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Novel intermediate flux states should be accessible in high-7. superconductors, where it appears
that the conventional Abrikosov flux lattice is melted over a significant portion of the (H,T)
plane. We discuss the Lindemann criterion, and argue that fluctuations in a flux crystal are high-
ly anisotropic, so that an asymptotically two-dimensional melting transition is possible as the
shear modulus drops toward zero for many sample geometries and field orientations. We then de-
scribe the “entangled flux liquid” which arises at high-flux densities or thick samples. The statist-
ical mechanics of this liquid is closely related to the physics of two-dimensional superfluids. The
decay of vortex line correlations along the field direction is controlled by the superfluid excitation
spectrum. A renormalization-group analysis shows how line wandering changes the nature of the
B(H) constitutive relation near H;;. We suggest that a heavily entangled flux liquid could exhib-
it a shear modulus on experimental time scales, in analogy with viscoelastic behavior in dense po-

lymer melts.

I. INTRODUCTION

The short intrinsic coherence lengths and large critical
temperatures in the recently discovered CuO;-based su-
perconductors suggest that these materials may exhibit
novel fluctuation effects, regardless of the underlying mi-
croscopic mechanism' responsible for the superconductivi-
ty. Although fluctuations are usually limited to the im-
mediate vicinity of critical points, it was recently argued
that fluctuations lead to a new entangled flux liquid phase
in a magnetic field, due to flux line wandering as vortex
filaments traverse the sample.?> Most of this analysis was
carried out in the vicinity of H,,, where approximations
exploiting the diluteness of the vortex lines are possible.

There are now experiments indicating that the usual
Abrikosov flux lattice is in fact melted over a significant
portion of the (H,T) plane: Gammel et al. 3 have found a
striking signal suggestive of flux lattice melting in single
crystals of Bi,Sr,CaCu,0s at temperatures well below the
onset of the Meissner effect. Low-field flux flow resistivity
measurements (also on bismuth compound) by van Dover
et al. * show no threshold behavior for 7=50-80 K, indi-
cative of vortices which flow freely without a shear
modulus even in the presence of pinning. These measure-
ments are consistent with earlier observations: Although
flux quanta (decorated via the Bitter technique) were ob-
served emerging from a sample of YBa,Cu3O7 at T =4.2
K, no flux patterns could be discerned at T =77 K, possi-
bly due to time-dependent flux wandering in an equilibrat-
ed flux liquid.>

Melted flux liquids are already familiar from discus-
sions of two-dimensional superconducting films: Dis-
location-mediated melting® of the flux lattice leading to
both ordinary and hexatic liquid phases of essentially
point vortices was explored theoretically several years ago
by Fisher.” The novelty of high-T. superconductors lies in
the possibility of a melted liquid of entangled line defects
in three dimensions. It was argued in Ref. 2 that the
high-7, materials are especially likely to exhibit an entan-
gled liquid regime on the basis of an analogy with
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superfluidity of boson world lines in 2+ 1 dimensions. A
related analogy was proposed by Fisher and Lee,® who ap-
plied duality transformations to a lattice model of a super-
conductor. These theories also allow for a “disentangled
flux liquid” regime, which would be the three-dimensional
analog of the liquid of point vortices discussed above.

In this paper we describe these ideas in more detail, in a
way which makes it clear that they are not restricted to
the immediate vicinity of H,;. In Sec. II we discuss fluc-
tuations in crystalline vortex arrays. The continuum elas-

tic theory of de Gennes and Matricon® is used to explore

the Lindemann criterion, and to show that fluctuations in
the Abrikosov phase of the new superconductors become
highly anisotropic needlelike objects, extended along the
direction of the magnetic field. Melting becomes two-
dimensional when the correlation length in this direction
becomes comparable to the corresponding sample size.
An asymptotically two-dimensional melting transition is
possible as the bulk shear modulus drops to zero for many
sample geometries and field orientations because of this
pronounced anisotropy. The Lindemann criterion shows
that the bulk melting temperature drops significantly as
the coupling between CuO; planes is decreased.

In Sec. III, we discuss a free energy which models the
properties of flux liquids. A criterion for entanglement is
developed, based on a random-walk picture of the trans-
verse motions of a flux line as it meanders along the direc-
tion of the applied field. The boson analogy is described,
with reference to a special toroidal geometry for which it
becomes exact. High-T, superconductors correspond to
exceptionally light bosons with a value of “Planck’s con-
stant” which is an order of magnitude larger than in con-
ventional superconductors. In the toroidal geometry,
there should be a Kosterlitz-Thouless phase transition
from a “superfluid” entangled flux liquid to a “normal”
disentangled flux liquid with decreasing magnetic field
strength above H.;. The boson analogy should also de-
scribe more conventional geometries, without periodic
boundary conditions, provided the samples are much
thicker than an entanglement correlation length.
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The next two sections contain some technical calcula-
tions. In Sec. IV, we show how interacting line liquids can
be mapped onto a coherent-state functional integral which
differs from a similar representation for boson super-
fluids'*!! only in the boundary conditions in the imagi-
nary time direction. This representation is used to calcu-
late the vortex line correlation function, which can be
measured with ‘neutron scattering.'?> These experiments
measure fluctuations in the local density of flux lines,
defined by

N
n(ry,z)=2Y, 8lr. —r;(z)]. a.n)

=1
Here r;(z) (see Fig. 1) is the position of the ith vortex in
the (x,y) plane as it wanders along the Z (ZIH) axis.
Neutron scattering measures

S(q1,9:)=(ln(qL,q.)|?, (1.2)

where n(q.,g.) is the Fourier transform of n(r.,z). The
physics, however, is more conveniently discussed in terms
of the partial Fourier transform

dq.

S(qu,z) =f_°° Er*e —iq’zS(Q.L,Qz)

=(n(q.,z+zo)nt(qi,z0)). (1.3)

As illustrated in Fig. 2(a), this correlation function
reduces to the structure function of a cross section of the
vortex lines when z =0. The correlations in any such con-
stant z cross section should be similar to those of a two-
dimensional (2D) liquid. Equation (1.3) describes more
generally how the Fourier components of this 2D struc-
ture function decay along the z axis due to entanglement.
Our results suggest that this decay can be approximated
by

—elg )|z |/kgT

S(qu,z) =S(qi,z=0)e , (1.4)

where £(g ) is the excitation spectrum of the correspond-
ing superfluid [see Fig. 2(b)]. Although our calculations
are carried out using approximations suitable for a dilute
superfluid gas, both the structure factor and excitation
spectrum in Fig. 2 are sketched as we would expect them
to be for strongly interacting 2D superfluid. Equation
(1.4) corresponds to the ‘“‘single-mode” approximation for
superfluid dynamics. The excitation spectrum defines via

f\‘, A ,'y 1 :‘ {
Y Icair
L Z
YT/

FIG. 1. Schematic of vortex lines in a slab of thickness L.
The trajectory of the ith vortex along the z axis is described by
the function r;(z).
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FIG. 2. (a) Partial structure function S(q.,z) for an entan-
gled liquid of vortex lines. For z, =0, this quantity is just the
Fourier transform of the distribution of vortices in a constant-z
cross section. S(q.,z) decays exponentially with z. (b) Boson
single-particle excitation spectrum which controls the decay of
the z =0 Fourier components (a) according to Eq. (1.4).

Eq. (1.4) a g, -dependent correlation length
&ilgL)=kpT/e(gL). (1.5)

The quantity &,(g.) is of the order of the entanglement
correlation length when g, ~1/d, where d is an intervor-
tex spacing.

In Sec. V we set up a renormalization group which al-
lows us to study the onset of flux penetration near H,;.
This transition is dominated by fluctuations and is a
three-dimensional example of the commensurate-in-
commensurate transitions which have received a great
deal of attention in, for example, two-dimensional rare-
gas monolayers on graphite.!> The renormalization group
allows us to derive in a transparent way the fluctuation-
corrected B(H) constitutive relation near H,|, >

ax_(90/A%)

T ] . e

B(H)zi(H——Hcl)ln[
4r

where ¢o=2rhc/2e is the flux quantum, A is the London
penetration depth, and

_ €106

g=— 190 1.7

4n(kpT)?

We find that H,; is renormalized downward from its
mean-field value by fluctuations. Although & would be
the vortex line tension in an isotropic superconductor, the
anisotropy of the high-7, materials reduces this parame-
ter by 2 orders of magnitude or more for applied fields
oriented perpendicular to the CuO; planes. As a result,
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Eq. (1.6) replaces the traditional Abrikosov result'#!3

-2
2¢0 360
B= 1 . (1.8)
V32 [" 4m.*(H—H,) ”

over a broader range of reduced fields [(H—H.)/
H, 51072 at T=77 K] than in the isotropic example
worked out in Ref. 2. The weakly coupled planes and high
critical temperatures of the new superconductors combine
to make the dimensionless coupling constant (1.7) of or-
der 10%-10° times smaller than in conventional supercon-
ducting materials. We also discuss the behavior of the
structure factor near H,;.

Finally, in Sec. VI, we conclude with some speculations
about the dynamics of heavily entangled liquids of flux
lines. We discuss pinning, and point out that, provided
barriers to line crossings are sufficiently high, regimes
analogous to a heavily entangled (two-dimensional) poly-
mer melt may be possible. In thick superconducting sam-
ples, there can be long relaxation times in the flux liquid,
similar to those characterizing viscoelastic behavior in
reptation theories of entangled polymers.'® Such long re-
laxation times could be helpful in suppressing flux flow
resistivity, because the flux liquid would exhibit a nonzero
shear modulus on experimental time scales.

II. FLUX LATTICE MELTING

As discussed in the Introduction, there are strong ex-
perimental indications3 > that the conventional Abriko-
sov flux lattice of vortices is melted in high-T, supercon-
ductors over much of the (H,T) phase diagram. The
effect is particularly pronounced in Bi-Sr-Ca-Cu-O, which
presumably differs from Y-Ba-Cu-O primarily in the
greater effective spacing between CuO; planes. In Ref. 2,
it was assumed for simplicity that fluctuations would melt
the Abrikosov lattice in high-T, materials whenever the
intervortex spacing exceeded the range of interactions.
More exact criteria, however, follow from a study of fluc-
tuations in the crystalline phase, using the continuum
elastic description of vortex line displacements proposed
by de Gennes and Matricon.’ As we shall see, the flux lat-
tice which exists in mean-field theory'#!> can be melted
even when the vortex spacing is much less than the range
of interactions. We shall restrict our attention to situa-
tions such that H < H.,(T), where H.»(T) is defined ex-
perimentally by the onset of the Meissner effect.

