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Thermodynamic functions of the S=—' one-dimensional ferromagnet
via the renormalization-group approach and Green's function technique
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The model applicable to (C6H»NH3)CuBr3 is studied within the framework of the real-space
renormalization-group approach as well as the Green s function technique. The zero-field specific
heat is evaluated in the first-order generalized-cumulant expansion and qualitative agreement with
the reliable numerical data and experimental results is found. Some crossover eff'ects observed at
low temperatures are also discussed. The in-plane magnetization is calculated by having recourse to
the first-order Green s function approach and an instability of the spin-wave contribution under the
thermal renormalization of magnons is demonstrated.

I. INTRODUCTION

gpgB g S(

if the magnetic field 8 is applied along the chain axis. In
the Hamiltonian (1) S;"'~' stands for the spin —,' operators
and the constants are defined in the standard way. The
exchange integral J, the anisotropy parameter 6, and the
g factor have the following values:

J/k~=55 K, 6=0.95, g =2.01 . (2)

The Hamiltonian (1) can be mapped onto the classical
sine-Gordon (sG) (Ref. 9) Hamiltonian provided that
some assumptions are imposed and a well-defined peak
feature of the in-plane specific heat was predicted from
the numerical transfer-matrix calculations. ' The
specific-heat experimental data were interpreted in terms
of the sG model. However, they turned out to deviate
systematically from the sG predictions. A number of
theoretical attempts have been undertaken to improve
the classical sG model. The quantum version of the sG
model" ' leads even to somewhat larger deviations
from the experiment (for CHAB), whereas the semiclassi-

Quasi-one-dimensional magnetic systems attract a
great deal of interest among both theoreticians and exper-
imentalists. ' A well-known example of the system in
question is (C6H»NH3)CuBr3 (CHAB) (Refs. 3 and 4)
which displays magnetic order below T, =1.5 K. The in-
terchain interactions responsible for the finite T, are
weaker than intrachain interactions by a few orders of
magnitude. The nonlinear excitations should play an
essential role in the thermodynamic properties of
CHAB.

From a number of experiments ' it has been de-
duced that the model Hamiltonian for CHAB has the fol-
lowing form:

H = —2J g(S;"S;"+,+SfSf+, + b,S,'S,'+, )

cal approach' improves the free-soliton picture but is in-
ferior to that of the quantum sG model. Much better
agreement with experiment was found from some numer-
ical calculations. '

In the present paper we apply the real-space
renormalization-group approach to the Hamiltonian (1)
as far as the zero-field specific heat is concerned. We put
8 =0 in order to simplify our calculations. We note that
the Hamiltonian (1) can be only mapped onto the sG
counterpart if the in-plane field B&0. As far as we know
this is a new attempt to analyze the Hamiltonian in ques-
tion. Previously the method was applied to the planar
Ising-like Heisenberg model' and to some particular
one-dimensional models. '

CHAB is nearly an isotropic system (b, =0.95). The
symmetry of the model (1) imposes some conditions on
the renormalization transformations. Our model should
remain isotropic or XY type if 6=1 or 5=0, respective-
ly. It is particularly important if we want to analyze the
crossover of our nearly isotropic system towards the XY
behavior which has been experimentally observed. The
symmetry of XY model is not preserved by the decima-
tion transformation' ' so that we refer to the block
method and a cumulantlike expansion. Our first-order
results yield a picture which is only qualitatively correct.

Recently, some properties of CHAB (relaxation and
magnetization) have been interpreted in the framework
of a model with free quantum magnons and free classical
solitons. In the second part of the paper we show, by
having recourse to the Green's function technique, that
the linear-magnon contribution to the Hamiltonian (1)
strongly depends on the approximations. It is striking
that thermally renormalized magnons lead to the esti-
mates which deviate significantly from the free-boson
magnetization so that the hybridized magnon-soliton pic-
ture seems to be oversimplified.

