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A method for calculating the electronic structure of surfaces, interfaces, quantum wells, and su-

perlattices in the tight-binding (TB) theory is presented. This method fully takes advantage of the
repeated layer structure of these systems. The TB equations in the repeated regions are solved in

terms of the characteristic solutions, and the final problem is reduced to a small set of boundary
equations. This approach applies to both the eigenvalue problem and Green's functions with vari-
ous boundary conditions. A one-dimensional model is used to display the mathematical structure.
Several analytical results are derived to illustrate the application of the method. The theory is then
extended to three dimensions with multiple orbitals. The possibility of using this method for a
first-principles self-consistent calculation is also considered.

I. INTRODUCTION

Recently, considerable attention has been paid to the
study of surfaces, interfaces, quantum wells, and superlat-
tices because of their relevance to modern device and ma-
terials applications. ' Although the electronic-structure
calculations for these systems have progressed very rapid-
ly, ' they have not been carried out as rigorously as the
conventional bulk-band calculations. The difficulty arises
from the fact that superlattices in general have too large
unit cells, and the other structures do not possess the full
crystal periodicity. However, all these structures contain
repeated layers inside a large portion of the bulk. One
should be able to take advantage of this special feature.
The main purpose of this paper is to show how this spe-
cial feature is utilized in the electronic-structure calcula-
tion using the tight-binding (TB) theory. The equations
for the eigenvalue problem and the Green's functions in
the TB theory are reduced to difference equations cou-
pling the layers. These difference equations in the repeat-
ed regions are solved in terms of the characteristic solu-
tions, and the remaining problem is to match these solu-
tions on the boundaries.

Although the present method is related to other previ-
ous TB approaches to these structures, ' the
mathematical structure of the difference equations, the
systematic solutions, and the capability of this method

for dealing with both the eigenvalue problem and the
Green s functions with various boundary conditions have
not been uniformly and clearly described before.

To introduce the idea, we start with a one-dimensional
model in Sec. II. The methods for calculating the band
energies and the Green's functions for the bulk, surface,
interface, and superlattice are described. Several analyti-
cal results are derived to demonstrate the usefulness of
this method. Section III then generalizes the method to
three dimensions with multiple orbitals. Section IV con-
tains a summary and discussion. The possibility of apply-
ing this method to a self-consistent first-principles calcu-
lation is also considered.

II. ONE-DIMENSIONAL MODEL

The basic idea of the difference-equation approach can
be best illustrated via the following one-dimensional mod-
el. Once the results of this model are understood, it is
straightforward to generalize to three dimensions.

A. Eigenvalue problems

Consider the following one-dimensional chain consist-
ing of S segments of A and B atoms sitting on N lattice
sites labeled by the numbers:

A A A A A A A ABBBBA A A A ABBBBBBB
123456789. . . . n

The tight-binding model to be used assumes one local or-
bital per atom, denoted by. n ) for the orbital at the nth
site, and that these local orbitals are orthonormal:
(n ~m ) =5„. It further assumes that the only nonzero

matrix elements of the one-electron Hamiltonian are the
term values e„=(n ~H~n ) and the first-neighbor interac-
tions t„=(n ~H~m ) for m =n +1 and m =n —1. Let
the values of c„be c. ~ or cz depending on whether an A
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c„=a1r'1'+a2r 2, (2)

where a1 and a2 are arbitrary constants and r1 and r2 are
the two roots of the following characteristic equation:

t„+(EA —E)r +t„r =0 . (3)

Note that r, r, =1 in this model. If ri =r, =r, then the
solution becomes c„=(a, + a 2n)r". After the general
solutions of the form of Eq. (2) are substituted into Eq.
(1), the X coupled equations are reduced to 2S boundary
equations, where S is the total number of segments.

For a pure crystal, if the Born —von Karman periodic
boundary condition is applied, the two boundary equa-
tions ai e

ACN+(EA E) lC+t
A2
C0

t ACN —1+(EA E)CV +tA Cl 0 (5)

After Eqs. (2) and (3) are used in Eqs. (4) and (5), one
finds r1 =1 or r2 =1 for nontrivial solutions. If we set

r, =e'", where a is the lattice constant, we immediately
obtain the familiar quantization for the wave vector:
k =2m ~/Na with m being integers. Then the band ener-
gies are given by E ( k ) = r A + 2t A cos( ka ).