Although this is not essential, it will be useful to imag-
ine for illustrative purposes that the continuum elastic
theory arises from a phenomenological Ginzburg-Landau
free energy in the London limit. Except near H,,(T), we
can neglect fluctuations in the magnitude yo of the con-
densate order parameter:

io(r)

w(r) =yoe .1

We assume the o drops to zero inside a vortex core radius
&(T), which we identify with the superconducting coher-
ence length. The Gibbs free energy for fixed external field

H then reads'4'>!7

2e

2e -
A,’JM,'j ! [ajB—EZAj

he
L (apr—H (23
+o-Jaro =L farrs,

where b(r) =VxA(r) and M;; is an anisotropic effective
mass tensor. For high-7, materials, we have to an excel-
lent approximation

GH) = +ygh? [ar|o,0—

(2.2)

M, 0 O
Ml..= 0 Ml 0 s (2.3)
0 0 M,

in a coordinate system whose z axis coincides with ¢, i.e.,
the normal to the CuO; planes. M3 is the effective mass
along the z direction, while M is the effective mass which
describes interactions within the (x,y) plane. The equi-
librium magnetic field By, the spatial average of b(r), fol-
lows from minimizing (2.2) for fixed H.

Above H.|, it becomes energetically preferable for a
nonzero concentration of vortex lines to enter the sample.
For isotropic materials (M;=M3;=M), we can insert a
triangular lattice of flux lines with areal number density

n=B/¢o 2.4)

into Eq. (2.2), and find the approximate Gibbs energy

density g per unit volume in the region H, <H
14,15,17

<<H(‘2’

Blin(aH.»/B) — HB )

yys (2.5)

B? 2
B)~—+
gB) ~ gt

Here, a is a constant of order unity, ¢o=2rhc/2e
=2x10""Gcem? and

—_Mc?

(2.6)
47cu/&e2

22
is the London penetration depth. The minimum value of
B=Bqy is parallel to H, and is given [neglecting the weak
B dependence in the logarithm in (2.5)] by the solution of
H=Bo+—2_1n(aH./By)
87[2)\,2 c2/BoJ .
The coherence length £(T') enters only in providing a
short-distance cutoff for the free energy (2.2). The ratio
k=M/& is extremely large in the high-7. materials, of or-
der x=102-10%'® For an anisotropic superconductor
with BIHIIZ, Eq. (2.5) also holds, provided we replace M
by M in Eq. (2.6). Although a complete treatment for
general field orientations is difficult, approximate formu-
las have been derived by Campbell, Doria, and Kogan. 19
In the remainder of this section, we show how thermal
fluctuations decorrelate the rigid “line lattice” of vortices
discussed above. The effects of these fluctuations are par-
ticularly pronounced because of the small elastic constants
and high critical temperatures which characterize high-T,
materials.

2.7)
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A. Continuum elastic theory and the Lindemann criterion

We assume that the external field is aligned with the z
direction, and describe the trajectory of the ith vortex by a
function r;(z). If the average position of the ith vortex in
the triangular lattice discussed above is denoted by R;, we
can define a two-dimensional displacement field u(R;,z)
by

r;(z)=R;+u(R;,z). (2.8)
In the continuum limit, this displacement becomes a func-
tion u=u(x,y,z). The excess free energy §Glu(r)] asso-
ciated with small gradients of u is®

2
1 3 2 2 du
5G[u(r)]——2—fd r|2uul+rug+K —a;J ] 2.9
where
____1- Bua Gu,g _
Uap(r) > [—arﬂ + or. ], a,f=x,y (2.10)

is the symmetrized two-dimensional strain matrix, 4 and A
are Lamé coefficients, and K is a tilt elastic constant. We
use the same symbol for the Lamé coefficient A as for the
London penetration depth. Which quantity we mean
should be clear from the context.

As pointed out by de Gennes and Matricon, two con-
straints on these three elastic constants are provided by
the macroscopic magnetic properties of the material. For
a uniform dilation of the area A perpendicular to the z
axis we have

Oxux+0,u,=56A4/4, Q.11

where 84 is the change in area. The increase in energy
according to (2.9) is G =V8g, with

(u+r)(64/4)?

sg=7%
=L (u+r)(S5B/B)?,

(2.12)

and where V is the volume. The last line follows because
BA =N¢o=const during the dilation. We can, on the oth-
er hand, also calculate this increased energy directly by
expanding Eq. (2.5) about the minimum at B=By. Upon
setting B=By+ 6B+ 6B, where 6B and 6B, are small
deviations parallel and perpendicular to BollH, we find
(again neglecting the B dependence of the logarithm)

6g(B) =g(B) —g(Bo)

1 1 | H
=——|6B)[?+— | 2,
8”l il 87 | Bs | 6B, | (2.13)

For the small dilation discussed above, 6B, =0, so com-
parison of (2.13) with (2.12) shows that the bulk modulus
of the line lattice is

2

B
+r=—".
# 4r

More generally,

(2.14)

the sum wp+2A is given by u+A

=B3/4nu,, where u,=dB(H)/dH is the longitudinal
magnetic permeability.®
Imposing a uniform tilt on the vortex lines leads to a
second constraint on the elastic constants. If the vortex
lines are all inclined at a small angle 6 to the z axis, a
small transverse magnetic field | 5B, | = B0 is generat-
ed, and the increased energy per unit volume from Eq.
(2.9) is
6g =1 K0
= K|6B.|*/Bs. (2.15)

Comparison with Eq. (2.13) shows that the tilt modulus
.9
is

HB,
4r

Henceforth, we will drop the subscript 0 on the equilibri-
um magnetic field, and set Bo=B. The relation (2.16) is
in fact exact for any rotationally invariant superconduc-
tor. The tilt modulus will be much smaller, however, for
anisotropic high-7, superconductors with weakly coupled
planes. For HIlZ, a reasonable guess (which becomes ex-
act for low fields) might be

K= (2.16)

M, HB

= ar 2.17)

Note that K vanishes as M3 ! for large M, as is physical-
ly reasonable when the coupling between planes tends to
zero. If, following Campbell, Doria, and Kogan,19 the ra-
tio M /M is estimated from the upper critical fields
parallel and perpendicular to the z axis [M /M3
=(H/H%)%,"® one finds M/M3=~10"2% The tilt
modulus is clearly bounded above by the isotropic result
(2.16). For H>» H.,, we can set B=H in (2.17).

The only elastic constant not determined directly by the
magnetic properties is the shear modulus. The shear
modulus is typically much smaller than the bulk modulus
for all regimes of interest, and actually vanishes near H.,,,
as shown by Labusch?®

2
yz7x10—3[ﬁxﬁ] (1—H/H.,)*. (2.18)
We shall use (2.18) to approximate u for ¥ H.oSH
< H,,. For the opposite limit of H., <H S ¥ H.», we
can use the result of Fetter, Hohenberg, and Pincus:?!

u== % Boo/(4rL)?. (2.19)
These are zero-temperature results for shear distortions of
triangular Abrikosov lattices with flux lines regarded as
rigid rods. At finite temperatures, the shear modulus will
be renormalized downward by fluctuations, as already cal-
culated for the case of two-dimensional point vortices by
Fisher.” In three dimensions, the random-walk-like vor-
tex fluctuations discussed elsewhere in this paper will pro-
duce a similar softening of both the shear and the tilt
moduli.

We are now in a position to estimate the mean-square
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displacement of a flux line,?** i.e.,

S Due) [utr) 2% 27

(Julre) | =
fﬂu(r)e ~8G/ksT
=f d3q kgT kgT
Qn)3 | ugl+Kq2  Qu+i)gl+Kg?

(2.20)

where g2 =g2+g7?. We take the cutoff to infinity in the z
direction, and impose for simplicity a circular cutoff A in
the (x,y) plane. We choose A=+/4nn which conserves
the area of the hexagonal Brillouin zone. The mean-
square displacement is then

1/2
_n
4r ]

Because the shear modulus tends to zero at H,,, (| u(r) |
diverges in this approximation, suggesting that the Abri-
kosov flux lattice may melt, as originally pointed out by
Labusch.?® The shear modulus is small relative to the
bulk modulus at all fields, so we can always neglect the
second term in Eq. (2.21). Upon inserting the estimates
(2.18) and (2.17) for u and K appropriate for HX ¥ H,»,
we find

ksT kpT
WK)I'2 " [Qu+MK1V2 T

2.21)

(Julre) | =

1/2
2 n
= T
(Jul) |» [4”1(” ks
1/2
M; h~1/2
~ (12xkgT) d?, (.22)
K M ¢3H > ] 1=h

where d = \/¢o/B is the spacing between vortex lines, and
the reduced field h =H/H,,.

Taking as parameters for Ba-Sr-Ca-Cu-O x=2x102,
H(T=77 K)=2x10* Oe, and (M3/M,)'?=15, we
find that the root-mean-square fluctuation in the line dis-
placement at liquid-nitrogen temperatures is

h 1/4
(l—h)”zd' (2.23)
Since most solids melt when the rms displacement be-
comes of order {5 of the interparticle spacing, the flux
lattice in the Ba-Sr-Ca-Cu-O compounds should indeed
be melted for a wide range of fields,> at least for HIZ. A
number of comments seem appropriate at this point.

(1) For fields applied perpendicular to the z axis, the
tilt modulus will be anisotropic and much larger than sug-
gested by Eq. (2.17). Kogan and Campbell have suggest-
ed, however, that the modulus for shears parallel to the
CuO, planes is very low in this case.?* It is possible that
these two effects combine to produce fluctuations of the
same order as for HIlZ, as seems to be the case experimen-
tally for Ba-Sr-Ca-Cu-O.> The generalization of the de
Gennes-Matricon elastic free energy (2.9) is complicated,

(lu[®=0.2

however, when vortex lines run parallel to the weakly cou-
pled CuO; planes. This system is not even approximately
invariant under rotations about H: The antisymmetric
counterpart of the strain matrix (2.10) will enter in an im-
portant way.?’

(2) If we take as parameters for Y-Ba-Cu-O k=102,
H.(T=77 K)=5%10* Oe, and (M3i/M,)'?=5, Eq.
(2.23) is replaced by

1/4
( u|2)z0.06—-—h d
| a—=n)2">

showing that it is necessary to take H closer to H,, than in
Ba-Sr-Ca-Cu-O to obtain large vortex line fluctuations, as
is observed experimentally.® These fluctuations are negli-
gible in conventional superconductors except for fields
inaccessibly close to H,;.

