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Conduction in inhomogeneous materials: Hot and high-field spots
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Consider electrical conduction ip a macroscopically inhomogeneous material with two randomly
distributed phases of different conductivity. There will be regions with a particularly high genera-
tion of Joule heat (hot spots) and regions with a particularly high electric field (high-field spots).
These spots are determined both by the conductivity at.the spots themselves (local effects) and by
the phase composition in the region surrounding the spots (long-range effects). We have studied the
local and long-range effects in two and three dimensions, using analytical models with one and two
inclusions in a uniform matrix and numerical calculations on random resistor networks. Hot and
high-field spots are favored by long-range compositional fluctuations with borderlines similar to an
hourglasslike double cone and with the cone axes along the applied field and the hot or high-field

spot at the point where the apexes of the cones meet. The well-conducting phase dominates inside
the cones, and the poorly conducting phase dominates outside. The opening angle of the cones is
90' in two dimensions and 2 arccos(1/&3) = 109' in three dimensions.

I. INTRODUCTION f=(o, —o )/(o, +0. ),
In an inhomogeneous material, subject to an external

Geld, a breakdown may occur. Mechanical and electrical
breakdown has been modeled using two-dimensional reg-
ular networks of springs or resistors. ' In the case of
resistor models, initiation of the breakdown process has
been attributed to resistors with high electric field
strength' (high-field spots) or high generation of Joule
heat (hot spots). The resistor distributions giving rise to
these spots are called "critical defects. " Duxbury et al.
considered the random resistor network, i.e., a regular
network with some resistors absent. They assumed that
the most critical defect is when the missing resistors form
a line. The more general problem of describing and pre-
dicting hot and high-field spots in a random two-
component system where both components are conduct-
ing, is still largely unsolved. In this paper we model such
systems by two- and three-dimensional two-component
square aIid cubic networks and study those spatial Auc-
tuations which give rise to high fields or hot spots. In
particular we shall find how the field and Joule heat in a
single resistor depend on the resistor itself (local effect)
and on its surrounding network (long-range effect). We
also use analytical results for inclusions in a matrix to
study weakly inhomogeneous materials.

i.e., 1)f ) —l. Inside the circle (E=
~ E~ )

E =(1 f)Eo, —

and outside the circle

E =[1+2f(R /r) cos(20)+f~(R /r)4]'~iEo .

In three dimensions, let

g =(tT; —a )/(a;+2o ),

(2)

(3)

(4)

i.e., 1 & g & —0.5. The fields inside and outside the
sphere are, respectively,

E =(1—g)EO,

E=[l+2g(R/r) (3cos 0—1)

+g (R/r) (3cos 8+1)]' Eo .

(5)

From expressions above we get the local generation of
Joule heat per area (volume), P=tJE . In two dimen-
sions, and inside the circle

II. ANALYTICAL RESULTS
A. A single inclusion

Ep

Consider a uniform matrix of conductivity o. with a
single circular inclusion (spherical in three dimensions) of
conductivity o.;. An electric field is applied, the field be-
ing Eo far from the inclusion. Let R be the radius of the
inclusion, r the distance to its center, and 0 the angle be-
tween r and Eo (Fig. 1). The exact results for the field E
are well known. Inside the inclusion it is uniform,
directed along the external Geld. In two dimensions, let FIG. 1. Coordinates used to define the field E(r, O).
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P=(1 f—)o Eo .

In three dimensions, and inside the sphere,

(7) r =C3(3cos 8—1),
where C3 is a constant.