The eigenvalue problem for a slab with surfaces differs
from that for a bulk pure crystal only in the boundary
equations. Consider a simple case where the surface
effect only causes a change in the term value on the sur-
face sites. The two boundary equations then become

t
A

c +2( a+Ad, E)c, =0, —

(E„+b, E)cN+tAcN, —=O,

where 6 is the difference between the surface and bulk
term values. If ri is set to be e', then Eqs. (6) and (7)
reduce to

i (6 + 1)H(g —iH t )2
—i(' v+ 1)0( geio t )2 0

or B atom is located at the nth site. Similarly, let t„be
t ~, t&, or t, respectively, for the A - A, B-8, and A -B in-
teractions. The eigenvalue problem, (FX —E)~f) =0, be-
comes the following N coupled difference equations, if

~, it ) is expanded as g„c„~n ):

t„„,C„,+(E„—E)C„+t„„+,C„+,=0 .

We note that Eq. (1) repeats itself, if n is not any of the
boundary sites. The general solution of this second-order
difference equation inside a segment, for example, an A

segment, takes the form

again requires ~6~ & )tA ~. In either case, if ~6~ & ~tA ~
is

satisfied, the surface-state energy is given by
E, =c~ +5+ t~ /A. All the other solutions correspond
to the extended states with energies lying within the band
of the pure crystal, i.e., ~E —E A ~

& 2~ t A ~. These
extended-state energies are still given by E = c ~
+2t ~ cosO, but the quantum number 0 is now determined
by Eq. (8).

The interface problem corresponds to the case with
two different segments. After the general solutions are
matched on the boundaries, four coupled linear equations
are obtained, from which the eigenenergies and eigenkets
can be solved. For a quantum well, two more boundary
equations are needed.

For a superlattice, consider a chain consisting of re-
peated double segments of n A atoms and m B atoms. In
other words, the superlat tice has a periodicity of
D=(n +m)a. For the eigenvalue problem, it is most
convenient to use the Born —von Karman boundary con-
dition or equivalently the Bloch theorem for the superlat-
tice, i.e., co =—c„+ e and c„+ +, =c,e, where K—iKD iKD

is a superlattice wave vector. Then only four boundary
equations are required:

te ' c„+ +(E„E)c,+t—„c,=0,
t„c„,+ ( e „E)c„+tc—„+,=0,
tc„+(Eii E)c„+,+—ttic„+2=0,

tttc„+,+(eti E)c„+ +—te' c, =0 . (12)

After the general solution of Eq. (2) for the 2 segment for
c with j from 1 to n and a similar form for the B segment
for c„+ - with j from 1 to m are used, Eqs. (9)—(12) reduce
to four coupled homogeneous linear equations.

B. Green's functions

The one-electron Green's function, G(E)=(E H)—
is useful for calculating many electronic properties, e.g. ,

the density of states and the electronic density, of a solid
without actually computing the eigenenergies and eigen-
functions. It will be shown below that the Green's func-
tions for the layer structures can be obtained directly
from the solutions to the difference equations without
performing the Brillouin-zone intergration usually em-

ployed in such calculations. We shall consider pure crys-
tals first, then surfaces and interfaces.

The Careen's function by definition satisfies the follow-
ing equation:

(H E)G = I, — — (13)
With the presence of 5, localized surface states or the

Tamrn states' may be allowed, depending on the
strength of A. These surface states have their wave func-
tions decaying exponentially from the surface into the
bulk. For these localized states to exist, 0 must have a
finite imaginary part. For the case ~e'

~

& 1, the second
term of Eq. (8} becomes negligible, and the bound-state
energy is determined by Ae ' —t~ =—0, or e' =6/t~,
which requires ~b,

~

& ~tA ~. Similarly, if Ie'
~

& 1, the first
term of Eq. (8) can be ignored, then e' =t„/b, , which

Agn —1n +(EA E)gnn +tAgn+in 1 (14)

Taking the off-diagonal matrix element (the mn element
for m &n) gives

A grn —1n + ( E A )gEmn +Agtm + 1 n0 (15)

where I is the identity operator. For a pure A chain, tak-
ing the site-diagonal (the nn) matrix element of Eq. (13}
yields
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In the above equations, g „ is (m ~G(E)~n ). Note that
g „ in Eq. (15) as a function of m for a given n obeys the
same equation as Eq. (1), so the general solution can be
written as g „=a