Our renormalization-group approach is presented in
Sec. II. A relation is also made with some numerical and
experimental data. In Sec. III we develop the Green's
function approach and compare our data with the known
results. The paper ends with some concluding remarks.
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II. RKNORMALIZATION-GROUP APPROACH

In the present section some zero-field thermodynamic
quantities are calculated by having recourse to the real-
space renormalization-group (RSRG) approach. 'The
model Hamiltonian (1) is transformed into the form BCH

Feynman
0.93
0.93

SMO

1.64
0.652

BMO

1.68
0.665

TABLE I. The correlation length exponent v for the Heisen-
berg (6= 1) and XY (5=0) models.

where

+ ~Kz g oj~cTj~+'i
j=l

K =J/k~T, K, =6K (4)

where the operator M(o; ) can be defined according to
Sznajd [hereafter referred to as the Sznajd M operator
(SMO)] or Brower et ol. ' (BNIO).

In order to perform the trace operation in (5), we
divide the Hamiltonian (3) into an intracell term H and
an intercell term V, and we expand the corresponding ex-
ponential in terms of V via the Baker-Campbell-Hausdorf
(BCH) formula or the Feynman expansion. ' The re-
sults presented here have been found for both operators
M(cr; ) and for both types of expansions. Up to the first
order, the renormalized Hamiltonian H' preserves the
original form with an extra constant term N'lnZ. The re-
normalized parameters are given by

and o. ' ' stand for the spin- —,
' Pauli operators.

We divide the chain into X' cells consisting of n, = 3
sites and introduce cell-spin Pauli operators S; for each
cell. The renormalization transformation preserving the
free energy is defined ' by

exp[ —P'H'(S)]= Tr exp[ PH(o)]P(—S,o ) .

The weight operator P(S,o ), which links the site spins
and the cell spins, can be considered as the extension' '

to the quantum systems of the weight function intro-
duced for the classical Ising model. ' If the weight
operator has a higher degree of symmetry, different types
of Hamiltonians can be treated within the same transfor-
mation. Usually, the following rotationally invariant
form is chosen;

N'

P(S,o )= + —,'[1+—,'S, M(o, )],

5 I I l

i

I } I I

(

I I l I
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} I I I

)
) I ) i

0—

as well as (K*,K,*)=(0,0); the latter is attractive.
There exists a definite limit of (7) at T=0 which for

6 &1 gives 6'&5, so that there is a flow line from the
isotropic fixed point towards the XY fixed point at T =0,
and the exact result is recovered. However, we cannot
linearize the recursion relations (7) around the trivial iso-
tropic fixed point at T =0 in the two-parameter space
(K,K, ) since they have an analytic form exp(1/T). It is
likely that in this way the essential singularity at the
point 6=1 is manifested in our approach. In the one-
parameter subspace K =K, or K, =0 the transformations
(7) can be linearized in terms of the variable t =1/K
around t =0 and the corresponding correlation length
exponents v are reported in Table I. The exact result
for v is v=1. We see that in the XY limit our results are
not accurate. They depend strongly on the type of expan-
sion and only slightly on the choice of the M operators.

In Fig. 1 we present, in the logarithmic scale, the flow
lines which follow from the recursion relations (7) if they
are iterated. For all the curves (apart from that drawn in
the continuous line) the starting point corresponds to
6=0.95 and temperature is fixed via (4) by the value K' '

indicated explicitly. Having chosen 6=0.95, we refer to
the physical system to CHAB. The continuous curve
denoted by 5=0.25 is not a flow line but it represents the
function y=0. 25K. All the flow lines are attracted by
the stable fixed point (K*=0, K,*=O) but only the ones
corresponding to temperatures low enough enter the re-
gion below the continuous curve. The value 6=0.25 is
closer to the XY limit (5=0) than to the isotropic limit

