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A theory of Raman scattering from gap excitations in high-temperature superconductors is

presented in which a spin-density-wave gap g is treated on an equal footing with the supercon-

ducting gap h, . Calculations are carried out in the weak-coupling regime, for which the Hubbard

energy I is assumed to be much less than the bandwidth 8. An electronic scattering cross section

for T 0 is calculated which shows a definite threshold dependent on both g and A.

INTRODUCTION

One of the key problems in the newly discovered high-
temperature superconductors is understanding the nature
of the energy gap in these materials. Tunneling, ' infrared
absorption, and Raman scattering are some of the
techniques used to characterize the gap structure. A sim-
ple BCS theory would give an energy gap which defines
the threshold for scattering. However, two recent Raman
experiments ' are in disagreement with each other re-
garding the existence of such a gap. Cooper and Klein
observe the presence of residual electronic scattering well
below the gap onset and this indicates that a continuum of
electronic states exists inside the gap. Their conclusion is
reinforced by interference of the interband electronic con-
tinuum scattering with phonons. Lyons et al. , on the oth-
er hand, conclude that their data show an energy gap of
2A at about 25 meV.

On the theoretical side, several authors have addressed
the problem of Raman scattering in superconductors.
Cuden calculated the electronic Raman eN'ect in super-
conductors for the case when the optical penetration depth
6 is much less than the coherence length ge, which corre-
sponds to the large q limit (since q —I/8). Dierker et al. ,
on the other hand, derived an expression for the Raman
amplitude using the BCS theory in the q 0 limit. Sub-
sequently, Klein and' Dierker formulated a theory of Ra-
man scattering in superconductors which extended the
analysis to include gap anisotropy and finite q. Yet, all of
these papers were before the high-T, era and so do not in-
clude the physical eA'ects peculiar to high-temperature su-
perconductors.

In this paper we present a theory of Raman scattering
from gap excitations in the high-temperature supercon-
ductors, incorporating the essential theoretical ingredients
appropriate to these materials. Attention will be focused
on the q~ 0 limit, a situation appropriate to small coher-
ence length materials. The point is that here the super-
conductivity transition has an intimate relationship with
the antiferromagnetic spin correlations observed in these

materials over distances that are large compared to the
lattice spacing. SchrieNer et aI. have proposed a high-
temperature theory of superconductivity based on the
spin-bag mechanism. The essential feature of this theory
is that the pairing interaction occurs between Bloch states
in the presence of spin-density waves (SDW). This inti-
mate relationship between antiferromagnetism and super-
conductivity has been seen in the neutron-scattering ex-
periments of Shirane et al. ' and Vaknin et al. " It is
therefore natural to include not only the superconducting
gap h, but also the SOW gap g on an equal footing in any
theory of Raman scattering in the high-T, materials.
When this is done, it is found that the Raman line shape
depends strongly on the ratio of g to d, . Two kinds of exci-
tations, quasiparticle and pair, are possible and both con-
tribute to the Raman amplitude. From this it emerges
that the threshold for scattering is given both by g and h„
which are determined self-consistently. The cross section
rises sharply above this threshold and then falls away
gradually on the high-energy side of the maximum. The
solutions do not allow gap states, so we do not predict con-
tinuum scattering below the threshold. The combination
of the SDW and superconducting pair aspects of the
theory should allow us to give a quantitative interpretation
of Raman scattering experiments in weakly coupled high-
temperature superconductors.

