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The Debye-Wailer factor of sodium has been measured as a function of temperature from 80 to
295 K using Mossbauer y-ray scattering. The high energy resolution provided by this technique al-
lowed experimental separation of the elastic scattering from the inelastic thermal diffuse scattering.
The results were compared with the harmonic model using integrations over dispersion curves from
the neutron-scattering measurements of Woods et al. and the lattice-dynamics calculations of Glyde
and Taylor. The Debye-Wailer exponent was shown to exceed the harmonic prediction by 23% at
room temperature. This difference is attributed to anharmonic terms in the interatomic potential.

INTRODUCTION

The reduction of the elastic Bragg scattering by the
thermal motion, characterized by the Debye-Wailer fac-
tor, is a measure of the lattice-dynamical properties of a
crystal. Its strong dependence on temperature provides a
method of understanding the magnitude of anharmonic
terms in lattice dynamics. The measurement of the
Debye-Wailer factor is complicated, however, by the
thermal diff'use scattering (TDS), which is inelastic
scattering due to lattice excitations. Although both
effects are due entirely to lattice vibrations, detailed mod-
eling is necessary to extract a complete picture or even a
reliable estimate of the size of the inelastic contribution'
for x-ray or neutron scattering. Mossbauer y-ray scatter-
ing provides a method of experimentally separating the
elastic and inelastic scattering, since the Mossbauer
linewidth is typically less than 1 peV. The separation
technique can be used to examine the momentum space
dependence of the TDS, or to measure the temperature
factor independent of the TDS. This technique has been
applied to a study of the temperature dependence of the
Debye-Wailer factor in Na from 80 to 295 K. The TDS-
free Debye-Wailer factor was compared with phonon
dispersion relations obtained from neutron diffraction
and lattice-dynamics calculations ' to determine the size
of the ar'harmonic terms.

EXPERIMENTAL PROCEDURES

The Mossbauer diffraction instrument at the Universi-
ty of Missouri Research Reactor (MURR) has been de-

scribed in detail by Yelon et al. The present experiments
utilize the 46.48-keV transition in ' W, which has an en-
ergy width of 4.8 peV. Irradiation of ' 'Ta foils in a
2. 5X10' neutrons/crn s Aux at MURR for one week
produces 70-Ci sources of 5.1-d ' Ta. The shielding as-
sembly contains a liquid-nitrogen cryostat, which allows
the source to be cooled in order to enhance the recoilless
emission fraction. For the Na experiments described
herein, a LiF(200) monochromating filter was used to
select the 46.48-keV y rays from the complex source
spectrum to minimize background. A Soller collimator
was placed between the monochromating filter and the
sample to restrict the vertical divergence (perpendicular
to the scattering plane) of the incident beam. This re-
striction had two effects: the reduced vertical divergence
of the incident beam gave improved momentum resolu-
tion in the vertical direction, while the height reduction
allowed the detector to accept the full vertical divergence
of the scattered beam at all scattering angles. The sample
stage was automated to move in the scattering plane, and
the scattering angle was adjusted by moving the detector
and absorber assembly. Four 96% enriched ' W ab-
sorbers were mounted in a "paddle-wheel" rotor, which
could be driven at speeds varying from 0.5 to 300 cm/s.
An intrinsic Ge detector provided nearly complete sepa-
ration of the 46.48-keV y rays from other peaks in the y-
ray spectrum.