&
r ]

"+a 2r z
'. However, diferent

a& and a2 are needed, depending on whether m) n or
m (n. In this connection, we note that the solution for
the Green's functions in the present difference-equation
form is similar to that in the usual dift'erential-equation
form: we match the right-side Green's function g
(m ) n) on the right boundary and the left-side Green's
function g „(m &n) on the left boundary, and then the
two Green's functions are matched at m =n. Finally, the
discontinuity condition, Eq. (14) in the present case,
determines the final solution. In doing so, we also keep in
mind that the energy for the Green's function has an
infinitesimal imaginary part, which we choose to be
E+i6, so the two characteristic roots can always be
chosen such that ~r, ~

) 1 and ~rz ~

& 1. For a bulk crystal

(16)

and

(17)

Substituting these two results into Eq. (14), one obtains

g„„=(E+i6—sA —t„Ir, t„r, )— (18)

Using the fact that r2=1/r, and the explicit forms of r2,
we find

with a large N, g „should approach zero as m ap-
proaches both extreme ends while n lies in the middle of
the bulk. To satisfy this condition, we require that
g „=a2rz " and g, =a, r, ". The condition
gt&n gnn gnn implies that gnn a, =a 2, so that

—1/[(E —sA ) 4t„]' fo—r E —cA & —2~tA
~

g„„= —i l[4t„—(E—eA ) ]' for ~E —cA ~ &2~ltA
~

1/[(E —sA ) 4t„]' —for E —sA ) 2~t, ~.

(19)

With g„„available, all the off-diagonal Green's function can also be evaluated explicitly from Eqs. (16) and (17). The
density of states per atom given by p(E) = —Img„„ /vr is also readily available from Eq. (19).

The above results can be easily extended to surfaces. Assume that the site index n =1 corresponds to the surface,
then Eq. (14) becomes

(EA +6 E)gll +tAg21 — 1

Equation (16) still holds, so g, =g»rz . Then Eq. (20) yields

g„=(E+io—cA —5 —tAr~)

which has the following explicit forms:

2IIE+i6 —cA —2b, —[(E—cA ) 4t„]'~ ] for E ——sA & —2~tA ~

g» = . 2IIE —
eA

—2A —i[4t„—(E—eA ) ]'
I for ~E —sA ~

(2~tA
~

2IIE+i6 —
cA —26+[(E—cA ) 4tA 4t„]—' ] for E —sA—) 2~tA ~.

(20)

(21)

(22)

The contribution from the surface to the density of states,
pl(E)= —Imgl, /n, can now be evaluated explicitly. The
bound surface-state energies can also be found from Eq.
(22) by setting the denominator in the first or the third
line of this equation to zero, which yields
E& =a A+6, +tA /b, provided that ~b,

~

) ~tA ~, a result al-
ready obtained based on the eigenvalue problem. The
other Green's functions, such as g22 and g33 etc. , can be
obtained in a similar fashion.

To obtain the interface Green's function, one can ei-
ther modify the above procedure slightly or use Dyson's
equation. To digress onto this point, let us evaluate the
interface Green's function. '' Let the A segment occupy
the sites for n ) 1 and the 8 segment the sites for n ~0,
and let us evaluate g». The characteristic roots for the a
segment are chosen such that ~r, ~

) 1 and ~rz~ & 1, and
similarly for the 8 segment, ~x, ~

) 1 and ~x2~ (1. Then

Bg ll +(EB+AB E)g01+tgll =0

tgo&+(~~+ha —E)g»+twg2, = —1,
(23)

(24)

where A~ and Az are the surface perturbations. From
Eqs. (23) and (24) the interface Green's function g„ is
found to be

g„=1/[E+io sA b, A
——t„r2 —t /(tBx, —bB)] . —

(25)

This result can also be obtained using Dyson's equa-

following Eqs. (16) and (17) and the way they were de-
rived, g'1=g»r2 ] for m)1 and gL1 blx1-1 for
m ~ 0. The boundary equations for the Green's functions
that we are after are the 01 and 11 matrix elements of Eq.
(13) given by
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tion. Let G be the Green's function for the whole system
containing the interface and G be the Green's function
for the two independent 3 and B crystals. The Dyson's
equation connects G to G by

G=G +G VG, (26)

V=IO&t& (i+!I)t(oi . (27)

Then the 11 and 01 matrix elements of Eq. (26) are given
by g» =g» +g &&tgo, and go, =gootg», respectively,0 0 0

which yield

where V is the difference between the Hamiltonians of the
connected and disconnected chains. In the present mod-
el, Vtakes the form

set of the quantum numbers to simplify the eigenvalue
problem and the calculation of the Green's functions.