(3) We can also evaluate Eq. (2.21) in the small-field
limit H < H,, using the weak-field formula (2.19) for the
shear modulus. The lattice is again essentially incompres-
sible, and we have using Eq. (2.17) for K,

(2.24)

1/2
(Jup= |2
lul® 4ruK
_ SmkoT (M) (5], (2.25)
Y M, H ' '

Upon setting A =6000 A and using the parameters quoted
above for Ba-Sr-Ca-Cu-O we find (|u|2)/2=0.08(B/
H)'2d, suggesting that, although fluctuations may be
(barely) sufficient to melt the crystal when, say, B =0.8H,
the crystal will become stable as B drops to zero near H,;.
This, however, is precisely the region where flux line
wandering, neglected in the mean-field calculation of the
shear modulus,?! becomes most important.? As we show
in Sec. V, interactions between vortex lines are renormal-
ized to zero by these fluctuations as H— H.;. We expect
that the same fluctuations will diminish the shear modulus
and melt the solid in the limit H— H,., at all nonzero
temperatures. The same conclusion was reached in Ref. 2
on the basis of an analogy with two dimensional bosons.

(4) The Lindemann condition discussed above is a cri-
terion, and not a theory of melting. It does not attempt to
explain the melting mechanism in detail, nor does it pro-
vide an explanation of the apparently continuous changes
during melting observed by Gammel etal.® The Lin-
demann criterion assumes wave-vector-independent elas-
tic constants which can be a gross oversimplification, espe-
cially if fluctuations are important. The integral in (2.20)
is in fact dominated by g ~1/d. A more accurate theory
would use wave-vector-dependent elastic constants under
the integral sign in Eq. (2.20).

In the next subsection, we discuss the size and shape of
the fluctuations which lead to the increase in {u2). These
are anisotropic needles, whose size and aspect ratio
diverge as the shear modulus tends to zero. This pro-
nounced anisotropy suggests that melting can in fact be
asymptotically two dimensional for a variety of sample
geometries and field orientations.
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B. Anisotropic correlation lengths and
two-dimensional melting

Most experiments on single crystals of high-7, materi-
als have been carried out in a slab geometry, with the
short dimension along the z axis, normal to the CuO;
planes. The mean-field theory of the bulk material pre-
dicts a second-order phase transition at H.,, where, ac-
cording to Eq. (2.18), the shear modulus goes continuous-
ly to zero. In Ba-Sr-Ca-Cu-O, the actual melting transi-
tion occurs well below the mean field H,,(T).? We shall
assume that the renormalized shear modulus becomes
very small at this (apparently continuous) transition, just
as it does near H.; in mean-field theory. Associated with
the drop in the shear modulus is a diverging correlation
volume for fluctuations which decorrelate the crystalline
order. When the size of this correlation volume becomes
comparable to the appropriate sample dimension (e.g., the
slab thickness, for HlIZ), the system crosses over from
three- to two-dimensional behavior. Such a crossover to

two-dimensional melting of the flux lattice for HIIZ has
|

Cgl(ri,z) =expi—

=exp —G,'ij—‘cﬁq_(l—eiq-r) —“_kf‘T—‘
(2n)? ngi+Kq?

where r=(r,,z) and Pj(q.) and Pi(q.) are two-
dimensional transverse and longitudinal projection
operators. For large separations, C(r,,z) tends to
exp(— + GXu?), ie., to the Debye-Waller factor associ-
ated with the reciprocal-lattice vector G. For points
separated primarily along the z direction, there is a 1/z
approach to this constant,

Colri,z) = exp(— +GXu?®)

i] . (2.28)

z

2
+ kTG
8n

1,

1
U 2u+i

To define a correlation length, we consider the smallest
nonzero reciprocal-lattice vector, with magnitude |G|
=Go=4n//3d for a triangular lattice. Following a simi-

J

kBTGz 1
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been proposed by Markiewicz?® and by Gammel et al. >
Although the crossover will not greatly affect the melting’
temperature in most samples, it will determine the asymp-
totic critical behavior at the transition itself. Here, we
calculate the dimensions of the bulk correlation volume,
and show that it is characterized by two diverging correla-
tion lengths, one parallel to the field direction and one per-
pendicular to it. These fluctuations are anisotropic
needle-shaped objects, and can lead to two-dimensional
melting close to the transition for many sample geometries
and field orientations.

The correlation lengths in question can be measured
directly using neutron scattering,'> which probes correla-
tions in the vortex line density defined by Eq. (1.1). The
behavior of the structure function (1.2) near a (two-
dimensional) reciprocal-lattice vector G of the flux lattice
is given by the Fourier transform of®

Cg(ri,z) =(expliG- lu(r,,z) —u(0,00)1}). (2.26)
For fields parallel to Z, this correlation function is easily
evaluated using the de Gennes-Matricon free energy
(2.9),

;— G,'Gj([u,‘ (I'_L,Z) - ui(O,O)][uj(rL,z) - u,-(0,0)])}

kT
Pl(qu)+ Piq) ||, .27
A g v kg2
I
lar analysis for superfluid helium by Hohenberg et al.,?’

we extract a longitudinal correlation length &, by setting
Co=exp(— +GXu?)U+¢&,/z)
for large z and find

_ksTGG |1, 1
- 8x u 2u+ti
=~ _k_BYﬁ(:)i (2 29)
8ru )

As shown schematically in Fig. 3, &, is the scale over
which the translational order parameter ¥g(r.,z)
=expliG-u(ry,z)] of the Abrikosov flux lattice relaxes
to its equilibrium value along Z. For separations which
are primarily perpendicular to Z, we find

1+

CG(rL,z)ufwexp(— LGHu?) o

The corresponding perpendicular correlation length per-
pendicular to Z is
_ ksTG§
8
____ksTGg
8a(uk)'/?’

The quantities &, and &, are translational correlation
lengths, and should not be confused with the supercon-
ducting coherence length.

Upon using the approximations (2.17) and (2.18) for K
and u and the material parameters for Ba-Sr-Ca-Cu-O,

1 1
b @K T@atmKIE }

2.31)

(,uK)”Z

VL ]i} ‘ @30
vrve find (with T=30K)
&, = (300kg szlcboﬂcz)ﬁz—
=~ (5.2%x10"° cm)ﬁ——hﬁf (2.32a)
and
£ = (90ks T/ DoH,2) [%} ma—iﬁ
z(l.l><10_7cm)(l—i—hy. (2.32b)
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FIG. 3. Translational correlation function for the Abrikosov
flux lattice. This correlation function tends to a nonzero con-
stant for large z, given by the Debye-Waller factor of the crys-
tal. There is a 1/z approach to this constant, which allows us to
define a translational correlation length in the z direction, &,.
This length determines the size of fluctuations along the field
direction. The analogous correlation length perpendicular to z is
much shorter, &, K¢&;.

Note that both the aspect ratio and the dimensions of the
coherence region (which has volume &,£%1) diverge as
H— H.,. Provided these divergences are not preempted
by a bulk first-order phase transition, the melting transi-
tion will eventually become two-dimensional when &, be-
comes comparable to the sample dimension along Z. Al-
though this only happens close to H., in mean-field
theory, the crossover to two-dimensional melting will
occur at a lower temperature if fluctuations renormalize u
toward zero at this point. The large mean-field value of £,
in Eq. (2.32a) makes it plausible that this correlation
length could become comparable to the 0.01-cm slab

thickness in the experiments of Ref. 3 when HIIZ, especial-
I

kgT
S(q,9.) =exp(— 1 GX|u|?D) |6(k)+G;G; L

Upon neglecting the last term, we see that the contours of
constant diffuse scattering for k, L G are ellipses centered
on G, with short axis along Z. These squashed diffuse
scattering contours reflect the needlelike shape of the fluc-
tuations in real space.

III. FREE ENERGY OF LINE LIQUIDS
AND BOSON ANALOGY

In this section, we describe a model free energy for the
statistical mechanics of flux liquids. A qualitative picture
of the entangled flux liquid follows from an analogy with
boson superfluidity in two dimensions. This analogy be-
comes exact in a toroidal geometry which would be espe-
cially interesting to explore experimentally. Some of the
results of this section were summarized in Ref. 2.

A. Model free energy and flux line wandering

We work in the London limit, and describe the ith vor-
tex line in a sample of thickness L by the function

T
mpij(kJ_)+GiGj

ly when the softening of shear modulus due to three-
dimensional fluctuations is taken into account.
The aspect ratio of the correlation volume is

& (&) (M)
54_ u ’ M3 (l_h) ’

which is especially large for Ba-Sr-Ca-Cu-O. If this as-
pect ratio has the same large value for H1Z, it will be
more than five times larger than the aspect ratio of the
sample studied by Gammel et al. 3 Thus, correlations
along the flux lines will reach the 0.1-cm slab width when
perpendicular correlation length is only a fraction of the
0.01-cm slab thickness. Continuous two-dimensional
melting may be possible both for HlIZ and HL1Z, con-
sistent with experiments of Ref. 3. Melting of the aniso-
tropic flux lattice for HL1Z would presumably proceed ac-
cording to the two-dimensional anisotropic melting theory
of Ostlund and Halperin. 2

The correlation lengths (2.29) and (2.31) depend on the
renormalized shear modulus at long wavelengths. More
work is needed on the bulk fluctuations which actually
cause the shear modulus to become small well below the
mean field H,;. If the anisotropy of these fluctuations
really does lead to continuous two-dimensional melting, a
(possibly small) region of kexatic line liquid will exist just
above the transition.® In the remainder of this paper we
investigate only flux liquids which are isotropic in the
plane perpendicular to H.

We note finally that it is easy to Fourier transform
(2.27) and thus obtain the behavior of the structure func-
tion near a reciprocal-lattice vector. The result is a §-
function Bragg peak at G with strength exp(— ¥ GXu %)),
as well as a thermal diffuse background whose strength
depends on the elastic constants. Upon setting q =G +k,
we find that, for k <G,

(2.33)

kgT
Qu+A)k3 +Kk?

P,%(kl)] : (2.34)

I -
r:(z) =[x;(z),y;(z)], as illustrated in Fig. 1. The Gibbs
free energy of N interacting flux lines in an isotropic su-
perconductor with applied field H reads'*!?

N L 2y 1/2
G(H)=i§16‘-£) dz[l+ ]

++ 3 [ vinG) )]

i=j

dl','
V4

~H (s

y fd rb(r), 3.1)
where the line tension ¢ is given in terms of the London
penetration depth A by e; =(¢o/47)1)%Inx. The interac-
tion potential ¥ (r) between pairs of vortex lines is

2
V()= ¢0x2 Ko(lr|/), (3.2)

872

where Ko(x) is the modified Bessel function, K(x)
= (n/2x)'?e ~* for large x. We have assumed that the
vortex coordinates vary slowly with z, so that we can use a
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potential which is local in z: a vortex at height z interacts
only with other vortices in the same constant z cross sec-
tion, an approximation which is only strictly valid when
all vortices are parallel to z.

