect is / X 1 with a single unit conductor in the middle. The hor-
izontal bus bars maintain the voltage drop across the network.

tion of current values is the statistics of defect sizes. The
probability that an / 2><l region is configured as a funnel is
given by [p(1—p))"/2. This is roughly the cumulative
distribution function f(I) for a given bond to be at the
center of a funnel of size / or larger,

Fh=[p—p)1"°7~. (7)

Assuming that the large currents are almost always found
at the center of critical defects, f (/) is equal to the cumu-
lative current distribution

S dipth=r, 8)

where p(i) is the probability density for the bond currents
and ! and i(/) related by Eq. (4). Differentiating both
sides with respect to i (/) and setting i,,. =1 yields

N endl
pD~—f (D5

1+v

[p(1—p)1"2np (1—p)] . )

~

1—v

Taking the logarithm of both sides and using Eq. (4)
yields

Inp(i)~ — Ai'/*+(1/a—1)Ini +const (10)
with

a=(1—v)/2=11—(4/m)tan"(G'?)] (0<G <1)
and

A=—1In[p(1—p)]
or, to leading order,
jl/ay

pli)~exp(— A4 as i— oo . (11

The G=0 case may be treated in the same way except
that now
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fih=1-p). (12)
Repeating the same steps as before we obtain,
pli)~exp(—Bi%) as i— o (13)
with
a=1
and

B=—2In(1—p) .

For a two-dimensional network, a approaches 0.5 as G
approaches zero. However, a=1 at G=0. MG suggest-
ed that the discontinuity in a@ at G=0 reflects a crossover
from the dominance of funnel to linear critical defects.
For small ! and G, the small conductors in a line defect
behave as insulators and Eq. (6) holds. However, as [ in-
creases, the current in the center hole approaches an
upper bound, i,, which can be shown to be

i,=i,./G . (14)

Since line defects are more probable than the two-
dimensional funnel defects, one expects line defects to
dominate for i <<i, leading to exponential decay for p(i)
while for i >>i, we expect to see the asymptotic behavior,
Eq. (11), characterized by the exponent a given in Eq. (3).
For i =i, we expect to see an effective exponent between
a and 1.

III. NUMERICAL RESULTS

To test the prediction of Eq. (11), we chose three values
of G: 0.25, 0.5, and 0.75. For each value, we computed
the current in each conductor for 100 networks. Each
network was 100X 100 with p=0.8. A voltage drop
across each network was maintained by two horizontal
bus bars on opposite edges such that the average current
per vertical conductor is unity (see Fig. 1). Periodic
boundary conditions were used in the transverse direction
to minimize edge effects. We used Kirchoff’s current law
and the conjugate gradient method*> to compute node
voltages using a Cyber 205. The solution was considered
accurate when the fractional deviation from current con-
servation was less than 2 X 1072 at each node. The prob-
ability distribution p(i) is displayed in Fig. 2. If G were
1, the distribution would consist of two sharp peaks, at
i=0 corresponding to horizontal bonds; and at i=1 cor-
responding to vertical bonds. As G decreases, the peaks
broaden and overlap.

In Fig. 3, for each value of G, we plot In[In(1/p)]
versus Ini for the tail of the distribution. For G=0.75, we
grouped currents into regular intervals of size 0.01 and
considered the largest 0.0329% of the currents. For
G=0.5, we chose interval size of 0.03 and the largest
0.043% currents; for G=0.25, we chose interval size of
0.08 and the largest 0.032% currents. The effective ex-
ponent is determined from the slope of each plot, and
compared with the theoretical prediction in Fig. 4. The
numerical value is close to the theory for all G with in-
creasing deviations above the theoretical curve as G de-
creases. This is in accord with the ideas concerning a
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crossover to a=1 as G decreases. The agreement with
the theory is perhaps too good since the range of i ex-
plored in the simulation is less than i,. For G=0.25,
1.76 <i<2.08 and i, =4; for G=0.75, 1.14 <i <1.18 and
i,=1.33.

We tested the assumption that current magnitudes are
determined by the local arrangement of the resistors by
rearranging the network and then recomputing the
currents. We interchanged the 9X9 neighborhood sur-
rounding a large current with a randomly chosen 9X9
neighborhood thus creating a new network having the
same local environment for the bond with a large current
but a different global environment. For G=0.75 we ex-
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FIG. 2. Distribution of currents in an ensemble of 100
configurations of 100X 100 networks with a given G, where p is
the density of currents of magnitude i. (a) G=0.75, (b) G=0.5,
(c) G=0.25.
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FIG. 4. A comparison of a obtained from Fig. 3 to the
theoretical result (solid line), Eq. (3).
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FIG. 3. In[In(1/p)] vs Ini at a given G. The slope of this plot
gives 1/a, see Eq. (11). (a) G=0.75, (b) G=0.5, (c) G=0.25.
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TABLE I. Funnel defect detected numerically. The numbers in the array are the ensemble averaged
fraction of large conductors, F, at each vertical bond site in the 9X9 neighborhood surrounding the
large current which is located at the center. The average current flow is in the vertical direction. F is
shown in underlined boldface if F > p; and in italics if F <p where p=0.8 is the average number of

large conductors in the network.

0.76 Q.84 0.85 0.91
0.74 0.80 0.77 0.89
0.79 0.79 0.88 0.86
0.66 0.64 0.74 0.81
0.78 0.68 0.46 0.0

0.75 0.74 0.75 0.84
0.81 0.80 0.85 0.91
0.85 0.79 0.73 0.88
0.81 0.84 0.84 0.88

0.93 0.84 0.84 0.82 0.78
0.98 0.96 0.86 0.82 0.77
1.0 0.82 0.66 0.68 0.77
1.0 0.0 0.32 0.69 0.76
1.0 0.80 0.74 0.77 0.79
0.99 0.89 0.80 0.73 0.85
0.93 0.90 0.89 0.86 0.78
0.97 0.85 0.82 0.82 0.78

amined four large currents with five transpositions each
and observed a maximum change in the magnitude of the
large current of 1.5%. For comparison, the median verti-
cal current is more than 12% below the large currents ex-
plored here. Having established that it is the local envi-
ronment which determines the magnitude of large
currents we can now study this environment in more de-
tail.

Although the individual environments of large currents
appear to be rather random, we can detect a funnel pat-
tern by superimposing an ensemble of neighborhoods
containing large currents.® We computed the currents
for ten 100X 100 configurations with G=0.75 and p=0.8.
We examined the 9X9 neighborhoods surrounding the
ten largest currents in each configuration. With the bond
carrying the large current chosen as the origin we super-
imposed these neighborhoods and calculated the fraction
of large conductors at each bond position relative to the

origin. Neighborhoods which included the bus bars were
omitted from the ensemble. The fraction of large con-
ductors at each vertical bond site, F, was displayed in
Table I. Those bonds which have a fraction greater than
p (which is 0.8) reside in a large conductivity region. The
funnel shape is roughly apparent.

In conclusion, we have studied the asymptotic proper-
ties of the distribution of currents in random resistor net-
works. The results are consistent with recent theoretical
ideas and show that large currents in the network result
from funnel-shaped defects.
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