Below we will assume that the local orbitals are ortho-
normal and the Hamiltonian matrix element are not zero
only between those orbitals residing in the same plane
unit or in two nearest planar units. The longer-range in-
teractions can be handled within the present formalism
either by using a larger planar unit or by generalizing the
difference equations to higher order.

The one-dimensional chain in Sec. II can be used to
represent a system consisting of slabs of 3 and B atoms
by letting each atom in the chain represent a plane of
atoms. When the eigenfunction for a k~~ is expanded in
terms of the planar basis of Eq. (29) as

g» =(1 g&itgoot) (28)
lg&= &&C (n)lna, k,

„,
&, (30)

Note that in deriving g» we have used the fact that g~,
and g&o are zero. '" The g&& in Eq. (28) is the surface
Green's function for the A segment given by Eq. (21).
Similarly,

goo 1 /(E+io sB ~B rBx2

is the surface Green's function for the B segment. When
these expressions are used, Eq. (28) reduces to Eq. (25).

This section has displayed the basic mathematical
structure of the difference-equation approach to the ei-
genvalue problems and the Green's functions in one di-
mension. This approach will be generalized to three-
dimensional layer structures in Sec. III.

III. THREE-DIMEIVSIQNAL LAYER STRUCTURES

We define a three-dimensional (3D) layer structure as a
system having the same two-dimensional crystal periodi-
city for all the layer units. The extension needed from
the one-dimensional model to the the 3D structures is to
replace each atom in the chain by a plane of atoms.

Since each planar unit is a two-dimensional lattice, one
can construct from the tight-binding orbitals the planar
Bloch functions:

+g [H . (n, n) Fo ]C—.(n)

+gH „.(n, n +1)C„(n +1)=0 . (31)

Inside an 3 slab, Eq. (31) may be written in the matrix
form

F~ C„]+ AC, +F~ C„„)=0,
where the C's are column matrices and the bold capital
letters F and A are square matrices of order n, . Explicit-
ly, the matrix elements in Eqs. (31) and (32) are defined as

F .=H . (n, n +1)
and

A .=H (n, n) —E5

=(n, a;k~~l(H F) n, ak~~) .—

the eigenvalue problem (H E)~it )—=0 in the present
model becomes a set of coupled difference equations:

gH (n, n —1)C .(n —1)

, nka„)= ge " "/n, a;I„),l ik I

+X,
(29)

The difference equation (32) has the following general
solution:

where n is the label of the planar unit, k~I is a wave vector
inside the two-dimensional Brillouin zone associated with
the planar lattice represented by the lattice vectors l~~, N,
is the total number of unit cells in each plane, and a is
the label for the local orbitals. The number of local orbit-
als n„which is the same as the number of independent
planar Bloch bases defined in Eq. (29), is equal to the
number of orbitals per atom times the number of atoms
per unit cell in each planar unit. The plane label n in
general can represent a set of layers. Since the whole sys-
tem has the two-dimensional lattice translational symrne-
try represented by the lattice vectors I l~~ ], all functions of
the Hamiltonian are diagonal in blocks of kI~. In terms of
the basis functions defined in Eq. (29), all the matrix ele-
ments of the Hamiltonian between any two basis func-
tions with different k~~ are zero. Thus k~~ can be used as a

C„=pa r "a (33)

for the column matrix of the nth plane in an 3 slab,
where r and a are, respectively, the eigenvalue and
eigenvector of the jth solution to the following charac-
teristic equation:

(F~+r A+r F~ )a=0 . (34)

The a 's in Eq. (33) are constants to be determined by the
boundary conditions and the normalization of the wave
function. The quadratic matrix eigenvalue problem of
Eq. (34) can be cast into a linear eigenvalue problem so
that the eigenvalues and eigenvectors can be easily ob-
tained. ' There are in general a total of 2n, characteristic
roots from Eq. (34), with r and 1lr' forming pairs of
roots. Although F~ is generally not Hermitian, r* and
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1/r were also found to be the roots in all the cases that
we have studied. After the characteristic solutions
Ir, a ) are obtained, the remaining problem is to match
these solutions on the boundaries. Having considered the
one-dimensional model in detail in Sec. II, we will simply
write down the expressions for the corresponding three-
dimensional cases.