Upon expanding the square root in the line energy and
reexpressing the integral of b(r) in terms of the flux quan-
tum and the number of vortices we have

N 2

L
NL+ia Y [

i=l1

Hgo

/4

GH)=

€]

dn
dz

1 ffevino -1, 63

i#=j

where the coefficient of the second term &) equals ¢ in the
isotropic case. To treat anisotropic superconductors with
H perpendicular to the CuO; planes, we note first that
|dri(z)/dz |* = 6%(z), where 6;(z) is the local angle of
inclination on the ith vortex line to the z axis. The line
tension is a function of this angle when the effective-mass
tensor is anisotropic as in Eq. (2.3),'7

1/2
$o M,
8)=|——| Inx|——sin’6+cos>
€(8) [47& nx . sin26+cos 9}
M, —M
=~ € 1+%—-—'A—l——302], (3.4)
3

where we have expanded in 6 and set €, =(po/471) *Ink to
obtain the second line. Here, A is given by Eq. (2.6), with
M replaced by M. The total line energy E; of the ith line

is thus
2] 1/2

2
M, (L dr;
z61L+§—el—lj; a’zl——'—] .

dl',‘

1+
dz

L
E,"—‘J:) dZGl(G,')

. e (3.5)

The free energy for anisotropic superconductors then has
J

f,@r(s) |r(z) —r(0) |®exp [— (€1/2kgT)j;L (dr/ds)zds] 2%k T
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the form (3.3), with

. _ M,
E\=—T"€].

72 (3.6)

A full statistical treatment of the partition function as-
sociated with Eq. (3.3) entails integration of exp(—G/
kgT) over all vortex trajectories {r;(z)}. The partition
function, for example, is

Z=Nz=:0]—\lﬁf$r1(z) cee fﬁr,v(z)e ~GksT - (3.7) -

The vortex lines are like the world lines of particles, where
the z coordinate plays the role of time. This problem is
usually treated in the mean-field approximation, assuming
rigid vortex lines and neglecting the “kinetic energy” con-
tribution proportional to |dr;(z)/dz|* in Eq. (3.3).!%1°
At T =0 vortices first penetrate the sample when the
“chemical potential” term in (3.3) changes sign, i.e., for
H > H_.,, where

H =47t61/¢(). (3.8)

Minimizing with respect to the areal density n =B/¢o of a
triangular lattice of flux lines then leads to the standard
Abrikosov result (1.8) for the B(H) constitutive relation.

This treatment of the onset of flux line penetration is
similar to the Frank-van der Meer theory of misfit dislo-
cations near the commensurate-incommensurate transi-
tion in, e.g., krypton absorbed on graphite. This zero-
temperature theory becomes incorrect at finite tempera-
ture due to dislocation line wandering.'® The usual Abri-
kosov theory leading to Eq. (1.8) breaks down in a similar
way at the elevated temperatures of the high-7. supercon-
ductors: the “kinetic energy” dominates the potential en-
ergy in Eq. (3.3). Although a complete theory of the sta-
tistical mechanics near H,., will be worked out in Sec. V,
we can estimate when the Abrikosov theory breaks down
from a simple random-walk argument.? We consider a
single flux line r(z) and determine how far it wanders per-
pendicular to the z axis as it traverses the sample. The
relevant path integral is

(Jr(z) —r(0) |» =

fﬂr(s)exp [ —(é1/2kp T)J;L (dr/ds) 2ds}

which shows that the vortex “diffuses” as a function of the
timelike variable z,

V(r(z) —r) |»=v2D]zT, (3.10)
with diffusion constant
Mi3 4rnkgT
D=kgT/é,=———— 3.11)
BT M ¢oH

At T =77 K, we take H,; = 10> G and M;/M, =~ 10? and
find D =109 cm, so that vortex lines wander a distance
of order 1 um while traversing a sample of thickness 0.01
cm.

Following the treatment of commensurate-incom-
mensurate transitions in Ref. 13, we note that collisions

3.9

— |z,
€1

[
between neighboring vortices will reduce the configu-
rational entropy in the partition function (3.7). As shown
in Ref. 2, this effect dominates the weak repulsive interac-
tion in Eq. (3.2) close to H.| in sufficiently thick samples.
More generally, we can define an entanglement correla-
tion length

‘T 2Dn 2kpTn’
which is the spacing between collisions in a vortex liquid
with areal density n =B/¢o. Collisions and entanglement
of vortex lines will significantly alter the Abrikosov theory
whenever

L>E&,.

(3.12)

(3.13)



B. Analogy with boson statistical mechanics
in two dimensions

It is not hard to show that the transfer matrix connect-
ing neighboring constant-z slices of the partition function
(3.7) is just the exponential of the N-particle Hamiltonian
operator in imaginary time for quantum-mechanical par-
ticles interacting with the potential (3.2) (see Sec. IV).
Indeed, Eq. (3.7) is just the imaginary time Feynman
path integral? for this problem with free boundary condi-
tions for the particle world lines. The statistical mechan-
ics as L — oo will be dominated by the ground-state wave
function. Although there is no a priori requirement that
the solutions of this Schrodinger equation obey boson or
fermion statistics, one can show quite generally that the
ground-state wave function is bosonic.

To extend this analogy to finite L, it is helpful to first
consider the special experimental geometry with a toroidal
magnetic field shown in Fig. 4. The vortex trajectories
{r;(s)} are now functions of arc length s around the torus
instead of z. The partition function differs from Eq. (3.7)
in that we must now impose periodic boundary conditions
|

Lo ad _l_ f f _G/kBT
z NE=O N! ; r,(L)=P[r1(o)]$r1(S)"‘ ,N(L)=p[,N(o)]$r1v(s)e ,

where we have imposed periodic boundary conditions and
summed over permutations P in contrast to the free
boundary conditions implicit in (3.7). The parameter s
runs from zero to L, where L is the average circumference
around the torus. The effect of inhomogeneities in this
circumference, as well as of inhomogeneities in the mag-
netic field, will be discussed below.

We have, for simplicity, used the free energy for a field
parallel to the ¢ axis of a high-T, superconductor. Al-
though this may be hard to achieve in a toroidal geometry,
a similar free energy (with é; =e¢,) could be used to model
a polycrystalline material, which might be easier to fabri-
cate in the shape of a torus. Alternatively, one could use a
single crystal with ¢ axis everywhere parallel to the sym-
metry axis of the torus. The magnetic field lines would
then run parallel to the CuO;, planes. The free energy
would be similar to Eq. (3.3), except with anisotropic
“masses” €|, and €),, as well as an anisotropic interaction
between vortices. Although we have not analyzed this sit-
uation in detail, the entangled flux liquid should be quali-
tatively similar to the more symmetric liquids discussed
here, in both toroidal and conventional geometries.

As given by Eq. (3.14), the partition function is identi-
cal to the imaginary-time Feynman path integral?® for the
grand canonical partition function of a fluid of interacting
bosons in two dimensions with chemical potential
n=Hpo/4n— €. The trajectories of vortices around the
torus are isomorphic to boson world lines. The thermal
energy kgT plays the role of £, while the circumference L
corresponds to the distance BA in the imaginary-time
direction. The parameter é; plays the role of the boson
mass. This analogy, which is summarized in Table I,
clearly shows why vortex lines are interesting in high-T,
superconductors: These materials allow us to explore a
world of exceptionally light (¢§;<¢;) bosons in which
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FIG. 4. Toroidal superconducting sample in a toroidal mag-
netic field for which the analogy with the statistical mechanics
of two-dimensional bosons becomes exact.

on the vortex lines: A configuration of vortices in any
given circular cross section must return to itself when the
vortex lines are followed around the torus. To completely
sample the allowed phase space, we must sum over
different ways of connecting the vortices as they traverse
the circuit. The partition function (3.7) is replaced by

(3.14)

-
“Planck’s constant” (i.e., kgT') is ten times larger than in
conventional materials. Because ¢€; tends to zero as
T— T. along the H., curve,'*!> the boson “mass” can be
made arbitrarily small. The importance of vortex line
fluctuations is determined in the boson language by the
“thermal de Broglie wavelength” A; which translates ac-
cording to Table I into

22h2B ]‘/2_ [anBTL
m

3

1/2

A= (315)

Except for numerical factors, this is the vortex diffusion
distance (3.10) with z =L. Quantum fluctuations begin to
become important for bosons when A; =X n -2 They
dominate the physics for Az >>n ~'2, which is equivalent
to Eq. (3.13).

Figure 5 shows the expected phase diagram for two-
dimensional bosons as a function of “chemical potential”
(H —H,.,) and “temperature” (L ~'). The real tempera-
ture is held fixed at T < T,. A liquid-gas critical point is
absent, because we have assumed a purely repulsive pair
potential. The crystalline phase is melted by zero-point
motion when the “chemical potential” is small. The
meaning of the “crystalline,” *“normal-liquid,” and

TABLE I. Detailed correspondence of the parameters of me-
Ited flux liquid with the mass, value of Planck’s constant, re-
ciprocal temperature B, and potential of two-dimensional bo-
sons.

: - Hgo ¢4
Vortex lin ksT L ——— ——K A)
rtex lines & ks an €1 PR, olr/
Two-dimensional m h  Bh u Boson pair
bosons potential
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FIG. 5. Schematic phase diagram for vortex lines in a

toroidal geometry as a function of ‘“chemical potential” H — H,,
and “temperature” L ~!. Here, L is the average circumference
of the torus in Fig. 4. The line segment in the superfluid phase
represents the range of states which might be present inside the
torus due to the inhomogeneity of the magnetic field and cir-
cumference across a cross sectional area.

“superfluid-liquid” phases for Abrikosov flux lines are il-
lustrated schematically in Fig. 6. The large dots show
where the vortex lines pierce, say, the s =0 circular cross
section of the torus in Fig. 4. The lines show the vortex
positions in subsequent cross sections as they traverse the
interior of the torus and return to the initial cross section.
Figure 6(a) represents a toroidal Abrikosov flux lattice, in
which the vortices typically make only small excursions
from the sites of a triangular lattice. Figure 6(b) repre-
sents a disentangled flux liquid characterized by large ex-
cursions of the vortices and no crystalline order in their
average positions. In this case, the torus is filled with a
liquid of disconnected flux bracelets. Figure 6(c) repre-
sents an entangled flux liquid in which vortices repeatedly
exchange places in a complicated dance as they traverse
the torus.