The procedure for separating the elastic and inelastic
scattering used the on-off resonance method, which was
described in detail in our earlier work on Si ~ This
method consists of counting the scattered y rays at two
rotor velocities. The "on" resonance velocity of 0.64
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cm/s was well within the linewidth, and the "off" reso-
nance velocity of 19.2 cm/s was much larger than the
linewidth. The elastic intensity can be determined from
the difference between these two count rates, and the in-
elastic intensity can be inferred by comparing the elastic
intensity with the total high-velocity intensity. The reso-
nance parameters were determined for each freshly irra-
diated source by measuring the velocity spectrum for the
radiation reflected from a LiF crystal set at the (200)
Bragg peak. The LiF reflections have been demonstrated
to be essentially 100% elastic. The resulting intensities
were fit to a Lorentzian representation of the Mossbauer
line shape, using a least-squares method. In light of our
recent work on Mossbauer line-shape analyses, ' it must
be noted that the on-off resonance method using a
Lorentzian line shape is a simplifying approximation that
must be justified. Analyses with the correct line shape
showed that the on-resonance minima were consistently
0.73+0.04% shallower than those given by the Lorentzi-
an line shape for all the sources used. Since the measure-
ments of the elastic intensities for the Bragg peaks stud-
ied here essentially depended only on relative counting
rates, this difference did not affect the final result. The
principal reason for the consistency was the fact that res-
onance data were all collected over the same velocity
range of approximately +20 linewidths. Since the
Lorentzian shape does not approach the off-resonance
continuum in the correct asymptotic limit, a smaller ve-
locity range would lead to a larger (but still proportional)
effect; but more importantly, different velocity ranges
would lead to inconsistent results. Taking the resonance
dip to be proportional to the recoilless fraction is itself an
approximation, but in our case where the absorber tem-
perature is constant, it is simply a multiplicative con-
stant. Although it was not significant in these measure-
ments, changes in the recoilless fraction due to source
resonance self-absorption can also be a complicating
effect.

The sample in this experiment was an approximately
cylindrical Na single crystal about 2.5 cm in diameter
and 5.5 cm high, encased in an Al sample can. The crys-
tal was grown by S. A. Werner. The crystal was orient-
ed in a (001) plane with the cylinder axis inclined about
23' from the vertical direction. For low-temperature
measurements, the sample was mounted in a gas-low cry-
ostat using liquid nitrogen as the cooling medium. The
temperature was measured and controlled with a ger-
manium diode sensor. Room-temperature measurements
were performed with the sample outside the cryostat.

Series of Bragg reflections in the (hh0) and (h00)
directions were measured using the on-off resonance
method, at 80, 130, 160, 205, and 295 K. The change in
scattering angles as a function of temperature was con-
sistent with thermal expansion data. In order to charac-
terize the position and mosaic structure of each
reflection, a detailed off-resonance omega rocking curve
was obtained for comparison with each omega on-off
scan. Figure 1 shows a typical omega scan for a (110)
reflection, and Fig. 2 shows an omega scan for a (200)
reflection. In order to obtain reliable integrated intensi-
ties from the limited number of steps used in the on-off
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scans (usually five position settings for each Bragg peak),
some method of accounting for the irregularity in the
mosaic structure was required. The method used was to
parametrize the shape of the rocking curves using a set of
Gaussian profiles, with parameters selected by a least-
squares fitting method. The appropriate number of
Gaussian profiles for each direction was selected by add-
ing Gaussians until the g value no longer improved; the
(110) profile shown in Fig. 1, for example, was
parametrized by five Gaussians and a constant continu-
um. It was notable that for each of the two series of
reflections the rocking curves were characterized by a
series of Gaussians of approximately constant width and
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FIG. 2. Rocking curve for the (200) Bragg reflection from the

Na crystal. The smooth curve is a fit parametrized by three
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relative position, but of varying relative height ~ The most
probable explanation for the observed variation in the
rocking curves is that the crystal has a number of large,
relatively perfect grains which contribute to the profile;
the height variation is presumably due to small changes
in the set of grain volumes of the crystal illuminated as
the scattering angle was changed. Once the shape of the
rocking curve was parametrized, the elastic data were fit
to the same shape, and an integrated intensity was deter-
mined. The accuracy of the area determinations was
checked by performing fits with differing starting param-
eters; the variation in the resulting areas was far smaller
than the expected error from counting statistics.

The size of the inelastic contribution increased with
Q, where Q was the total momentum transfer with mag-
nitude ~Q~ =47rsinO/k, and with temperature. The in-
elastic contribution was significant for every reflection
measured except for the (110). For some high-angle
reflections, such as the (440) at 80 K and the (330) at 295
K, it was as large or larger than the integrated elastic in-
tensity.