A. Surface and interface states

While the extended-state electronic structure in a sys-
tem with surfaces and interfaces may be treated more
efficiently using the Green's functions as will be con-
sidered later, the eigenvalue problem is more transparent
for dealing with states which are localized on the surfaces
and interfaces. Extending the boundary equation of Eq.
(6) to the present case, we have

( A+V)C, +F„C2=0, (35)

where V is the surface perturbation. Since the wave func-
tion of a surface state decays exponentially into the bulk,
the C„ in Eq. (33) should only include those solutions
with the characteristic roots

l r, l
( 1. Let the number of

r satisfying this condition be nI„' then the nI, expansion
coefficients a in Eq. (33) of the surface states obey the
following equation:

g(Va r —F„a )a =0.
J

(36)

A similar technique can be used to treat the interface
states, for which the allowed characteristic solutions are
those that decay exponentially from the interface into
both sides of the bulk. These solutions are then connect-
ed by two boundary equations coupling the two surfaces.

B. Superlattice band structure

C. Green's functions

The Careen's functions for the layer structures for a
given k~l and energy E+i6 in the present model are

The boundary equations for a three-dimensional super-
lattice with multiple orbitals take forms similar to Eqs.
(9)—(12), except that the c's are to be replaced by the
column matrices and the interaction parameters are to be
replaced by the kll-dependent square matrices. After the
general solutions in Eq. (33) for both A and B slabs are
substituted into these boundary equations, a set of
4n, X4n, homogeneous linear equations are obtained and
are to be solved for the band energies and wave functions.

We note that, if the superlattice is treated as a bulk,
then a direct application of the TB theory will require a
Hamiltonian matrix with a dimension (n +m)n, that in-
creases linearly with the number of layers in the
slabs. ' In contrast, the present approach only needs to
deal with matrices of a fixed dimension 4n, regardless of
the thickness of the slabs. Th price paid is that the ma-
trices are now energy dependent. The numerical aspects
of the application of this method to semiconductor super-
lattices will be reported separately.

defined as

g„(kl~l E+i5)
=(n, a;k~~l(E+i5 —~) ' ma', k~~) . (37)

Unless stated otherwise, we will be working on fixed
klan

and E+i6, so these two parameters will be suppressed.
We will use G„ for a given pair of plane indices n and m
to denote a square matrix of dimension n, such that the
g„ in Eq. (37) is the aa' matrix element of G„

Consider the pure-crystal Green's functions first. The
one-dimensional Eqs. (13) and (14) now become

Won —1n + Gnn + 3 Gn+1n

F~ Gm 1n + AGmn +FP Gm +1n

(3&)

(39)

Note that Eq. (39) can be solved in the same way as Eq.
(32). Since the energy is E +i 5, one-half of the charac-
teristic roots of Eq. (34), denoted as r for j =1 to n, ,

have magnitudes less than 1 and the other half, to be
denoted by x =r +„ for j=1 to n„have lx l

) 1. The

eigenvectors of Eq. (34) corresponding to r are denoted
as a and those corresponding to x are denoted as P . In
terms of these solutions, the Green's function column by
column can be written as

GR(i) ~ (i) m —n
mn ~ J J J

J
(40)

GL(i) ~ b {i) m —n~
mn ~ J &J

J
(41)

where i indicates the ith column. These two equations
correspond to Eqs. (16) and (17), respectively, for the
one-dimensional model. It is more convenient to write
these equations in terms of square matrices. Let us definea" and b" as the ij matrix elements of A. and %, respec-
tively, and let P and Q be, respectively, the square ma-
trices formed by the column matrices Ia I and IP~ I.
Then G „=PR "A, G „=@X' "X, and G„„=G,",„=GL„=PA =QA with G„„given by

G„„=[F~(QXQ ' —PRP ')) (42)

where R, = r, 6i and X, =x, 6, . The other Green's func-
tions for the bulk can then be calculated from Ci
=PR--"P-'G„„and G'„=@X"'-"g-'G

The surface and interface Green's functions are not
much more complicated, once the above results for the
bulk pure crystals are available. For example, the surface
Green's function can be obtained either from Dyson's
equation or from matching Cx, to the surface boundary
equation,