K'=K(p/Z), K,'—:b'K'=K, (p, /Z) (7)
10

where p, p„and Z are reported in the Appendix.
The renormalization-group transformations (7) fulfill

the isotropic symmetry if 5=1. In that case BCH and
Feynman expansion give the same result,

p=p, =(10/9)exp(K)+b exp( —2K ), -2O
-20 -15 -10

where b =
—,
' or —', for SMO or BMO, respectively. The

transformations (7) have no nontrivial fixed points. We
find only the following fixed-point solutions:
(K*,K;)=(oo, oo ) (the isotropic Heisenberg fixed point
at T =0), (K', K,') =( oo, O) (the XI' fixed point at T =0)

FIG. 1. Flow-line picture in the logarithmic scale. The solid
line represents the function y =0.25K, whereas the remaining
curves depict the flow lines starting from 6=0.95 and K' ' as
indicated in the figure.
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f= g (lnZ )In,"
p=0

(9)

where Z is the cell partition function after p renormal-
ization steps. The specific heat can be expressed in terms
of the free energy as

10 I I I
I

I I I
I

I I I
I

I I I
I

I I I

(6= 1) so that we could expect that, when the fiow lines
enter the region below the continuous line in Fig. 1, our
nearly isotropic physical system should display the XY-
like behavior as far as the critical phenomena are con-
cerned. According to the data represented in Fig. 1, this
crossover should appear in the region 0.5K„„,(7. If we
define the curve y =+K as the separatrix of our parame-
ter space, we should expect the XY-like behavior when
the system Aows into the region below aK for a small
enough. The a dependence of the inverse crossover tem-
perature K„„,is shown in Fig. 2. We see that K„„,
amounts to about 4.5 or 5.5 for +=0.25 or 0.10, respec-
tively. Since a=0. 10 is much lower than 1, we can esti-
mate the crossover temperature T„„,~10K. Our esti-
mate of the crossover temperature is rather well
confirmed (T„,»-4E) by the neutron scattering experi-
ment on CHAB. We have presented this qualitative
analysis, referring to the Feynman identity. The analysis
based on the BCH expansion leads to a Bow-line picture
which has the same qualitative behavior as that shown in
Fig. 1. However, the estimates of K„„,remain practical-
ly unaltered. An indication of the crossover behavior was
found in some numerical calculations, ' but our present
discussion demonstrates the crossover more directly. As
it was mentioned above, we cannot linearize our recur-
sion relations near T=0 in the two-parameter space, so
that our analysis is not performed in terms of the scaling
function but referring to the flow-line picture.

In the remaining part of this section, the specific heat
of the system (3) is evaluated as the corresponding deriva-
tive of the free energy. The free energy per spin can be
calculated by iterating the renormalization process and
summing up all the constant terms which emerge in the
renormalization procedure so that

c=re'
M

(10)

III. GREEN'S FUNCTION APPROACH

In this section the magnetization of the model (1) will
be calculated in the framework of a Green's function
technique. Our Zubarev's temperature-dependent
Green's functions are defined in Ref. 29, and hereafter we
follow the notation introduced therein. The model Ham-
iltonian we consider here can be written in terms of the
spatial Fourier transforms Sk—and Sk of the spin opera-
tors S,.+—

,S in the following way:

Our final results are presented in Fig. 3 for 5=0,
5=0.95, and 6= 1. The dotted curves represent the esti-
mates we find by having recourse to the BCH formula,
and the dashed lines represent the corresponding esti-
mates based on the Feynman expansions. Both types of
expansion give the same result in the isotropic limit
5= 1, and the corresponding data are reported by a chain
line. Our data are compared with the exact results for
the XY model, which are represented in Fig. 3 by the tri-
angles. The squares and circles display the numerical es-
timates for 6=0.95 and b =1, respectively. The latter
are very accurate for k~ T/J ~0.2 and were used in a fit
of the experimental data which lead to the parameters
listed in (2) for CHAB.