The elegant picture? of a superfluid liquid embodied in
Fig. 6(c) has been confirmed by some striking computer
simulations of Ceperley and Pollock in both two and three
dimensions.*® The beauty of the high-T, superconductors
is that Feynman’s artificial imaginary-time variable be-
comes real and directly accessible to experiments. In its
entangled “superfluid” phase, the flux liquid in a torus
looks like a mangled spiral of flux lines which only repeats
itself after many turns around the torus. A finite fraction
of the vortex loops are connected together in such long cy-
cles, which should have important consequences for flux
flow resistivity in the presence of pinning. The dashed
curve in Fig. 5 is a line of Kosterlitz-Thouless transitions
from an entangled flux liquid to a disentangled one. Flux
flow resistivity will be suppressed in an entangled flux
liquid with a few strong pinning centers, even though
there is no shear modulus.

In an actual experiment carried out in a toroidal
geometry, both the magnetic field and the circumference
will be nonuniform across a circular cross section. This
corresponds to an inhomogeneous chemical potential and
temperature in the boson system. The physical system
can be represented by a line of states, as indicated by the
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CRYSTALLINE
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FIG. 6. Trajectories r;(s) swept out by vortex lines within a
circular cross section of the tours in Fig. 4. All vortices occupy
approximately the same relative position within the cross section
for all values of s within the Abrikosov flux lattice phase (a).
These lines form disentangled flux bracelets in the normal-liquid
phase, but may wander appreciably during their circuit around
the torus (b). In superfluid phase (c), the flux lines link up, and
it may require many circuits around the torus before a flux line
returns to its starting point.

ABRIKOSOV
FLUX
LATTICE

DISENTANGLED
FLUX
LIQUID

ENTANGLED
FLUX
LIQuiD

FIG. 7. Analogues of the three phases shown in Fig. 6 for a
slab geometry with free, rather than periodic boundary condi-
tions. In contrast to the case of periodic boundary conditions,
there is not necessarily a sharp phase transition between (b) and

©.
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line segment in Fig. 5. Similar problems arise in real
superfluid helium, due to the Earth’s gravitational field
and temperature inhomogeneities. The result is that the
Kosterlitz-Thouless transition discussed above will be
spread out over a range of fields and sample thicknesses.
Figure 7 shows the Abrikosov flux lattice, the disentan-
gled flux liquid, and the entangled flux liquid as they
would appear in a conventional experimental geometry,
with free boundary conditions on the vortex lines. As dis-
cussed above, boundary conditions should be irrelevant as
the sample thickness tends to infinity. Explicit calcula-
tions for the entangled flux liquid in a conventional slab
geometry are carried out in Sec. IV. One of the con-
clusions is that the entangled flux liquid is indistinguish-
able from a superfluid with periodic boundary conditions
whenever (3.13) is satisfied. It is possible, however, that
the Kosterlitz-Thouless transition discussed above is
smeared out with free boundary conditions, as suggested
by Fisher and Lee.® It may then be better to speak of en-
tangled and disentangled flux liquid regimes instead of
phases.?! The crossover between these two regimes will

A D U O T
ZN TV‘!‘fil.:Ili)l'i(Z)CXp[ kBT 0 dz[igl 7 €1
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occur when
52 = L ’ (3-16)

i.e., when the “thermal de Broglie wavelength” A is com-
parable to the vortex line spacing.?

1IV. VORTEX CORRELATIONS IN AN
ENTANGLED LIQUID

Aided by the unifying formalism of the Feynman path
integral, we have established an analogy between vortex
lines and boson world lines. In this section, we write the
Feynman path integral in terms of coherent states' in a
way which makes this analogy complete. This formalism
will provide a way to modify standard boson calculations
to produce the structure factor for a flux liquid deep
within the entangled regime.

A. Vortex partition function and boson matrix elements

Our starting point is the canonical partition sum associ-
ated with Eq. (3.3), i.e.,

2
+ZV[r,-(z)—rj(z)]H. 4.1)

i<j

In this equation, and the remainder of this paper, we have adopted Feynman’s definition of the path-integral measure
Dr(z).?° The prefactor I'" required for vortex lines in a superconductor will be evaluated below. The path integral 4.1

can be written as

Zn =%fddri ‘.- fddr/vfddrl ‘e fdder(r{, e TNTL ... TAL)

where (TV/NVp(ri,...,thsr1, ... ,Tx;L) is the condi-
tional partition sum for /V vortex lines constrained to be at
positions (r,...,ry) when z=0 and at (rf,...,ry)
when r=L. Upon using a well-known series of transfor-

mations, '%?° we can write p(z{,...,rn;T1,...,Tn;L) as a
quantum-mechanical density matrix,
p(ri, ..., cthsry, ..., 1NsL)
=(r|,...,tn]| e _Lﬁ/k”T| r,...,tn),  (4.3)
where the “Hamiltonian” # is
ﬁ-:(i‘fz—)iﬁv‘,vgﬂ-Z.V(n—r,). (4.4)

26, i=1 i

The operator # acts on a Hilbert space of states
|ri,...,rn) which is the direct product of single-particle
states | r;) with normalization

(] =6?PC—r").

The corresponding single-particle momentum eigenfunc-
tions | p) for a periodic box of area © have components

4.5)

(r|p)= L irpn , 4.6)
and normalization
(plp")=08pp . 4.7)

4.2)

—

The quantity e ~HlkaT is, of course, the transfer matrix
associated with the partition function (4.1). Although
only a subset of its eigenfunctions obey boson statistics, it
is the ground state (which must be bosonic?®) that
matters as L — oo, In fact, only bosonic states contribute
to the partition sum for finite L as well. To see this, note

first that, according to the Fourier conventions
4.5)-4.7),
fdzrl e fderlfl t ’I'N>
=a™?|p;=0,...,pn=0), (4.8)
where |p1,...,pn)=|p)® - ®|pn) is the direct

product of one particle momentum eigenstates. The parti-
tion function (4.2) thus reduces to a single quantum-
mechanical matrix element,

N _ ~
Zy = (ra) (pr=0, .. LA/ksT

N! .,pN=0|e

X|p1=‘0,...,pN=0),

4.9)
formed from states which are symmetrical under particle
interchange. If |p;=0,...,py=0) is expanded in the
complete set of eigenfunctions of 7, only symmetric
states will appear. Thus the excited states as well as the
ground-state eigenfunctions which contribute to (4.2) will
be bosonic for arbitrary L. The usual boson partition
function would involve a trace over symmetrized momen-
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tum eigenstates, instead of the single matrix element with
which appears in (4.9).1%2 ’

We now evaluate the constant I. Upon setting N =1 in q =—2—7£_l—’1(—121 , (4.11b)
Eq. (4.9), we have éa
Z\=Ta{p=0]e —Lﬂ,/k,,r| p=0) where we have assumed a square lattice (with lattice con-
: stant a) of possible vortex positions in each constant-z
=raq, (4.10) plane.
where #, is the one-particle Hamiltonian, 71 =p2/2é.
T‘he one-lme. pargt.lon functxon. Z, can .be evaluated B. Coherent-state formalism
directly by discretizing the path integral with constant-z
slices separated by distance b. In this way, we find that As in most calculations with bosons, we shall find it
L/b convenient to use the language of second quantization. In
r= -q—z—— , (4.11a) this language the Hamiltonian (4.4) takes the form
a
J
. (kgT)? . . IR R
# Gyt ) =— —;T—fdzr vV + & fd 2rfa'zr’y/’r(r)l//’r(r W—r)p) (), (4.12)
€1

where y(r) and y'(r) are the usual second-quantized field operators. We now reexpress the path integral in terms of
coherent states | ¢), which are defined in terms of the vacuum |0) by

oy =exp [ d7r o910 ] 0. 4.13)

The path integral (4.1) is based on position eigenstates, which satisfy the equation £ |r)=r|r), where f is the position
operator. The new basis satisfies a similar eigenvalue equation, y(r) | 9) =¢(r) | ¢). This change of basis is convenient
and natural because we have also switched operators in the Hamiltonian, from f; and p; to y(r) and y'(r). By inserting
complete sets of coherent states in various constant-z “time” slices, one can derive a coherent state functional integral for
the grand canonical density matrix, ' namely

1| —L(H#—uN)/kgT =f
('le lo) 0(r,0) =¢(r)

o(r,L) =¢'(r)

Do* (r,z)Do(r,z) exp [fdzrq)* (r,L)¢(r,L) ]
1 L
Xexp{“kB—T 0 dz {fd2r¢*(r,x)

where the number operator is N =Jd % y'(t)y(r). Instead of paths r;(z) in configuration space, what we have are
“paths” ¢(r,z) in coherent state space.
To obtain the density matrix element (4.9) in the coherent state picture, note first that

1

9 _
kBTaz H

¢(r,z)+7?[¢*,¢]”, (4.14)

|pi=0,...,py=0= @)HNo,
VvN!
where ag creates a boson with zero momentum and | 0) is the vacuum. Thus, we can write using (4.9) that
NoN L
o= IZN?)Z ©] (ag)Ne ~LHsT (48N | 0) . (4.15)

It will be convenient to pass to the grand partition function, given by
Zg= Y M7z, (4.16)
N=0

where, according to Eq. (3.3), we have u =H¢go/4x — ¢;. Upon using (4.15), we have

Zy= f: <0 (\/l"ﬂao)Ne—L(ﬁ—uN)/k,T (VTaad)V |0>= < <0 ('\/FQO’(IO)Ne—L(ﬂ——”ﬁ)/kBTG_N T aoad)? l0>

N0 N! N! NZ=0 N! N!

4.17)

In the last line we have inserted factors of o, a positive real number whose precise value will be determined later. In
terms of the coherent states

. (VTaocad)?

|¢(r.) =+To)=exp [fdzrlx/l—“gu‘r*(n)] lo)= X |0y, (4.18)
N=0 N!
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so the partition function becomes

Zw=(0(t,) =o|e THTKT| 41 )= T,

(4.19)

where we have used the fact that the Hamiltonian does not connect states with different particle number. This expression

contains a “renormalized” chemical potential i satisfying
_ ksT

a=p 7 Ino. (4.20)
We can now apply (4.14) to write this expression as a functional integral,
o o(r,L) =Jro _ *
Zg=e" j;(r,O)'-'\/F; D*(r1,2)Do(ry,z)e ~Sb%ol “4.21)
where the “action” S is given by
1 L 8  (kgT)V?
* = 2 * - —_
Slo*, 0l kBTJ:) dzfd rio*(ry,z) kBTaz 27 ile(ry,z)
1 L 2 2 — 2 2
toeg s e f i fayva—yplexa Pleg. . .22)

It is easily shown using similar manipulations that the
density of flux lines (1.1) is just

n(ry,z)=(|¢(r.,z)|?, (4.23)

where th? average is sampled with probability

e ~Sltel

The vortex line partition function (4.21) differs
significantly from the corresponding boson coherent-state
partition function ' only at z =0 and z =L, where the field
¢ is constrained to have the value ~T'o for all r. For the
boson partition function, ¢ can take on any values on these
boundaries as long as it is periodic in z.