HAMILTONIAN AND GAP EQUATIONS

We introduce a single-band Hubbard Hamiltonian

PTij ciacj a+ Igfl& |n&i~'
where the first term is the kinetic energy of the electrons
and the second term is the on-site Coulomb repulsion of
strength I between electrons in the usual way. Lineariz-
ing, we get
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H =+Tij Ci~~j a+ I+((c&~&a)C&'~i —a 2 (CiaCi, a—)CiaCi —a 2 (Ciaci, a)ciaci, a—) ~

l, O'

(2)

This linearization allows us to define, after Fourier trans-
formation, two order parameters,

where N is a normalization factor. Using these terms, the
band filling may be expressed as

and

g =I+(ck+g aCka)
k

(3) N, = —,
' g g [(r,'„+r,'„)fk„+(r,'„+r,'„)( I —fk„)1 .

k n

Ig(ck tc —k J)
k

(4)
As expressed, N, has a 'maximum value of 2. The new
eigenstates of the system, associated with the energies of
Eq. (6), define states in terms of pair and quasiparticle ex-
citations, and the Raman spectrum is thus given in rela-
tion to these excitations.

Equations (7)-(9) are solved self-consistently, assum-
ing a tight-binding band structure of the form

sk = ——,
' W[cos(k a)+cos(k~a)]+ const,

c»IO&, c-k)10&, ck+g, t(0&, and c k+g, &10), where 8' is the bandwidth. It is convenient to define two
related energy parameters, namelywhere

~
0) is to be interpreted either as the hole or electron

vacuum as appropriate; explicitly in this basis it is

g h. 0
Xk =

2 (Gk Gk ~g)+ COllst

= ——,
' W[cos(k„a)+cos(kJa))+ const

g ~a+ g
0 (5) and

which we identify as the SOW gap and the superconduct-
ing gap, respectively (restricting our analysis to a single
value of Q). It should be emphasized that the lineariza-
tion carried out above is valid when I(8' where Wis the
bandwidth. This automatically implies that g, h, (W.

The 4x4 Hamiltonian matrix' of Eq. (2) may be rep-
resented in the four states

X[4g +(ek —sk+g) ) ' (6)

where the choice of signs for the different eigenvalues fol-
lows the convention ( —,+ ), (+,+ ), ( —,—), and
(+, —) for n =I, 2, 3, and 4, respectively. Apart from
the half-filled band case, when ek = —ok+a, this leads to
four distinct states whose energy levels are split by
amounts depending on 6, and g. Solution of the equations
for h, and g yield a phase diagram in which antifer-
romagnetism and superconductivity coexist. ' ' Using
the eigenvectors of Eq. (5) (the specific forms appear in
the Appendix), we can write the two gap equations as

~ =I&(r„&r„4+r„3I i)fk„,
k, n

g =2IQ[I
„

I„,fk„+I„,3I „4(l—fk„)].
k, n

The I, are elements of a generalized Bogoliubov-Ualatin
transformation matrix given in the Appendix; the fk„are
the Fermi distribution functions for the eigenstates associ-
ated with the energies Ek„,

exP (PEk„)+ I

0 6, g 8~+g

Within (5) we have assumed that

Bg = Ig(ck+gtc —k+g)) =6 .
k

The energy eigenvalues and eigenvectors of Eq. (5) are
obtained through a generalized Bogoliubov-Valatin trans-
formation (given in the Appendix). The energies are

1
Ek, =+ [2A +2g +sk+ck~g ~ (sk+sk+g)

yk = —,
' (sk+sk+g)+ const= const.

Setting a value for the second parameter yk is equivalent
to fixing the position of the Fermi surface. "

To simultaneously solve Eqs. (7) and (8), we first divide
through by 6, and g, respectively; then, with 6, and g fixed,
we equate the right-hand sides of the equations since the
left-hand side of each is equal to unity. A numerical rou-
tine varies y until this new equation is satisfied. Having
fixed g, 5, and y, we can substitute back into either (7) or
(8) for I. The electronic band filling follows from (9).

The numerical solution of the above-mentioned set of
equations for T=O is given in Fig. 1, where the self-
consistent solutions for h, and g are graphed as a family of
contours over the I-N, plane. All energies in the figure
are measured in terms of the bandwidth W. In finding
these solutions, assuming a to be the lattice spacing, we
have taken Q=a(x+y)/a, that is near half-filling. Be-
cause we are interested only in the weak-coupling regime
I( W only solutions for which I/W (0.3 have been con-
sidered.