We find that an overall agreement with the exact and
numerical data is much better if the Feynman expansion
is used, in particular at low temperatures. At higher tem-
peratures both expansions lead to the same results. We
attribute this drastic difference at low T to the following
fact: The Feynman expansion is given strictly in terms of
V, whereas the BCH formula yields the perturbation
terms which are considered according to the power of K.
Although we have not accomplished to recover quantita-
tively the exact or numerical results in the entire temper-
ature region, our results (based on the Feynman expan-
sion) demonstrate all the essential features at least quali-
tatively. In particular, we find that the peak positions
and the peak heights of the specific heat are rather well
represented. Again, both M operators lead to similar es-
tirnates and those presented in Fig. 3 are obtained for
SMO.

H = —gP~BSk o

Ol0
V

hC

where

+ —,'(J "—J»)) „(s„+s+„+s„-s:„)
+2J"3 „Sks' k],

0 I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8

J(k)=y J'"" "=y J(o)
J

(12)

FIG. 2. The inverse crossover temperature K,„„,vs a param-
eter a which specifies the XY region.

and J, J~~, and J"are the exchange parameters as in-
troduced in Ref. 8. IfJ =J"and J~~/J =0.95, we ob-
tain the model equivalent to (1). The anisotropy in the
xz easy plane is very weak (J"/J =0.9995) and the



39 THERMODYNAMIC FUNCTIONS OF THE S=
2

ONE-. . . 9227

0.4

0.3

0.2

0.1

:(z = 0)

~ ~
~yO

'~

:.8 = 0.S5)

4

I Ii

lI

I

1(d = 0.95]
/

/
/

/
/~ ~ ~ .: il'-"I I""

e ~ )'
/

~ '
(& = &)

g'

t

\

'
~

~
~

/
/

= 0)

8 ~

~i

0 ~ 2 0.4
k T/J

0.6 0.8

FIG. 3. The dimensionless specific heat per spin vs the reduced temperature k& T/J. The dotted curves report our results obtained
from the BCH formula whereas the dashed curves —those from the Feynman identity. The values of 6 specify the anisotropy. The
chain line represents our results in the isotropic limit. The exact data for the XF model are depicted by the triangles and the corre-
sponding numerical data for 6=0.95 and 6= 1 by the squares and circles, respectively.

—[(IIk )2 (~k )2]1/2 (13)

depend on the decoupling procedures. In the simple
random-phase approximation RPA approximation we

magnetic field B =0.5 kG is sufhcient to align spins along
the z axis. [There is a misprint in Eq. (13) of Ref. 8 in the
case B parallel to c axis. J"should be read as J .] The
experiments we refer to were performed in the region
B ~10 kG, so that we assume the ground-state spin
configuration in the z direction.

The quantities 0» and 0f2 (details are given in Ref. 29)
which determine the energy spectrum ~k of the un-
damped linear excitations

0"„=h+4oJ" 2o(J" +Jyy.)y„—,

IIk — 2 (Jxx Jyy)
(14)

where h =gp&B and cr = (S;). If the magnetization cr in
(14) is replaced by —,', the free-boson approximations is
recovered.

Usually ' thermodynamic quantities can be im-
proved with respect to RPA within a spectral-density
method (SDM). In that case an implicit decoupling is
performed in such a way that the spectral density
preserves the first two moments. We find then

0"„=h+ ' g y t4[2J"—(J" +Jy )yk](S'S' )+2(J"+J —2J"yk)(S S+ )+2(J"'—Jy )(S S: ) ],
(15)

0", = gy [2(J +J» —2J"y„)(S+S+ )+2(J""—Jy")(S S+)—4(J ' —Jy )y„(S'S' )] .
CT

q

(s;s', & =(s;&(s', & (16)

As before, the coupled sets (15) and (13) can be solved
if the RPA-like decoupling is assumed for the longitudi-
nal correlation function

as well as the spectral theorem is applied in order to cal-
culate the corresponding transverse spin correlation func-
tions.

The final set of equations we solve numerically, has the
form
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C, =—g yq R coth(Pcoq /2),1

q

C2= —gy R 'coth(Pco /2),

o '= —g(R +Rq ')coth(Pcoq/2),

and the corresponding results for magnetization are re-
ported in Fig. 4.