The data were collected with a series of different
sources, so that it was necessary to normalize the intensi-
ties. When each freshly irradiated source was transferred
to the instrument, a series of alignment procedures was
performed, and a LiF crystal was mounted and oriented
as a standard for the recoiless fraction determination.
Since the same crystal in nearly the same orientation was
used each week, the observed intensity also served as a
measure of relative source intensity. Rocking curves in co

and 0—20 were collected to verify the LiF orientation.
Attenuation by the cryostat was measured by direct beam
absorption to be 0.70, in agreement with absorption
tables. Since the on-off measurements were dependent on
the recoilless fractions, the relative recoilless fractions
were included in the normalization factors.

ANALYSES

The intensity of an allowed elastic Bragg reAection in
sodium is given by

1+ 20
2 sin(20)

where f (Q) is the atomic scattering factor for sodium, 20
is the scattering angle, and 8 is the temperature factor.
The observed elastic intensities were divided by f and by
the polarization and Lorentz factors, giving numbers
which should be dependent only on the temperature fac-
tor. Since 2 W is proportional to Q, a Wilson plot
((lnI)I2sin(20)/f [I+cos (20)]] versus Q } is expected
to be a straight line. Corrections to Eq. (1) due to the
slight polarization caused by the monochrornating filter
were less than 0.1% and were not included.

Figure 3 is a Wilson plot using the normalized intensity
values. The initial attempt to analyze the data was to fit
all of the intensities at each temperature to a straight line.
Two systematic features were indicated by this pro-
cedure. First, the (110) reflection was very low in intensi-
ty for each temperature, in some cases even lower than
the (200). In an attempt to understand the reduction of
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FIG. 3. Wilson plot with normalized values of (ln
I)I2sin(20/f [1+c so(20)]I for the diff'erent temperatures in-
dicated in the figure. The particular Bragg reflection represent-
ed by each data point is given along the top of the figure.

the (110) intensity, the relative intensities of the (110) and
(220) reflections were measured using 0.12-A y rays and
1.06-A neutrons, which produced similar results. The
most probable explanation is that the Na crystal con-
tained several large, perfect grains, as indicated by the
rocking curves, and that extinction was a large effect in
the (110) reflection. The extinction apparently did not
aff'ect the (200), which had smaller scattering and Debye-
Waller factors. The (110) data were excluded from fur-
ther analyses.

Secondly, when the unnormalized (h00) and (hh0}
data were graphed on independent Wilson plots, the lnI
intercepts for the same temperature were different. The
points in the (h00) and the (hhO) directions were then fit
separately to straight lines for each temperature using a
least-squares method, with and without the (110) data in-
cluded. When the (110) data were excluded, the fits to
the two directions gave nearly equal slopes, and the
diff'erence between the (hh0) and (h00) intercepts was in-
dependent of temperature, with the (h00) intensity about
24% lower. The difference in intensities between the
(hhO) and (h00) directions was probably due to a com-
bination of crystal volume and absorption effects. The
substantial difference in the mosaic structure in the two
directions indicates that distinct volumes were being sam-
pled. The absorption was measured by rotating the crys-
tal through 65, covering the range of the measurements,
and measuring the transmission of y rays with the detec-
tor at the zero position. This measurement indicates an
increase in absorption of about 9% when the crystal was
rotated by 45, which corresponds to the difference in
orientation between the (hhO) and (h00) series, indicat-
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(K)

80
130
160
205
295

Integration with
5-K frequencies

—0.0235
—0.0361
—0.0438
—0.0556
—0.0794

Integration with
frequency

temperature
dependence

—0.0238
—0.0370
—0.0453
—0.0594
—0.0902

Experimental
slopes

—0.0257(11)
—0.0376(17)
—0.0474(12)
—0.0674(17)
—0.1108(15)

2TABLE I ~ Debye-Wailer slopes (in A ) predicted by integra-
tions using the Cslyde and Taylor frequency spectrum at 5 K,
frequency spectra as a function of temperature, and determined
experimentally.