As can be seen from Fig. 1, superconductivity and
spin-density waves coexist in the given range of values of I
and N„however, the functional dependencies of h, and g
with N, are quite difrerent. Arbitrarily close to the half-
filled band case (N, =1), only solutions for which 5 tends
to zero asymptotically appear to be valid. There is no
similar restriction of g, which approaches a constant value
monotonically. Thus as N, 1, 6, 0 and g~I, imply-
ing that the system is purely antiferromagnetic at half-
filling. Moving away from half-filling, our solutions show
an increasing preference for the superconducting solution
at the expense of the SDW one. %'e note that both g and
6, approach zero as I~ 0, as we would expect. These re-
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0.4

0.3

suits are consistent with those of Inue et al. ,
' who dealt

with the problem in the strong coupling limit. They found
that for 8'i'I —0.3, superconductivity and antiferromagne-
tism coexist for %,—0.7; for lower values of W, the sys-
tem became purely superconducting.

ELECTRONIC RAMAN SCATTERING CROSS SECTION

0.2

The differential scattering cross section is usually writ-
ten as

'2 I&fix,.l &I'(& —&y)
dfkdco N~ i,I

x a[~ (Ef —E;)l—, (10)

0.1

0.001 0.001

0.0 I I I I I I I I

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

N,

FIG. 1. Self-consistent solutions of the gap equations: Con-
tours of constant h ( ) and constant g (---) as functions of
the Hubbard I and the electron band filling %,. The numbers to
the right label the g contours, those to the left label the 6, con-
tours.

where P; and Py are the thermal factors which describe
the occupation probability of the initial and final states,
co co~

—co2 is the energy transfer, and g„,is the transition
susceptibility tensor. For the present, we restrict ourselves
to electronic transitions appropriate to gap excitations and
neglect phonon excitations.

There are two contributions to the susceptibility tensor:
One coming from the A A term corresponding to intra-
band scattering and the other from the A P term which
gives interband scattering. (A is the vector potential of
the photon field. ) We confine ourselves to the latter term
which gives the leading contribution for the case we are
considering.

A straightforward calculation yields

=
11

'
lm g g "'" '+'

I c(qk)I'Iw k(ro1) I'
rO1 k men Ek+q, m Ek, n

+2 Z (I fk, n fk+q, m) I ck(q) I

'
I &k (rol) I

'
k m, n

1 1

Ek+q, m+Ek, n+ ~rO Ek+q, m+Ek, n

where the first term corresponds to quasiparticle excitations and the second to pair excitations.
Here Ak (ro1) and Bk (ro1) are the Raman tensors given by

al1d

(m lp @21 i)&i lp a11n& &m lp a1 Ii&&i lp a2ln&2k~ Co] +
Ekn —EI i+ ~& Ekn Ekl —&ro2—

&mlp a~It&&t Ip a1 lg&
~k ~ ro1 +

EI,g
—EI,; —A, o) I

(m lp a, It&&i Ip a2lg)
Ekg —Eki+ &~2

(13)

and together they determine the resonance behavior of the Raman cross section. Here, Ek; are the energies of the higher
bands and EI,g is the ground-state energy. The Raman tensors will be slowly varying functions of k in an off-resonance
situation and this is what we will assume. The functions ck(q) and ck(q) in Eq. (11) are the coherence factors resulting
from the generalized Bogoliubov-Valatin transformation.

The above expressions hold for arbitrary values of q, but in the limit q 0, Eq. (11) reduces to

(j p 2 g g fk ll fk, nl

dAdco coI g 0 k m~n Ekm Ekn Aco+l77

since ck(0) =1 and ck (0) =0. A continuum of excitations corresponding to the energy difference Ek Ek„contributes-
to the cross section.
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The Raman cross section was calculated numerically
from Eqs. (6) and (14) for various values of the parame-
ters g and h„atypical result at T =0 is illustrated in Fig.
2. For this case, the values g/W=d/&=0. 0025 were
chosen, with the bandwidth 8' set to S eV. For these
values, 2h =200 cm '. (This should not be confused with
the observed gap since that is also a function of g.) We
note that the spectrum shows a definite threshold for Ra-
man scattering with a slower and more gradual drop on
the high-energy side of the maximum. A similar behavior
was observed for a wide range of g and d values. Raising
the temperature shifts the electronic spectral weight
towards higher energies and broadens the spectrum, but
the form of the spectrum remains exactly the same as at
T =0 (the range T & 100 K was tested).