In Fig. 4 the continuous curve denoted as the total
represents the predictions of the heuristic model with
free quantum spin-wave excitations and nonlinear classi-
cal soliton excitations. The soliton contribution is drawn
by a dotted line after Ref. 8. Our result for the magnon
contribution to the reduced magnetization M =2o. is re-
ported by circles and by the dashed line and coincides
with that found before. It turns out that the continuous
curve gives a good representation of the experimental
data, so that hereafter we refer to that as to the experi-
mental results.

Some recent numerical calculations ' confirm that
these experimental data can be explained by the model
(1), so that it is interesting to check whether this picture
with free magnons, when the magnetization is reduced by
a factor 2 with respect to the saturation value, can be
supported by the theory which should be valid in a more
extended region of temperatures. Our picture with the
thermally renormalized spin waves leads to the data re-
ported in Fig. 4 by the triangles and squares for the RPA
and SDM approximations, respectively. They are close
to those of the boson approximation in the low-
temperature limit, but they display significant deviations

0.8
SOLI TONS

0.6

0.4

0.2

0
0

BOSONS

I & I . I

3 4 5 6

T/B (K kG )

FIG. 4. The reduced magnetization M as a function of
T/&B. Our results are shown by the circles (boson approxima-
tion), triangles (RPA), and squares {SDM). The dashed curve
interpolates the corresponding data. The dotted and solid lines
describe a soliton contribution and the experimental data on
CHAD (Ref. 8).

where

)(IIk IIk )/(IIk +IIk )]1/2

0" +0" =h+4o(J" Jy—)+2(J"" J"y—k)Ci,
(18)

Q"„—II"„=h+4o(J" J~~y—„)+2(J~~—J"y )C,

at higher temperatures where the solitons are activated.
Within SDM the deviations from the free-boson model
exceed the estimated soliton contribution. In both cases
(RPA and SDM) the thermal effects enlarge the devia-
tions of the theoretical results from the experimental
data, and the corresponding increase cannot be neglected
with respect to the soliton contribution.

We have already found ' the increase of the magnetiza-
tion with respect to the boson approximation, applying
SDM to the isotropic classical model. However, in that
case our predictions turned out to agree with some exact
transfer-matrix calculations in the temperature region
where the interacting boson approximation failed.

We point out that SDM predictions were also very well
supported by the reliable high-temperature expansion
as far as the T =0 critical field is concerned for the Ising
model with a transverse field. The transverse Ising
model is a quantum model but displays a quantum criti-
cal behavior only at T =0. At finite temperature the usu-
al critical behavior of the classical Ising model is predict-
ed. We end up with the conclusion that the deviations
of our SDM calculations from the experimental data
demonstrate an essential role of the quantum effects for
the model in question.

IV. DISCUSSION

We have supplemented the theoretical studies of the
easy plane system (1) by the RSRG approach and the
Green's function technique (RPA and SDM). We have
shown that our first-order RSRG scheme based on the
Feynman identity yields the estimates of the zero-field
specific heat which are consistent with the exact results
for the XY model, the numerical results, and the cor-
responding experimental data. At low temperatures, the
deviations are of the order of 100%, whereas at higher
temperatures they are reduced to 10—20%%uo. However,
the peak positions and peak heights are rather well
represented in the intermediate temperature range. Our
first-order predictions are not inferior to those found in
the framework of the sine-Gordon model. ' ' ' We
also note that surprisingly good agreement between the
numerical calculations and simple RSRG truncation
method results shown in Fig. 1 of Ref. 18 are fortuitous.
This Inethod fails when applied to our ferromagnetic
model (1). It is also hopeless to try to extend our previ-
ous approach ' ' for the quantum Ising model unless the
proper weight operator is introduced.

We have extended the RSRG analysis to the crossover
effects observed experimentally for CHAB. Our qualita-
tive discussion based on the flow-line picture yields
the estimate T„„,~ 10K which is well confirmed
( T„„,=4K) by the experiment.