(13)

B. Inhuence of a neighboring inclusion

Let A be an inclusion with conductivity o. ~ in a matrix
of conductivity o. , and determine how it affects the field
at another point B, where a "test inclusion" of conduc-
tivity o.z is placed. The distance between the centers of
A and B is r. B is assumed so small that it does not affect
the field at A. In two dimensions, with 0 as in Fig. 2,
Eqs. (2) and (3) imply that the new field at B is

[1+2f„(RIr)cos(28)+f„(RIr) ]'~ (1 f~)EO—, (9)

where

)I(~~+~ (10)

As a lowest-order correction to mutual interactions be-
tween inclusions, we now let A and B have the same ra-
dius R, consider small RIr and let the field at 2 be
changed due to the presence of B. Neglecting terms of
the sixth order and higher in (R Ir), and with fJi from
Eq. (1) and o', =o ii, the field at B is obtained as

[1+2f&(R Ir) cos(28)+2fiif&(R Ir) + f~(R Ir) ]'

X(1 f~ )Eo . (11—)

Now, consider the lowest-order prefactor in Eqs. (9)
and (11), i.e. [1+2f„(RIr) cos(28)]' . The locus of in-
clusions A which have the same inAuence on the field at
B is given by 2f„(RIr) cos(28) =C', or

r =C2cos(28), (12)

where C' and C2 are constants. Eq. (12), which has the
mathematical form of a lemniscate, defines the locus of
equal inAuence of an inclusion 3 on the field at B, cf.
Figs. 4 and 5 below. Similarly, in three dimensions and
from Eq. (6), the locus of equal infiuence is given by

E0

P=(1+g 2g—)o Eo .

Outside the circle (sphere) P is immediately obtained as
cr E, with E given by Eqs. (3) or (6).

C. Hot and high-field spots:
Local, boundary, and long-range efFects

With local effects on hot spots we mean how the Joule
heat P generated at a certain point (a hot spot) depends
on the conductivity o.; at the point itself. Inside a circu-
lar (spherical) inclusion in a uniform matrix, P is con-
stant. It follows from Eqs. (7) and (8) that the maximum
P is obtained when o, = cr (two dimensions) and
cr, =2cr (three dimensions). We next consider the Joule
heat P in the matrix, just outside the boundary of a single
circular (spherical) inclusion, i.e., at r=R. Joule heat
maxima occur at 8=0 and 0=180 for o.;)o. and at
0=+90 for o.; &o. . We note that in these geometries
there is always a point outside the inclusion with a P that
is higher than inside the inclusion.

Long-range effects here refer to how the Joule heat at a
certain point is aff'ected by the phase composition away
from that point. We rely on the discussion in Sec. II B.
To get an enhanced field at B, and hence an enhanced
Joule heat, we should have f„p ositive in the regions
where cos(28) is positive and f~ negative where cos(28)
is negative cf. Eq. (9). Similarly, in three dimensions a
hot spot at B is favored if gz is positive where cos 0)

3

and negative where cos 8( —,
' cf. Eq. (6). Thus, in three

dimensions, hot spots are favored by compositional Auc-
tuations such that there is an excess of the well-
conducting phase inside two cones, with touching apexes
and placed in an hourglasslike way with the cone axes
along the external field. Outside these cones there should
be an excess of the poorly-conducting phase. The open-
ing angle of the cones is 2 arccos (1/&3) =109'. In two
dimensions we get the analogous geometry, but with a
cone opening angle of 90'. These angles were obtained
also by Machta and Guyer. They used a variational
method to discuss the current distributions in double-
cone geometries, emphasizing how the maximum current
scales with the specimen size. The cone-shaped distribu-
tions of the phases can be considered as the central part
of the lemniscate (12) and its three-dimensional counter-
part (13).

A discussion of high-field spots parallels that of hot
spots. The high-field spot is always favored by a low lo-
cal conductivity, o.; &o. . The largest possible field in-
side the inclusion is 2EO in two dimensions and 1.5EO in
three dixnensions, in both cases when o.

, «o . Just out-
side the inclusion, and in two dimensions, the largest field
is 2EO at points 8=0 and 8=180 (for o, ))o ) or at
points 8=+90' (for o; ((cr ), cf. Eq. (3). In three di-
xnensions and for 0.

, ))o, the largest field is 3Eo at
points 0=0 and 0=180', while for o.; «o. the largest
field is 1.5EO, at points 0=+90 .