where Q is the total wave-vector transfer and u„(t) is the
displacement of atom n. In the harmonic approximation
the total Debye-Wailer factor can be written

exp( —2W) =exp
[Qe, q ]'

(3)

where M is the mass of a sodium atom, 4 is the number
of unit cells in the crystal, q is the phonon wave vector,
and j is the phonon polarization index. The phonon
polarization vector is e (q), and the crystal energy
associated with phonon state j is F (q)
=h v (q)( I exp[Ph v (q)] —1 I

'+ —,
' ). For a cubic crys-

tal„Maradudin et al. "write

exp( —2W) =exp
gg2 coth[Ph v, (q)/2]

12rrNM 2~v, (q)

ing that less than half of the intensity difference were due
to absorption. All of the (hhO) data were subsequently
normalized with respect to the (h00) data by multiplying
by a factor of 0.76, and combined with them to give Fig.
3.

During the fitting process, an effort was made to deter-
mine whether a Q dependence could be measured, as
was reported for lithium. ' The data did not indicate the
presence of a statistically significant Q term at any of the
temperatures measured. The remaining analyses were
carried out in terms of the clearly measurable Q depen-
dence.

To check the consistency of the data, the overall
Wilson-plot slopes for each temperature were obtained by
two methods. In one method the slopes determined in-
dependently for the (hh 0) and ( h 00) directions were
averaged. In the other, the (h00) intensities were first
multiplied by the average scaling factor of 1.24 deter-
mined from the intercepts and then a linear fit was per-
formed on the combined data. These two methods
agreed within 0.5%%uo except for the 160-K slope. The
discrepancy at this temperature can be accounted for by
the small number of points. The last column of Table I
lists the experimental slopes obtained for each tempera-
ture.

DETERMINATION OF HARMONIC SLOPES

The slopes determined experimentally in this investiga-
tion represent the total Debye-Wailer factor as a function
of temperature. To get the size of the anharmonic contri-
bution, it is necessary to calculate the harmonic contribu-
tion, which can be done if the frequency spectrum is
known. For sodium, the low-temperature dispersion
curves are well known, and data on the temperature
dependence are available. Once the magnitude of the
harmonic contribution has been determined, the magni-
tude and temperature dependence of the anharmonic
contributions can be examined and compared with exist-
ing models.

The Debye-Wailer factor 28'„ for a single atom is
defined by

exp( —2 W„)= (exp[iQ. u„(t)]),

(4)

In both of these equations, the sum on q is over the first
Brillouin zone (BZ). Given an expression for the phonon
frequencies v (q), Eq. (4) can be written as

hQ Vceii 1 hv, (q)
12~M (27r)~ az . 2rrv (q) 2k&T

and integrated numerically.
The frequency spectrum of sodium was first studied ex-

tensively at 90 K by Woods et al. by inelastic neutron
scattering. This work produced very detailed phonon
dispersion curves, which were interpreted in terms of the
harmonic Born —von Karman model. The temperature
dependence of the frequency spectrum was investigated
by Glyde and Taylor, who calculated dispersion curves
using theoretical interatomic potentials, and used the
known thermal expansion properties to account for
anharmonic effects, at a series of temperatures ranging
from 5 to 361 K. These dispersion curves can be de-
scribed in the Born —von Karman approximation, allow-
ing various frequency integrations to be performed con-
veniently. Glyde and Taylor give a total of 14 frequency
values at each temperature considered, as well as calcu-
lated elastic constants. These values were described (for
the purpose of integration) at all temperatures using a
three-neighbor Born —von Karman model, with seven
force constants. It should be noted that the Glyde and
Taylor study does not consider the effect of the partial
phase transition at 36 K (Ref. 12). A recent neutron-
scattering study' which concentrated on phonon fre-
quencies near the phase transition agreed for the most
part with the Glyde and Taylor results, including the de-
crease of the (q, q, O) TA& mode near the zone boundary
with decreasing temperature.