In view of the recent conjecture on the role of the free
magnons and solitons in the temperature region which is
normally not accessible for the spin-wave description, we
have performed some calculations of the magnetization
by having recourse to the Green's function approach. In
contrast to our previous estimates ' for the classical mod-
el, we find significant deviations from the experimental
and numerical results. The deviations we encounter
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are of the order of the estimated soliton contribution, so
that we have demonstrated that the model in question is
unstable under the thermal renormalization of magnons.
Our results may also indicate that the physical picture
which follows from the semiclassical approach' is
oversimplified. According to that picture, classical soli-
tons present in the system modify the linear spin waves,
but this is only rejected by a shift in the phase of the spin
waves. It seems that the role of the thermal eft'ects has
not been sufficiently taken into account.
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APPENDIX

The cell partition function Z which appears in the con-
stant term of the renormalized Hamiltonian is given by

5=(b, +8)'

For the BCH expansion p and p, are given by

,'Pl+—f+4+f

V. =0l+g-4+g+ P4

where for the SMO

f+ =
—,'[5+(b,—2)/5],

g+ =
—,'[3+(3b,+4)/5]

and for BMO

f+ =
—,', (13+36/5),

g+ =
—,', [7+(76+8)/5] .

For the Feynman expansion p, is given by

Pz c~i +2c 2 0304+4cl c203 $[p( e3 s4) ]

+2C z g3P [2P( s3 —s4)],
where

Cl =pl+a y g-3+-a+y+g. , C, =y(a —1)/5',

y~= —,'(1+5/5), P(x) =(e" 1)/x—

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)
4 4

Z= g exp( —pE )= g g

where

a=1 a=1

EC—ps, =6K, F2=0, —pE3= —( —b, +5),

(A1)

(A2)

and for SMO

a = ,'[5+(b, +8)/5]—, y = ——', ,

whereas for BMO

a+= —,'[6+(b, +8)/5], y= ——', .

The expression for p is the following:

(A10)

(A11)

p =D, +2(D2(,g, +D3(,$4+D4(3(4)+4D, [D2(,p[p(c, —E3)]+D3$,$[p(e, —e4)]+D4$3$[p(s3 E4)] j

+2[Dggly[2P(El —E3)]+D3$ly[2P(El —84)]+D4$3$[2P(&3—&4)]]

+4D2D3 [01k[p(2E1 E3 e4)]+01034 I p(s3 E4)] ] +4D2D4 [ 03'Pl p(2e3 El E4) l+01034I p(El e4)] ]

+4D3D4[gcp[p(2eq —el —e3)+03(4$[p(E3 Kl)]] (A12)

where

D, =—(a, (3—p gq), D2= —,'[1+(b.+2)/5],2

D, =,'[1—(a+2)/5], D, =r.s(s —1)/5',

and for the SMO

a = —
—,'[1—(5+8)/5],

p, = —
—,'[1+(a+8)/5], r„=-', ,

(A13)

(A14)

(A15)

while for the BMO

1 5 (6+8)
1 ——

X

1 5 6+8P„=——1+—
6 3 6

(A16)



9230 L. S. CAMPANA et al. 39

*On leave of absence from the Institute of Physics, A. Mick-
iewicz University, 60-769 Poznan, Poland.

Magnetic Excitations and Fluctuations, edited by S. W.
Lovesey, U. Balucani, F. Borsa, and V. Tognetti (Springer-
Verlag, Heidelberg, 1984).

2Magnetic Excitations and Fluctuations II, edited by U. Balu-
cani, S. W. Lovesey, M. G. Rasetti, and V. Tognetti
(Springer-Verlag, Heidelberg, 1987).

K. Kopinga, A. M. C. Tinus, and W. J. M. de Jonge, Phys.
Rev. 8 25, 4685 (1982).

4K. Kopinga, A. M. C. Tinus, and W. I. M. de Jonge, Phys.
Rev. 8 29, 2868 (1984}.