C. Mean-field theory

In the mean-field approximation, we simply minimize
(4.22) by letting ¢(x,7) =¢. be constant. All the deriva-
tive terms vanish, leaving

L
ksTSTo2 01 = [ "dz farr(—=loc [+ £ Vol o 19,

(4.24)

where Vo= fd*x V(x). Using the familiar Landau poten-
tial appearing in the integrand, we can construct a simple
picture of the transition which occurs when ;i changes
sign. The minima of the Landau potential are at

¢, =0, for <0, (4.25)
_ )12

po=|L| ,fori>o0. (4.26)
Vo

The line 4 =0 is a phase boundary. In the phase of nega-
tive 1 the boson density n = |92 is zero. But for positive
chemical potential, n =/i/V,. When translated into super-
conductor language, these results describe vortex lines in a
toroidal geometry.

This mean-field solution must, however, respect the

boundary conditions associated with the open geometry,
ie., ¢(r.,0)=¢(ry,L)=+To. The mean-field density
n=[i/V must also equal I'c, which allows us to fix o,

n N

o=—=

AN 4.27)
r 2z’ (

where the last equality follows from (4.10). The “renor-
malized” chemical potential (4.20) is thus

(4.28)

The correction to u = H¢o/4r — €, leads to a downward re-
normalization of H.;, whose physical significance will be
discussed in Sec. VC.

D. Vortex line correlations

Thus far, we have found no essential differences be-
tween the bosons with open boundary conditions of in-
terest to us here and conventional bosons with periodic
boundary conditions. Differences do appear, however, in
correlation functions evaluated for finite L. We first re-
view how these correlations are calculated for convention-
al bosons,'! and then describe the changes which occur
when open boundary conditions are taken into account.

The complex field ¢(r,z) is written in terms of two new
real variables, the density n(r,z) and the phase 6(r,z),

o(r,z)=Vn(r,z)e®®?) (4.29)

The measure takes the simple form (up to unimportant
constant factors)

Do*(r,2) D¢ (r,z) =Dn(r,z)DO(r,z) . (4.30)

For simplicity, we replace ¥ (r —r') by a contact potential
Vos@(r—r') in (4.22), and replace the superconducting
parameters by bosonic ones using Table I. There is no re-
normalization of u for bosons with periodic boundary con-
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ditions. The action now reads
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ston=L [ far [¢ 2t vo i ploi+ Vo|¢|4] @31)
or using (4.29),
boson o= 1 2 Z(Vn)z hzn(Vﬂ)z _ 1 2
S f dzfd r[th Py oy un+ ¥ Von?|, 4.32)

where total derivative terms have vanished because of the periodic boundary conditions. We now define #=n — ng, where
no=u/Vyis the (boson) mean-field magnitude, and expand to quadratic order in x and 6:

h2(Vr)? h2(ve)? 2
boson __ _*_ 2 — +i a (Vz) + o + 41 2 (4.33)
S f “az far [zhno hor 8mn0 - Fvort— -
I
The integral of ing86/dz vanishes provided that 0 is single verse of the coefficient matrix
lued.
vaue (Y (k@) Y (K, ")) =G (k, )y xS0 (4.38)

Let us expand the fields in Fourier series:

lwztikrg(k o), (4.34)

J—kw

and similarly for z. The sum is over momenta k satisfying
periodic boundary conditions and the Matsubara frequen-
cies w, =27n/Bh.3* The action (4.33) is diagonal in these
Fourier modes,

Shoson =L % vk, w)G ' (k,w)Y(k,w) +const, (4.35)
k,0
where Y (k,w) is the column vector
ok, w)
Y(k,w) = n(k,w) (4.36)

and the coefficient matrix is

nohk 2

—_— -

-1 —
h 4mng

Since the functional integrals are just Gaussians, it can
easily be shown that the correlations are given by the in-

Consider, in particular, the density correlation function,
S(r,z)=(n(r,z)n0,0))—né. (4.39)

The structure function is just the Fourier transform
Bh oo
= 2 —iwz —ik-
Sk,w) j; dzfd re 'S(r,z)
=(z(k,0)r*(k,0))
noh k Z/m

-— (4.40)
o?+e2(k)/h?
where (k) is the Bogoliubov spectrum
2 1/2
2,2 272
(k) = ["k ] + 1k l . (4.41)
2m m

Equation (4.38) is also the structure factor for vortex lines
in a toroidal geometry, provided we use Table I and iden-
tify k and o with g, and g, in Eq. (1.2).

Now we are faced with the task of modifying this calcu-
lation for the case of an open geometry. The action to
quadratic order is still given by Eq. (4.33), provided we
substitute superconducting parameters for boson ones and
let u— 4. However, both = and 8 must be zero at z =0
and z =L, to satisfy the boundary conditions in (4.21).
Inserting a & functional enforces this constraint:

Jovas,2e SYMY @ T8l 1,z =0)]

(4.42)

(x(DY'en=

DY(ri,z)e " STI6lY(ri,z=0)]

where Y(1) =Y(r, ,z1), etc. As before, the functional integrals are over all = and 6 satisfying periodic boundary condi-
tions, in z, so that the Fourier representation (4.34) is still valid. The & functional can then be transformed into a func-
tional integral over a row vector field A 7(r; ) = [Ao(r . ), A.(r )],

sy iy = d T Bre O [ far 2@ v Lz =0)

(4.43)
fﬂxf@w “Sexp [ifder_kT(u)Y(rJ_,z =0)]
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Equation (4.43) can also be written as

f@k(Y(l )Y1(2) exp [ifder.?»T(rJ.)Y(rJ.,Z =0) ] >0

r(yYr2) =

, (4.44)

fi)}»<exp [l'fd ZI'.LKT(I';)Y(TJ.,Z =0) ] >o

where we have defined { - - - )o to mean averaging with respect to e ~

_Jov [y ¥' @exp (i [T )Y (erz=0) ) |e =5

S over all Y satisfying periodic boundary conditions,

<Y(1 )Y (2)exp [ifdzr; AT )Y (ry,z=0) ] >0

f@Ye -S

(4.45)

These Gaussian averages are easily evaluated in Fourier space. We have

<exp [ifderxT(rL)Y(rl,z =0) ] >0 =<exp [iéxT(k)Y(k,w) ] >0 =exp [— ¥ Zk:ﬂ(k)zm‘,G(k,w)k(k)] , (4.46)

and

<Y(k,a))YT(k',w')exp [i At (q@)y(q,o) ]> =[G (k,0) 6 k80,0 — G ko)A KAT(K)G (K, 0")]
, o 4

q,0

Xexp[— 1 Zkf(q)ZG(q,wM(q)] )
q o

(4.47)

Substituting these expressions into the functional integrals in (4.44) we obtain finally

(Y(k, )Y (K, 0")) =Gk, 0) bk x'60... — Gk ,0) [ZG(k, Va) ] 16k, 0") k. (4.48)

Vn
The second term on the right is a correction to Popov’s result'! (4.38) for the Bose gas, and represents the effects of free
boundary conditions. A simple consistency check on this result can be obtained by summing over w and ®’. The right
side vanishes, proving that ‘

(Y(k,z=0)Y'(K,z =0)) =(v(k,z=L)YT(k',z=L))=0.

This must be so, since no fluctuations are allowed at the boundary.
The sum in (4.48) is over the Matsubara frequencies v, =2zn/L, and yields a diagonal matrix, which can easily be in-

verted,

-1 tanh[Le(k)/2kpT]

-1
[%:G(k’v”)] Lokl ¢ 0. (4.49)
Thus
Lt 1)) = , '_tanh[Le(k)/ZkgT] - ' ’
¥ )Y ' (K,0)) =G 0)8kb00 = iy ata7] 0 @6 T (600G (ko) bk (4.50)

This result indicates that, as expected, the corrections to
the results appropriate to bosons with free boundary con-
ditions become negligible as L — oo.

We can now discuss the structure function of a melted
flux liquid in more detail. Using the notation of Eq. (1.2)
Gi.e., k— q., ®— q,), we rewrite (4.40) as

nkpTql/é
q22+82(q_1_)/(k3T)2 ’

where, in terms of superconducting parameters, the Bogo-
liubov spectrum (4.41) becomes

3 /
e(q;)_HkBTqi 2+ qi}lz
& )

kBT 251
Upon carrying out the partial Fourier transform of Eq.
(4.51), we see that density fluctuations in the line liquid

S(qi.q:)= (4.51)

(4.52)

I
do indeed fall off exponentially with z as indicated in Eq.
(1.4), at a rate given by Eq. (1.5), with
2

+

kBTqi -1/2

2€

dql
€

&ilgy) = { [ (4.53)

. Note that &(g )— as g,—0, so that long-

wavelength fluctuations die off very slowly. The ¢, =0
Fourier mode persists forever because the number of flux
lines in any constant-z cross section is conserved.

The most important decay modes are those with wave
vectors g, ~ (n) 2~ 1/d, i.e., with ¢ I ! comparable to the
vortex line spacing. This range of wave vectors occurs
when the two terms in the denominator of (4.53) are com-
parable. Thus we have

€

éll(q.L"'I/d)“'m—

=£, (4.54)
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where &, is the correlation length defined in Eq. (3.12).
As discussed in Sec. III, this distance is just the spacing
between vortex collisions. Because n = (i/V, &, diverges

&, ~1/i, (4.55)

as H— H_, from above in mean-field theory.

Although these results were obtained in the Bogoliubov
approximation appropriate to a dilute gas of vortex lines,
we believe their qualitative features are more general.
Equation (4.51), for example, is just the Wick rotation
(w—iq;) of the Bogoliubov approximation for the
dynamical structure factor S(q.,®) of a two-dimensional
superfluid. It should be possible to obtain this correlation
function for a dense vortex liquid near H., by a similar
Wick rotation of S(q.,®) of a dense superfluid. This
quantity will be dominated at low temperatures (i.e., as
L— oo in the vortex liquid) by peaks at phonon-roton ex-
citation spectrum, which leads to Eq. (1.4) in the “single-
mode” approximation. Our expectations for correlations
in dense flux liquids are summarized in Fig. 2.