III. DIMENSIONALITY

FIG. 2. geometry used in the calculation of the inAuence of
an inclusion A on the electric field at another inclusion B.

In one dimension, the current through each link is the
same, and the hot and high-field spots always occur at the
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regions of largest resistivity, i.e. it is an entirely local
effect. In the mathematical abstraction of a dimensionali-
ty tending to infinity, a resistor network has infinitely
many parallel paths of a given length connecting two lat-
tice nodes. Then the potential between two neighboring
nodes is a constant. The hot spots arise at the links with
the largest conductance. Thus, we have again an entirely
local effect. In the case of a continuous medium we get
similar results. The largest Joule heat is generated in an
inclusion of conductivity 0;=(X—1)0,where X is the
dimension and o. refers to a uniform matrix.

In two dimensions there are important duality
theorems. Dykhne has defined a transform in which the
Joule heat generation in each link is unchanged if all the
phases are interchanged and the external field is turned
90. For c& =0.5, the square network is self-dual. This
means that if there is a spatial fluctuation which gives a
hot spot, the transformed network has a hot spot in the
same position. ' Since this is in a link of the other type,
there is no preferred resistor type for the hot spot itself.
For c, =0.2 the corresponding dual network has c& =0.8
and those two systems give equivalent results for hot
spots. High-field spots become high-current spots when
transformed.

IV. NUMERICAL CALCULATIONS
A. Network models

Numerical calculations are performed on resistor net-
works, following procedures used earlier. " Consider a
square network with 200X200 nodes. The resistors are
randomly assigned a high conductance s, or a low con-
ductance s2 so that their concentrations are c, and
c2=1—c, . The potential in each node of the lattice is
calculated by the Gauss-Seidel method. Periodic bound-
ary conditions connect the network sides parallel to the
external field. The effective conductance s, is obtained
from the total Joule heat. To avoid boundary effects we
do not analyze results for the outermost 10 layers of resis-
tors. Similar calculations are performed for three-
dimensional simple cubic 53 X 53 X 53 networks, again
neglecting the ten outermost resistor layers. The calcula-
tions are done for a large number of statistically indepen-
dent networks, for c, =0.2, 0.5, and 0.8, and our results
refer to averages over them. Hot and high-field spots are
here' chosen to be the 1.2% links which generate the
highest Joule heat or have the highest potential drop be-
tween its nodes.
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tion is more complicated. For conductance ratios s, /s2
close to unity hot spots are found at the well-conducting
links and for large s, /s2 they occur in the poorly-
conducting links.

As a further illustration of local effects on hot spots in
two and three dimensions we consider square and cubic
resistor networks in which each link is given any of 11
conductance values, logarithrnically distributed from s to
100s, and with equal probabilities. Figure 3 shows the
distribution of the 1.2% hottest links above the conduc-
tance values. In two dimensions, the maximum in Fig. 2
is close to s=s, and in three dimensions it is close to
s =2s, , i.e. conductance values which would give a
Joule heat maximum for a single inclusion in a continu-
um.

The long-range effect in two dimensions, related to the
resistor distribution surrounding a hot spot has a charac-
teristic double-cone shape with opening angle of 90 and
cone axis along the applied field E, Figs. 4 and 5. Well-
conducting links dominate inside the cone and poorly-
conducting links dominate outside. This is in agreement
with the findings in Sec. II 8 and II C for the inAuence of
a single distant inclusion in a continuous medium. In
three dimensions, our calculations show an analogous
conical shape for the Auctuations in the resistor distribu-
tion, but now with an opening angle close to 109 . Since
the argument about a single distant inclusion does not
contain the cooperative effect of other inclusions, it
should apply best to the case when the conductivities of
the two phases are nearly equal. This is also found in our
numerical calculations, where we have looked at the de-
tailed resistor distribution near the hottest spot. When
the conductivity ratio is 2, the distribution of the two
kinds of links is rather well separated, with few links of
the "wrong" type in the four sectors surrounding the hot
spot in Figs. 4 and 5. With increasing conductivity ratio,
the connectivity of the well-conducting phase becomes

B. Hot spots
0 Sa —4f I W L ~ I WI I ~ I

~ ~

10
~ ~ Ear I~ eaJ

100

First, consider local effects in a two-dimensional net-
work. When c

&
is above the percolation threshold

p, =0.5 hot spots almost entirely occur at the well-

conducting links, while when c, &p, they occur at
poorly-conducting links. When there are equal amounts
of the two resistors in the square network, c, =p„ the hot
spots equally often occur in poorly- and well-conducting
links.