5A. M. C. Tinus, W. J. M. de Jonge, and K. Kopinga, Phys.
Rev. B 32, 3154 (1985)~

A. C. Phaff; C. H. W. Swiiste, W. J. M. de Jonge, R. Hooger-
beerts, and A. J. van Duyneveldt, J. Phys. C 17, 2583 (1984).

7K. Kopinga, W. J. M. de Jonge, M. Steiner, G. C. de Vries, and
E. Frikkee, Phys. Rev. 8 34, 4826 (1986}.

SK. Kopinga, A. M. C. Tinus, W. J. M. de Jonge, and G. C. de
Vries, Phys. Rev. 8 36, 5398 (1987).

E. Magyari and H. Thomas, J. Phys. C 15, L333 (1982).
T. Schneider and E. Stoll, Phys. Rev. 8 22, 5317 (1980).
M. Fowler and X. Zotos, Phys. Rev. 8 25, 5806 (1982).
M. D. Johnson and N. F. Wright, Phys. Rev. 8 32, 8798
(1985).

~3H. C. Fogedby, K. Osano, and H. J. Jensen, Phys. Rev. 8 34,
3462 {1986).

I4I. Satija, G. Wysin, and A. R. Bishop, Phys. Rev. B 31, 3205
(1985).

~5G. Kamieniarz and C. Vanderzande, Phys. Rev. 8 35, 3341
(1987).
G. Kamieniarz, Phys. Rev. 8 38, 4873 (1988).
R. C. Brower, F. Kuttner, M. Nauenberg, and K. Subbarao,
Phys. Rev. Lett. 38, 1231 (1977).

'8A. L. Stella, C. Vanderzande, and R. Dekeyser, Phys. Rev. 8

27, 1812 (1983).
M. Suzuki and H. Takano, Phys. Lett. 69A, 426 (1979).

OR. B. Stinchcombe, J. Phys. C 14, 397 (1981).
~~Th. Niemeijer and J. M. J. van Leeuwen, Physica 71, 17

(1974).
J. Sznajd, Z. Phys. 8 62, 349 (1986).

23R. M. Wilcox, J. Math. Phys. 8, 962 (1967).
J. C. Bonner and G. Miiller, Phys. Rev. 8 29, 5216 (1984).
T. Tonegawa, Solid State Commun. 40, 983 (1981}.

6S. Katsura, Phys. Rev. 127, 1508 (1962).
H. W. J. Blote, Physica 79B, 427 (1975).

2sD. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960}[Sov. Phys. Usp.
3, 320 (1960}j.
G. Kamieniarz, Acta Phys. Pol. A52, 243 {1977).

3oU. Esposito, in Quantum Field Theory and Quantum Statis
ties, edited by I. A. Batalin, C. J. Isham, and G. A. Vilkovisky
(Adam Hilger, Bristol, 1987).
L. S. Campana, A. Caramico D'Auria, M. D'Ambrosio, U.
Esposito, L. De Cesare, and G. Kamieniarz, Phys. Rev. 8 30,
2769 (1984).
G. Kamieniarz, Solid State Commun. 66, 229 (1988).
G. Kamieniarz, F. Mallezic, and R. Dekeyser, Phys. Rev. 8
38, 6941 (1988).
U. Balucani, M. G. Pini, V. Tognetti, and A. Rettori, Phys.
Rev. 8 26, 4974 (1982).

35J. Oitmaa and G. J. Coombs, J. Phys. C 14, 143 {1981}.
M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
H. J. Mikeska and H. Frahm, J. Phys. C 19, 3203 (1986).
R. Giachetti and V. Tognetti, Phys. Rev. 8 36, 5512 (1987).
J. C. Bonner and M. E. Fisher, Phys. Rev. A 135, 640 (1964).

~oG. Kamieniarz, L. S. Campana, A. Caramico D'Auria, and U.
Esposito, J. Phys. C 20, 1337 (1987).

4~L. S. Campana, A. Caramico D'Auria, U. Esposito, and G.
Kamieniarz, J. Phys. C 20, 5161 (1987).