V. RENORMALIZATION GROUP FOR
LINE LIQUIDS NEAR H.

To analyze the dilute regime near H,|, we return to our
original path integral expression for the partition function
and develop a perturbation theory for it. The formalism
of this section utilizes yet another physical analogy: thle

dn,

L N
H/kgT = ;—Kj:) dz Z =

Q K<A

Only three parameters remain in the Hamiltonian:
K=¢&/kgT, vo=¢3/4rksT, and A= 1/r. The coupling K
should not be ccnfused with the tilt modulus of Sec. II.
Let us generalize to vortex lines in d+1 dimensions, so
that the r; are d-dimensional vectors. A simple rescaling
reduces the number of parameters to two, the cutoff A and
a natural coupling constant voK with dimensions of
(length)?~2. This suggests that d =2 is the critical di-
mension below which the interaction should be a relevant
variable.*

We will first construct a diagrammatic formalism to
evaluate the vortex partition function, and derive re-
normalization-group recursion relations. The model (5.3)
turns out to be asymptotically free in dimension d =2:
The dimensionless coupling voK is driven to zero at long
wavelengths. We then apply the recursion relations to a
flux liquid near H,, with L =o0, and iterate them deep
into the entangled regime. This mapping enables us to
emphasize the random-walk interpretation rather than the
quantum-mechanical analogy of Sec. IV. We “match”
onto the results of Sec. IV, producing the constitutive re-
lation and vortex correlation function near H,,.

A. Perturbation theory

Setting N =1 in Eq. (4.2) yields the one-vortex parti-
tion function

z,=r [dR [a'R,GR,Ro;L) , (5.4)

k- [r;(z) —r;(2)]

2
Lo i

+ dz—
voigj‘j; N
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path integral partition function for vortex lines also
resembles the Edwards model for interacting polymers. 33
We can think of a vortex line r;(z) as a two-dimensional
polymer, where z plays the role of a monomer index. Un-
like polymers, the vortex lines are not self-avoiding: they
are true random walks in two dimensions. This makes the
perturbation theory much simpler than it is for interacting
polymers. The interactions, moreover, only occur between
different “polymers” at equal values of the monomer in-
dex z.

In this section, we will set v (r) =V (r)/kpT, subsuming
kgT into the definition of the interaction. The Fourier
transform of this Bessel function interaction [see Eq.
(3.2)] gives

93 1
4rkgT 1+k22°
As we shall see below, the behavior near H,, is ‘“univer-
sal,” so it should be insensitive to the precise form of the
potential. To simplify the renormalization-group analysis,
we are thus free to introduce an approximate pseudopo-
tential:

o(k)= (5.1)

¢(:))'/47thT, k<A,
0, k>A.

What we have done here is approximate & (k) by its value
for k=0 out to some cutoff A== 1/A, outside which it is
zero. The Hamiltonian now takes the form

(5.2)

(5.3)

|
where

G(R,R;;L)=G(R —Ry,L)

r(L) =R

L
= O:Dr(z)exp[—%Kj; dz

2
—Jr(0)=R ] !

(5.5)

dr
dz

Given some initial position Ro, G(R,Rq;L) is just the
probability that a vortex line of length L will random walk
to R at the other side of the sample. The path integral is
normalized such that 3’

d/2
G(R;L) = % e ~UDKRYL, (5.6)
or in Fourier space
Gk,L)=[d'Re "*RGR,L)=¢ ~UDWLE  (57)

This particular choice of measure for the path integral
(5.5) gives the Green’s function the normalization
JdRGR,L)=1.

The two-vortex Green’s function is defined similarly
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2

_%KLLdz —%KLLdz

[ dzoln @ — )| . (5.8)

2
, (L) =R, (L) =R;
G, (R{,R:R|,RxL) =j:‘(0) -g, D11 (z) £,(0) =R, Dry(z)exp

dr;
dz

4n
dz

Expanding the exponential of the interaction as a series in v(r, —r,), we obtain

L
G2(Ri,RER,R1L) =G(Ri —Ri,LIGR: —Ra.L) — [ “dz [a'x [ d% GRi—x,L )G x—R1,2)o(x—y)
xGR,—y,L —z)G(y—Ryz)+0®w?). (5.9)

The first term of the expansion represents two lines wandering across the sample without ever interacting. In the second
term, we have used the factorization property of path integrals.>® That is, since the lines interact only at height z in the
sample, we can regard each line as two noninteracting random walks of lengths z and L —z set end to end. The whole
sum can be represented diagrammatically as the infinite sum of “ladder” diagrams shown in Fig. 8. Every power of the

interaction v adds another “rung” to the ladder. Higher-order Green’s functions can be defined similarly.
Each diagram for the general Fourier-transformed N-vortex Green’s function

GN(kl, e ,kN;ql, e

is composed of N solid lines whose ends are labeled with
the external momenta ki, ...,ky and q,...,qy. It also
contains I dotted interaction lines, each one transferring
momentum between a pair of solid lines at some length z.
Each solid line is split up by the interactions into segments
whose lengths total L. The rules of calculation are as fol-
lows:

(1) Assign momenta to all segments and interaction
lines, conserving momentum at each vertex.

(2) A segment of length z and carrying momentum k
becomes G (k,z).

(3) An interaction line transferring momentum k be-
comes — 5 (k).

g
LY

FIG. 8. Diagrams which determine the effective interaction
between vortex lines due to repeated collisions.

,qN;L)Efd“Ri «--fd"R,z,‘fdde...fddRNe —iky'Rj{— -+ —iky'Rj

P +'.qN.RNGN(R{, - »RMRy, . RyL)

(5.10)

(4) Integrate over all unconstrained momenta.

(5) Include a factor of @ and a momentum-conserving
6 function for each connected component. This leads to
an overall factor of @~ /*L where N is the number of
solid lines, 7 the number of interaction lines, and L the
loop number. The number of loops is also the number of
unconstrained momenta.

(6) As drawn in the diagram, the interaction lines are
ordered in z. We integrate over all possible configurations
that preserve this ordering. In other words, if the interac-
tion lines are at z; <z, < - -+ <z;, we integrate using

Sz S an - [ au.

To obtain the N-vortex partition function, we do not have
to compute (5.10) in its full generality. We need only
evaluate diagrams whose external momenta are all zero,
since

N
ZN”%TGN(kl = ... =kN =0;q1 =-... =qp =‘0;L) .

(5.11)

Furthermore, we need only evaluate connected diagrams;
any disconnected diagram can be factored into its con-
nected components. Hence the functions G§ (computed
using only connected diagrams) are the quantities of in-
terest. The grand partition function can be expressed
compactly as

o0 eNuL/k,, TI_.N
InZg= ¥ ——7——Gh(ki=0,q;=0.L), (5.12)

which is a generalization of the Mayer cluster expan-
sion.*® The zero-momentum connected Green’s function
G, corresponds to the m-particle Mayer cluster integral.
The first cluster integral is just G{ =Q. The second clus-
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ter integral is given by

__E_...
<A 2x)4

where we have now employed the pseudopotential (5.2).

GS——UoLQ‘*'U()Qf

L
dzj; dz'G§(p,z' —z)+0®w3),
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(5.13)

B. Renormalization-group recursion relations

Our perturbation theory is only useful for small v. To compute quantities for large v, we could try summing an infinite
set of diagrams to derive results valid beyond the perturbative regime. An equivalent and more systematic approach is to
use the renormalization group. We define the renormalized coupling constant associated with the diagrams of Fig. 8 as

follows:
. _ Vo ddg L L '~ 2 '
v'=ug|1 A j:\e"5<p<,\ GmJo dz‘fZ dz'Gs(p,z' —z)

where K;=S4/(27)9 and S;=279%/T(d/2) is the sur-
face area of a d-dimensional unit sphere. Simultaneously
substituting v’ for vg in (5.13) and changing the momen-
tum integral cutoff from A to Ae ~° leaves the cluster in-
tegral G$ invariant to first order in 8. Recall that A~2 —1
in our model.

We now rescale the momentum p— pe?’, restoring the
cutoff to its original value. We also rescale z— ze ~%. In
terms of the dimensionless parameter s =voKA% 2, the
recursion relation for the coupling constant becomes

= 2 — —AL/K
b _ 55k, AL/K 21 +e
dl A°’L/K
where €é=2—d is the deviation from the critical dimen-
sion.

In the large L limit, this simplifies to

";—l =¢v — Kdl)

For € > 0 there is a nontriviai fixed point at 5* =¢/K,. In
the case of physical interest, however, ¢=0, and the
theory is asymptotically free,

v(0)
1+5(0)K,l

Since the renormalized coupling constant tends to zero at
long wavelengths, perturbation theory should become
better and better as /— oo.

The recursion relations for K and L are just those given
by naive scaling,

, (5.15)

(5.16)

o) = (5.17)

=Q2-0K, —-=-¢L. (5.18)

We shall also need the recursion relation for chemical po-
tential per unit length in the grand partition function.
The product uL remains fixed under our renormalization
group, so that

d“ ={u. (5.19)

This renormalization procedure can be extended to G§
and higher-order cluster integrals. Although the coupling
constant recursion relations so obtained turn out to be
slightly different from (5.15) and from each other, these

(5.14)

vo , sAL/K—1+e NLK
~vo |l —6—K4A :
”“[ L™ (AY/K)?

[

differences vanish in the limit L — oo. Furthermore, these
cluster integrals are higher order in v than G$, and should
become negligible as (/) iterates to zero.