Integrations of Eq. (5) have been performed over the ir-
reducible section of the first Brillouin zone using an
Euler-McLaurin summation method. The mesh size
chosen for these integrations was much smaller than
necessary to make the results independent of the size.
The results of these integrations, which first used the 5-K
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frequencies at all temperatures and then used frequencies
appropriate for the five measured temperatures, are given
in Table I along with the experimental Wilson-plot slopes
from the on-off resonance measurements. The calcula-
tions agree quite well with the data at 80 K, but a gradu-
ally increasing difference is apparent at higher tempera-
tures, even when the high-temperature dispersion curves
from Glyde and Taylor are used. At room temperature,
the observed slope (0.1108 A ) is 23+2% greater than the
result calculated using room temperature dispersion
curves, indicating that the harmonic expression of Eq. (3)
is not a complete representation of the Debye-Wailer fac-
tor.

DISCUSSION

The fundamenta1 assumption in the harmonic approxi-
mation is that the variation in the interatomic potential is
proportional only to the square of the displacement. A
potential is said to be anharmonic if it contains cubic or
higher-order terms. The potential for an atom in a cubic
crystal with cubic and quartic terms can be written'

V(u] u2 u3) Vp+ apu +/3pu]uzu3+ypu

+5p(u]+u2+u3 &u )

where the strength of the harmonic potential is represent-
ed by a„, /3p is the cubic anharmonic parameter, and yp
and 60 are the quartic anharmonic parameters. The dis-
placement of an atom from its equilibrium position is u,
and u, , uz, u3 are its Cartesian components. The func-
tional form of the Debye-Wailer factor with cubic and
quartic anharmonic terms has been examined extensively
by Maradudin and Flinn, ' who write

exp( —2 W ) = exp [ —
( 2 Wp +2 W] +2 Wz + 2 W3 + 2 W4 ) ] .

approximate form

=C] + —(1+C,„T +C~T),
Q2 ' exp[T ]r/T] —1 2

where C, and T,ff are parameters describing the sum of
the Bose-Einstein distributions for the phonon spectrum.
This form was used because the high-temperature limit

E,(q)=k~T, equivalent to neglecting the zero-point
motion, is not valid at 80 K. The upper points in Fig. 4
(denoted by x) are the slopes found by integration of the
5-K frequencies listed in Table I. By setting Cz=0 and
C„=O, a least-squares fit with C& = —0.02348 A and

T,ff
=87. 86 K gave the smooth curve shown through the

points. The Battening of the slopes at low temperature is
a consequence of the zero-point energy. The extremely
good fit obtained by our parameters C] and T,]f in Eq. (9)
to the W], ( T) integrations using the 5-K frequencies
demonstrates the appropriateness of the approximate
form used in Eq. (9). The middle points in Fig. 4 (denot-
ed by + ) are the slopes from Table I found by integrating
the frequencies appropriate for the different tempera-
tures. The smooth curve through these points used C,
and T,ff from the above fit along with Cz =0 to give the
best value for C,„of 1.56 X 10 K to represent the
thermal expansion. This representation agrees with
specific heat and thermal expansion measurements over
the 80—295 K temperature range, as well as with the in-
tegrations using the temperature dependent dispersion re-
lations from Glyde and Taylor. C2 is the parameter
describing that part of the anharmonic terms which are
linear in T. The lower points on Fig. 4 (with error bars)
are the experimental slopes from Table I. With C, , T,ff,
and C,„ fixed at the values determined by the two fits

The term 2Wp is the harmonic part, identical to Eq. (5).
The terms 28', and 2Wz are due to the quartic and cubic
terms in the potential, respectively, and are both propor-
tional to T and Q . The terms 2 W3 and 2 W& are pro-
portional to Q and T . As mentioned earlier, the pres-
ence of a Q dependence was not evident in our data.
Willis' showed that /3p=0 for a cubic monatomic lattice,
and that the term in 60 is much less than yo. Then, the
expression for the Debye-Wailer slope could be rewritten
as

0.00

—0.03-

CV

o~
—0.06

CL0
CO

—0.09-

2W„(T) yp1+T 2yyG —20k~ (8)

where 2W&(T) is the harmonic term with no thermal ex-
pansion. The product 2yyz, where g is the thermal ex-
pansion coefficient and y& is the Gruneisen parameter,
represents the change in the contributions from the fre-
quency spectrum as a function of temperature. The term
20kzyp/(ap)T is the term in Q due to the quartic term
in the potential.