It is appropriate to compare our theoretical results with
the available data. ' Lyons et al. have found an energy
gap of about 200 cm ' but conclude that the Raman
response should be smeared due to the anisotropy of the
material. They do not, however, provide a quantitative fit
to their data. The spectra of Ref. 3 do not show any
structure appropriate to an energy gap. Instead, the shape
of the spectrum is reminiscent of electronic Raman
scattering in semiconductors, ' where there is relatively
weak energy dependence. Residual scattering, if any,
within the gap should exhibit a much faster decline below
the gap. In terms of our model, very low-frequency exci-
tations would be possible only when both 5, and g ap-
proach zero, which seems unphysical for the high-T, su-
perconductors. The cause of the low-frequency excita-
tions seen in Ref. 3 remains unclear, and we can give no
clear theoretical explanation for them. Gap suppression
due to Gaussian fluctuations in the order parameter over a
sizable temperature range near a boundary has been dis-
cussed in YBazCu307 by Deutscher and Muller, ' where
the correlation length go is very small. This effect is
enhanced when the boundary is perpendicular to the c
axis, so that the gapless tunneling could be interpreted in
terms of the strongly diminished gap. Perhaps the states
seen by Cooper and Klein are a manifestation of such a
gap suppression. Con voluting the calculated Raman

240 260 280 300

Energy (cm ' )

320 340

FIG. 2. The Raman cross section at T 0 for g h, 100
cm ', with 8' 5 eV.

APPENDIX

We define the I matrix as that unitary matrix which
acts as a generalized Bogoliubov-Valatin transformation
in the space of Eq. (5). We begin by defining its inverse,
[r]

response into a function to include gap anisotropy ~ould
smear the edge and also produce low-energy states. But
the incoherent nature of this procedure would obscure the
antiresonant effects alluded to in the Introduction. Prob-
ably the observed gap states result from a combination of
gap anisotropy and gap suppression due to the short
coherence length.

We conclude by noting that in the theory presented
here, we have neglected the collective modes due to ampli-
tude Auctuations in the SOW ground state. Inclusion of
these would probably lead to a bound state within the gap
similar to the mode due to coupling between a charge-
density-wave amplitude mode and the superconducting or-
der parameter. '

P

fk
]

fk
3

fk
4

1

N3

—2x —D
2g2V3

—2x —D
2gN4

2h,

N3(2EI, 3+2y —D)

2h,

N4(2Ek4+ 2y+ D)

—2x+D 2h
2gN ) N ) (2EI, ) + 2y —D)

—2x+D 2h,

2gN~ Nq(2EI, q+ 2y+ D)

( —2x+D)(EI, )+x —y) —2g~

2']gh,
( —2x +D) (El,z+ x —y ) —2g '

2&pgh,

( —2x+D) (Ek3+x —y)2g'
2N3gh,

( —2x +D) (EI,4+ x —y) —2g
2%4gh

Ck+gt

C —k+Qj

where
~

y') is the ith eigenvector of Fq. (5). [I ] is obtained by transposition since the matrix is unitary. Thus

[I; ] = [li;]. The N; in the above matrix are normalization factors defined as

1V =1+ [x ——,
' a(i )Dl '

Q2 [[x——,
' a(i)D] (Ep;+x —y)+g'] '

[E,', +y+ -,
' (—1) Dl' g 6,

in which a(1) =a(2) = —a(3) = —a(4) = l.
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