C. Flory limit and the constitutive relation

For large /, this renormalization group takes us into a
region of weak coupling and high vortex densities, where
the mean-field theory of Sec. IVC is valid. Instead of
proceeding immediately to the matching calculations, we
will take a brief detour to rederive the results of Sec. IVC
with a mean-field theory for the path integral partition
function. Upon defining a & function with a momentum
shell cutoff

) == T e,

k<A

(5.20)

we rewrite the Hamiltonian (5.3) as

dr, [
dz

N

L
H =;—Kj;dzz

kgT i=1

zf dz % v06/(\d)[r,~(z)—rj(z)]. (5.21)
_/#l

i=1

The smeared § function has a finite spatial extent A
~A "' If the vortex lines are packed together tightly, so
that the average spacing is much less than A, we can write

Z‘, 80 (z) —r;(2)l=n. (5.22)

j=l1

J=i
Because the vortex lines are noninteracting in this approx-
imation, the path integral partition function is trivial

N
—(1/2)NLneg 21

NT- (5.23)

ZN =e
The physics of this high-density limit is much the same as
the Flory limit for a polymer melt. !¢

The free energy of N vortex lines is given by the loga-
rithm of the partition function

A(N) 2
kT

LU()

N
= —InZy= —NInZ,+InN!. (5.24)
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Minimizing the Gibbs energy
G=A(N)—uLN (5.25)

with respect to N yields the mean-field constitutive rela-
tion

# ==
kaT nvg , (5.26)
where the “renormalized” chemical potential /i is given by
(4.28). This is equivalent to (4.26), which was derived
from a mean-field theory of the coherent-state functional
integral. Using (4.11), we can evaluate / in the large L
limit

. kBTl N
=u-— n—
H=U L Z,
ksT
=u+-—2"1Ing. (5.27)

The correction to u is due to the entropy per unit length of
the random-walk fluctuations of a single vortex line. We
can define a renormalized critical field HR by ji=(H
— HR)¢o/4n. Then

47thT
- In

beo

erkaT
2

Hﬁ =H.—

’

é',a

(5.28)

where we have used Eq. (4.11b). The critical field is re-
normalized downward because vortex lines become easier
to create for T > 0.

We begin the matching calculation by substituting re-
normalized parameters in (5.26),

%’Tl-n(z)u(z),

and search for a value of / such that this mean-field rela-
tion is sensible. We again focus on the infinite L limit for
simplicity, and set {=2 so that K(/) remains fixed. For
large /, the recursion relation solution (5.17) behaves like
v(I) = 1/K,l. Upon substituting K, =1/27 and using the
definition v =vK, we obtain

(5.29)

2
~ == 5.30

v(D) Xl (5.30)
We also need the other renormalized quantities

) =e¥iy, n(l)=e%n, (5.31)
to transform (5.26) into

Ho 27ng
T~ K (5.32)

To ensure that the mean-field theory is valid, we iterate
until n(/*)A%~1 and derive

o _ 4rzn
keT  KiIn(1/nr?)°’

where we have dropped the subscripts on the bare quanti-
ties. Upon setting K =¢&/kgT, and solving for n=B/¢o,
we obtain the result (1.6) quoted in the Introduction? with
HX substituted for H,;. How thick must the sample be
for (5.33) to be valid? If the recursion relation (5.16) is
to be a good approximation for (5.15), we must have
AZL(I)/K>1 at all stages of the iteration. This will be

(5.33)
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true provided that

1
n()k2 ’
or equivalently Lo>>¢&,: The sample must be thicker than
the entanglement correlation length (3.12), which is the
same as (3.13).

The structure factor obeys the homogeneity relation

(5.35)

— el =

(5.34)

S(qJ-’qz’K’lI’”) =S(e"].l.,e ZIqZ’KyeZIﬁye 21’1) ’

for ¢{=2. Again iterating the renormalization-group
transformation until n(/*)A%2~1, we can evaluate the
right-hand side using the mean-field expression (4.51).
Using the homogeneity relation

ele'qr,e?i) =eelg . i) (5.36)

for the Bogoliubov spectrum, we find that all factors of e’
in (5.35) cancel out. Thus the formula (4.51) can be used
without alteration even near H.; provided that n is given
by the fluctuation-corrected constitutive relation (1.6).

VI. PINNING AND DYNAMICS OF ENTANGLED
FLUX LIQUIDS

Thus far, we have neglected the pinning centers which
are responsible for suppression of flux flow resistivity at
high fields in conventional superconductors.'> As dis-
cussed in Ref. 2, strong pinning could destroy or modify
any of the phases discussed here, including the Abrikosov
flux lattice. Among the possibilities are an equilibrium
entangled flux liquid in which disorder dominates the
effects of thermal fluctuations. The numerical results of
Kardar and Zhang for random walks in a random medi-
um >’ show that an isolated flexible vortex line will wander
even further than its thermal counterpart in the presence
of disorder,?

VIr@D =t P e | 2],

with v=0.62 =+ 0.04, which should be contrasted with Eq.
(3.10). As pointed out by Natterman and Lipowsky,®
Eq. (6.1) leads to a B(H) constitutive relation near H; of
the form

B(H) < (H—H.)?,

where B=v/(1 —v)==1.5, instead of the linear depen-
dence with a logarithmic correction shown in Eq. (1.6).
The effects of random impurities on the Abrikosov flux
lattice have been discussed by Larkin and Ovchinnikov,*’
who conclude that impurities inevitably break up transla-
tional order on scales larger than a disorder-induced
correlation length. These arguments predate, but are
similar to standard arguments for the destruction of long-
range order in the random field XY model below four di-
mensions.*® Very short translational and orientational
correlation lengths are in fact evident in the low tempera-
ture, low-field Bitter photographs of Ref. 5. We would ex-
pect, however, larger disorder-induced correlation lengths
at higher fields, where the flux lattice is stiffer (the
disorder-induced correlation length in Ref. 39 is propor-
tional to K '/2u4%2d?), and at higher temperatures, where
thermal fluctuations can blur out some of the disor-
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der.*!"*? The thermal fluctuations which are so prevalent
in high-T, superconductors have been incorporated in-
to the Larkin-Ovchinnikov theory of flux pinning by
Feige'man and Vinokur.*® Fisher has argued that the
crystalline phase is replaced by a distinct thermodynamic
“vortex glass” phase in the presence of disorder.**

Disorder will be most effective in suppressing flux flow
resistivity in vortex phases which exhibit a nonzero shear
modulus on experimental time scales. In conventional su-
perconductors, for example, a few securely pinned flux
lines can pin the entire flux lattice if there is a large shear
rigidity. We argue here that very long shear relaxation
times may also be possible in an entangled flux liquid. Al-
though it will greatly affect the response to a dilute con-
centration of pinning centers, this mechanism for obtain-
ing a shear modulus does not require pinning centers to
work.

Figure 9 shows a heavily entangled flux liquid, viewed
down the z axis. Each flux line executes a two-di-
mensional random walk, occasionally entwining around
one of its near neighbors. Figure 9 is like a two-dimen-
sional polymer melt, with the understanding that poly-
mers which appear to cross in the projection are actually
ordered, one above the other, according to which of the
crossing lines has the largest z coordinate. As in Sec. V,
the z coordinate plays the role of a monomer index in this
polymer analogy.

If the configuration of vortex lines in Fig. 9 is subject to
a shear stress oy, the constraints provided by the entan-
glements in this figure will make relaxation difficult. The
notion of constraints requires a large barrier to flux line
cutting.*> When two lines, both approximately parallel to
H, cross, they must pass over a barrier of order 2¢/,
where ¢ is the line tension, and / is the distance along H
over which the crossing occurs. Upon expressing ¢; in
terms of the lower critical field, we find

2¢€1l - Hclq)()l .
k,BT ZﬂkBT

where we have set H.; =80 Oe, /=10 A, and T=77 K.
Thus, line crossings will be very difficult, just as for poly-
mers in an entangled melt.

The analogy with polymer melts'® suggests that, after
an initial transient, the strain u,, will be proportional to
the applied stress for times ¢t < 7,

50, 6.1)

16

6.2)

Uyy == O'xy/l‘O s

which defines a shear modulus ug for times shorter than
the relaxation time 7,. For times longer than 7., the ma-
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FIG. 9. Schematic top view of an entangled flux liquid. This
figure effectively projects the vortex configuration along the z
axis, and makes the system resemble an entangled, two-di-
mensional polymer melt. '
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terial will behave like a viscous liquid, with the strain ris-
ing linearly with ¢,

uxyzo'xyt/ﬂ s (6.3)

which defines a shear viscosity 1. The key quantity in this
description of the viscoelastic response is the relaxation
time 7,, which, for polymers, is a strong function of the
polymerization index.

The analogous time scale in entangled flux liquids will
be a sensitive function of the sample thickness L. To esti-
mate this time, we use the de Gennes reptation theory of
polymeric relaxation in three dimensions, '® in which each
polymer is assumed to diffuse along a “tube” defined by
the entanglement constraints. A very similar situation
arises in the two-dimensional polymeric problem con-
sidered here. The de Gennes theory predicts that 7,
varies approximately as the cube of the sample thickness

1 =70(L/E;)3, (6.4)
where 7 is a microscopic time, and we expect that &, is of
the order of the entanglement correlation length. Motion
of the center of mass of a single vortex line is described by
the diffusion constant !¢

Dy =Do(L/Ey) "2, (6.5)
where Dy is the diffusion constant of a point vortex in,
say, an isolated CuO; plane. A rough estimate is Do~
h/m, ~1 cm?/sec. The microscopic relaxation time
should be of order

To~l/D0n¢o~1/DoB . (6.6)

If the intervortex spacing is d =(¢o/B)'/>~=100 A and

 £,=2000 A, we find from Eq. (6.4) that 7, =10° sec or

about 15 min for L =1 cm. The shear viscosity in this re-
gime should be of order '®

n=tLuo, 6.7)
or n=2x10* poise if we estimate po from (2.18) with
H= 17 H,.

The ideas sketched above are far from a complete
theory of the dynamics of a heavily entangled flux liquid.
They do suggest, however, that regimes of very high
viscosity (over 10° times that of water) are possible in
sufficiently thick samples. One might even speculate on a
polymerlike glass transition with decreasing temperature
as the origin of the “irreversibility lines” like those dis-
cussed by Malozemoff et al. *¢

Note added in proof: (a) After this paper was accepted
for publication, we learned of work by A. Houghton, R.
A. Pelcovits, and A. Sudbg, which revises Ref. 23 to in-
corporate both an anisotropic tilt modulus and nonlocal
elastic constants into the Lindemann criterion. These au-
thors obtain good fits to the melting curves of Ref. 3 with
this approach. (b) We would also like to direct readers’
attention to the recent paper by G. T. Dolan, G. V. Chan-
drasekar, T. R. Dinger, C. Feild, and F. Holtzberg, Phys.
Rev. Lett. 62, 827 (1989), which presents low-
temperature Bitter decorations of triangular flux lattices
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in Y-Ba-Cu-O with very large translational correlation
lengths even in low fields. (c) D. Huse has pointed out
that there are residual electromagnetic contributions to
the line tension which invalidate Eq. (3.4) in the limit of
very low fields and small M /M3. As a result, & will be
larger than suggested by Eq. (3.6) in the low-field limit,
and one will have to go closer to 7. to observe the predic-
tion (1.6). We are grateful to Dr. D. Huse for this obser-
vation and refer readers to J. W. Ekin, B. Serin, and J. R.
Clem, Phys. Rev. B9, 912 (1974) for a detailed discussion
of the electromagnetic effect in conventional superconduc-
tors.
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