In three dimensions and above p, =0.2492, hot spots
occur in well-conducting links, while for c

& &p, the situa-

relative conductance of links

FIG. 3. Numerical calculations illustrating the local
influence on the occurrence of a hot spot. In 200X200 and
53X53X53 networks, each link is randomly and with equal
probabilities assigned any of 11 conductance values with magni-
tudes s, (100)' ' s, (100) ' s, , . . . , 100s. The figure shows the
distribution of hot spots (the 1.2/o links with the largest Joule
heat) over the 11 kinds of resistors, in two and three dimensions.
Arrows indicate Joule heat maxima in the case of a single in-
clusion in a homogeneous matrix.
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FIG. 4. Numerical calculations on resistor networks in

which a resistor link takes one of two conductance values with
probabilities c& =c2 =0.5. The figure refers to the resistor dis-
tribution surrounding hot spots, here defined as the 1.2%%uo links
with the largest generation of Joule heat. The hot spot itself is
the vertical resistor in the center. Hatched circles denote an ex-
cess of well-conducting links and filled circles denote an excess
of poorly-conducting links. The area of a circle is a measure of
the excess concentration. The conductivity ratio is s&/s2 =10.
The figure represents an average of 40 statistically independent
200 X 200 networks.

FIG. 5. As in Fig. 4 but with c& =0.2 and c2=0.8. (Results
for c, =0.8 agree with our discussion in the text but are not
shown here. )

(11). Note that for 0=90' and when both f„and fs are
negative, all terms in the large bracket have the same
sign, while for 8=0, f„positive and fs negative, the
third term in the bracket is negative.

more important. For instance, for s&/s2 =100, the hot-
test spot has a higher proportion of links of the "wrong"
type in the four sectors. The well-conducting links form
connected paths which are narrowed at the hot spot due
to the blocking by poorly-conducting links. Then the dis-
tribution of Figs. 4 and 5 presents an average that is not
necessarily realized around a specific hot spot.

C. High-field spots

The highest fields occur in the poorly-conducting
phase, cf. Eqs. (2) and (3). The long-range effects are
most effective in the cone-shaped geometry of the compo-
sition fluctuations found for hot spots. However, it is
more important to have an excess of poorly-conducting
resistors in the regions of the filled circles, than having an
excess of well-conducting resistors in the regions of open
circles in Figs. 4 and 5. It can be understood from Eq.

V. CONCLUSIONS FOR REAL MATERIAI. S

Although our analysis has been for the idealized cases
of dilute spherical inclusions in a uniform matrix and
resistor networks, the results give a qualitative picture
which should be valid also for real three-dimensional ma-
terials. Hot and high-field spots are due to both local and
long-range effects. Let the overall effective conductivity
of the material be o, First, consider an average Joule
heat P or electric field E over a region which contains
many grains so that a local effective conductivity o.

&
can

be defined there. Then extreme P and E should occur in
regions such that o.

I
=2o.„surrounded by compositional

tluctuations of the conical (or lemniscate) shape discussed
above. The same conclusion holds for a one-phase ma-
terial in which the concentration of solute atoms varies
spatially, leading to a continuously varying local conduc-
tivity cr &.
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If we are interested in regions small compared to the
size of a single grain, the high P and E are likely to occur
near phase boundaries. One still has long-range effects
from compositional fluctuations of the type just men-
tioned, but now superimposed on the very important
influence of the shape of the boundary and the precise

phase distribution in its vicinity.
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