The numerical results and data from Table I were in-
terpreted in terms of Eq. (8) by fitting the slopes to the

—0.12
0 60
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120 180
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240 300

FIG. 4. Experimental slopes determined from the data shown
in Fig. 3 plotted vs temperature. Also plotted are the other re-
sults from Table I based on the Glyde and Taylor frequency
spectra at 5 K {X ) and at experimental temperatures {+). The
three smooth curves through the calculated and experimental
points were obtained by successive fits to Eq. {9)as described in

the text.
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above, the smooth curve through the data was found by a
leastsquares fit to C2 which gave a value of
C2 = —20kttyo/(ao) =7.789 X 10 K '. At room tem-
perature, this gives values of

ao=k&TQ /(2W&)=5. 13X10 ' erg/A

and therefore yo= —7.42X10 ' erg/A . The relative
values of yo and ao give a measure of the size of the
anharmonic potential. The anharmonic contribution
represented by the Cz term at room temperature is 20%%uo.

The discrepancies seen in Fig. 4 between the experi-
mental data and the systematic fit of Eq. (9) indicate a
temperature dependence for C~. Equation (8) does not
include a temperature dependence in yo, although Willis'
did suggest a weak temperature dependence. Allowing a
linear temperature dependence in the anharmonic term,
however, does result in a better fit to the present data. If
a term, of the form C2(1+C3T), is substituted for C2 in

Eq. (9), values of Cz = 1.26 X 10 K ' and C3 =2. 34
K ' are obtained by a least-squares fit (where C, , T,~,
and C,„were fixed at the above values). At this stage if
only C„ is fixed and the other parameters varied, very
similar results are obtained, all with nominal 10% uncer-
tainties. While other fitting procedures can be used, the
basic result is that the data are best represented by essen-
tially a linear temperature dependence for yo, which is
dominated by the C2 C3 product of 2.95 X 10 K
This parametrization gives a value of —8.29 X 10

0 4erg/A for yo at room temperature. Since this fit hap-
pens to go through the experimental data point at room
temperature, it corresponds to the anharmonic contribu-
tion of 23+2% noted earlier. Although there is no
theoretical prediction for this functional form, the work
of Maradudin and Flinn' indicates that the anharmonic
terms have a much stronger dependence on changes in
the frequency spectrum than the quasiharmonic term.

Clearly, the anharmonic effects in Na are far stronger
than in the cases examined by Willis' (KC1 and BaFz). A

comparison to the other alkali metals is somewhat more
difficult because few reliable high-temperature Debye-
Waller measurements are available. An early x-ray
powder diffraction study' in Na which made no al-
lowance for TDS obtained a very low room-temperature
value for 2W/Q of 0.0456 A . To simulate the effect of
a high-resolution diffraction experiment with no TDS
correction, the off-resonance data at 295 K from the
present work were analyzed, yielding a value for 28 /Q
of 0.0797 A, which is still smaller than the calculated
harmonic factor of 0.0902 A given in Table I. It is of
course possible to correct for the size of the TDS contri-
bution, but the on-off resonance method eliminates the
need for this correction.

The present results differ markedly from the inelastic
incoherent neutron-scattering measurements on Li,
which indicated a large Q term. ' The magnitude of
such a term in Na (at 295 K, where it was expected to be
largest) was estimated to be less than 1 X 10 A, or at
least 4.0 times smaller than the value reported for Li.
Maradudin and Flinn' show that the Q term includes a
mass dependence of M, which explains the relatively
smaller effect in Na compared to Li.

The Mossbauer scattering technique, in conjunction
with measured or calculated dispersion curves, is a rela-
tively direct method for determining the size of anhar-
monic effects and therefore the strength of anharmonic
terms in potentials.
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