( A+ V)CX11+F~ Cx2) = I (43)

Both ways lead to the following surface Green's function:

G'»: ( A+ V+F~ PRP ) (44)

Note that the poles of G» yield the surface states when
they exist outside the energy spectra of the bulk. This re-
sult is equivalent to Eq. (36) from the eigenvalue con-
sideration.
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To conclude this section, we point out that the key to
our approach is to solve the difference equations in the
repeated regions in terms of the characteristic solutions
given by Eqs. (33) and (34). Once this is done, the eigen-
value problem and the Green's functions can be cast into
boundary equations. The information contained in this
and previous sections is sufficient for one to generalize to
other cases.

IV. SUMMARY AND DISCUSSION

This paper concerns the calculation of the electronic
structure of surfaces, interfaces, quantum wells, and su-
perlattices. As mentioned earlier, it is difficult to apply
the conventional band techniques to these systems, be-
cause superlattices in general have too large unit cells and
other systems do not have the complete crystal periodici-
ty. Although useful information about surfaces and in-
terfaces has been obtained using artificial periodic super-
cells, ' ' ' '' it remains to be quantified how large these
supercells are needed to be and how accurately the sur-
face and interface effects are represented by these super-
cells. A direct comparison between the results from the
supercell calculation with those based on the true boun-
daries will help resolve these questions.

This paper presents a difference-equation approach to
treating these layer structures. This method fully takes
advantage of the symmetry of the repeated regions by
solving the difference equations in terms of the charac-
teristic solutions. Both the eigenvalue problem and the
Green's functions are then reduced to a small set of
boundary equations. A one-dimensional model was used
to display the basic mathematical structure and to derive
analytical examples. The formalism is then extended to
the three-dimensional cases with multiple orbitals. The
ability to calculate the layer Green's functions such as
those given in Eqs. (42) and (44) without requiring the
Brillouin-zone integration along the k~ perpendicular to
the layers may also be useful for studying the defect and
alloy problems of surfaces and interfaces.

The most immediate application of the present method
to realistic systems is to utilize the empirical tight-
binding (ETB) method. The ETB method has been useful
for calculating the band structure and structural
properties for the pure and alloy bulks. The present
method will make ETB readily applicable to surfaces, in-
terfaces, quantum wells, and superlattices.

Although all the formulas derived in this paper assume
that the interactions are truncated up to the first-
neighboring planes, these formulas can handle the
longer-range interactions by using multilayer planar
units. For example, if a double-layer unit is used for the

zinc-blende semiconductor superlattices, all the ETB
Hamiltonians with interactions up to the second neigh-
bors can be directly applied to these formulas. Another
way to handle the longer-range interactions is to general-
ize the quadratic difference equation to higher orders.
The number of the characteristic roots ( r ), or the num-

if'. a
ber of the complex-k values defined by r =e ', depends
not only on the number of orbitals n, but also on the
range of interactions. For a first-neighbor model with n,
orbitals per planar cell, there are 2.n, characteristic roots.
Including the second-neighbor interactions, this number
increases to 4n, . The final size of the matrices is then
fixed by the number of I r I and by the number of the
boundary equations required.

Because our method facilitates the calculation of the
Green's functions and hence the local charge densities, it
points to the possibility for a first-principles self-
consistent calculation using the density-functional
theory. ' This is desired so that the structural properties
of these layer structures can be studied as rigorously as
those for the bulk. One essential step in this undertaking
is to find a set of efficient and compact local orbitals,
namely, the number of orbitals n, required has to be kept
to a minimum and the extension of these orbitals has to
be limited to the first few neighbors. The tight-binding
orbitals derived from the linearized muffin-tin orbitals
(LMTO) method by Andersen and Jepsen and the trun-
cated atomic orbitals may be useful in this connection.
One may also consider using the energy-dependent orbit-
als which satisfy Schrodinger s equation locally but trun-
cate in short distances. This energy dependence in the
basis should not cause too much concern, because, after
all, the Green's functions and the characteristic solutions
of the difference equations have to be calculated as func-
tions of the energy.

Finally, there is one important problem involving in-
terfaces that cannot be handled by the present approach.
This is the case in which the two surfaces involved con-
tain no commensurate two-dimensional lattice, as is often
found in antiboundaries and grain boundaries. Whether
or not the present approach can be extended to treat this
problem requires a further study.
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