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The constrained-density-functional approach is used to calculate the energy surface as a func-
tion of local charge fluctuations in La;CuOs. This energy surface is then mapped onto a self-
consistent mean-field solution of the Hubbard model which allows extraction of the Coulomb in-
teraction parameters when combined with one-electron parameters derived from band-structure
results. Variations in the local Cu d charge and in-plane O p charge are considered for the proto-
typical high-7. parent oxide La,CuQOs. To isolate the charge fluctuations, the calculations are
done in a supercell of size up to 2X2 in the basal plane. The local density-functional calculations
are done using the linear muffin-tin-orbital approach with the atomic sphere approximation. In
the Hubbard Hamiltonian, the Cu d(x?>—y?) and O p(x,y) orbitals are included in the pdo
configuration. The one-electron parameters consist of bare on-site energies (g,,67) and first-
neighbor hopping from Cu to O (£,4) and from O to O (z,,) while the Coulomb-interaction pa-
rameters include on-site (Us,U,) and intersite (Upa,Upp) terms. Results of the present calculation
indicate that La;CuOs is intermediate between the extreme spin or charge fluctuation regimes.
This places strong constraints on the available parameter space for theories of high-7. supercon-
ductivity based on the extended Hubbard model.

I. INTRODUCTION

There is general theoretical agreement that correlations
due to the electron-electron interaction play an important
role in the properties of the Cu-O high-7, superconduc-
tors and related compounds. This general feature of 3d
transition-metal oxides is strongly supported in the
present case by the antiferromagnetism observed in the in-
sulating parent phases. It is a long-standing challenge to
treat these correlations in the case of strong interactions.
Considerable current work is based on the Hubbard model
either in a one-band version"? or an extended three-band
form.3”7 It remains to be shown whether and in which
region of parameter space this model can exhibit super-
conductivity, in addition to the usual magnetic properties.
It is therefore important to understand what region of pa-
rameter space in the Hubbard model is applicable for the
present Cu-O class of materials. The purpose of the
present paper is to provide a microscopic, parameter-free
calculation of the Coulomb-interaction parameters in the
extended Hubbard model for the prototypical case of
L32Cu04.

The local density-functional approach (LDA) for cal-
culating ground-state properties has been widely success-
ful for a broad range of materials. However, in cases
where local correlations are strong, it tends to lose accura-
cy or breaks down, e.g., in the case of Fe it predicts the
wrong ground state.® Structural calculations have recent-
ly been done for La,CuQO4 showing that the usual calculat-
ed bulk properties (e.g., lattice constant, internal structur-
al parameters, bulk modulus, phonon frequencies) agree
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with experiment to within standard tolerances.’ However,
the ground state found with the LDA is paramagnetic,
i.e., an antiferromagnetic instability is not sustained.'®!!
If lattice coupling is included, early indications were that
a charge-density-wave state would be obtained.'>!> This
is in contrast to experiment and more recent calculations.®

Despite these difficulties, the LDA has been used suc-
cessfully to calculate the local Coulomb-interaction pa-
rameters in many cases where correlation effects are
strong, e.g., transition-metal impurities'*'> and NiO.'®
The protypical case is an open d- or f-shell atom in a me-
tallic host. Here one expects the atomic Coulomb integral
(Ubpare) to be screened by the itinerant electrons in the
host to yield an effective or renormalized U. The basic ap-
proach for obtaining this U is to calculate the change in
the total energy as a function of the local occupation in
the d or f shell. The curvature of the energy surface gives
the effective U. This is an optimally screened U because
the itinerant electrons are allowed to respond self-
consistently to the change in local charge density which is
assumed to be static. Any dynamical effects reduce
screening and tend effectively to increase U. One might
initially be sceptical of results for U based on the LDA
since the ground state in these materials is often given in-
correctly, as noted above. However, the energy scale (and
hence the scale on which the charge density must be
correct) is relatively large for U. On the other hand, the
energy scale associated with the magnetic instabilities
(some exchange coupling) is 1 to 2 orders of magnitude
smaller. It is the latter which is apparently not adequately
treated in the LDA. Since the usual structural properties
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are given quite well for La;CuQy,? the overall charge den-
sity must be well represented.

One of the unique features of the Cu-O materials is the
strong hybridization of the Cu d level with the in-plane O
p level. This is an essential feature in the band structure
of these materials'>'”~2° which makes the Cu-O materi-
als quite distinct from the cases studied previously. A
number of fundamental questions arise. (1) A partition of
the electronic degrees of freedom must be made separat-
ing those electrons which must be considered dynamically
from those electrons which may be treated as a passive
background which screens the Coulomb interaction. In
the prototypical case, the band picture showed a narrow
band (or impurity level) coupled to a broad, relatively
structureless continuum. In the present case, the pdo
band is broad in the one-electron theory, suggesting that
the Cu d and O p orbitals must be considered on an equal
footing. However, this expands the energy scale consider-
ably, which has to be considered. In addition, the O p or-
bitals have significant coupling among themselves and to
other degrees of freedom which contributes to the width of
the bands in the one-electron picture. Thus, there is dis-
tinct ambiguity surrounding the isolation of a few bands
for correlated treatment. From another point of view, one
must establish which portion of the band structure is to be
isolated as a starting point for a renormalization treat-
ment and for modeling, e.g., the region near the Fermi
surface. (2) One can no longer isolate a single local orbit-
al, the occupation of which is constrained independently
of the other bands. The strong overlap here is to be con-
trasted to the narrow-band impurity limit treated previ-
ously. This complicates the treatment of the energy sur-
face as a function of what must in some way be defined as
a local charge fluctuation. This must be developed in a
way that is consistent with the orbitals explicitly treated in
the model Hamiltonian. (3) A nontrivial kinetic energy
enters into the problem which must be treated explicitly.
Because of the large hopping integrals, the energy surface
as a function of local charge state contains a kinetic ener-
gy contribution so that the curvature of the energy surface
is no longer simply U.

In the present work, we have adopted the point of view
from the outset that the Cu d and O p orbitals must be
treated on an equal footing. Implicit in this choice is that
the one-electron Hamiltonian has been suitably reduced
(or down folded) in a first step to eliminate any couplings
to other degrees of freedom resulting in proper renormal-
ization of the ¢;;. However, we note that orbital degrees of
freedom not included here may be important. Guo,
Langlois, and Goddard?' have based their model on the O
pr orbitals and the model of Weber?? requires inclusion of
the Cu d(z?—3r2) orbital. Here we restrict ourselves to
the three-band model because much current work on
mechanisms for high-temperature superconductivity are
based on it.>~7 This choice is discussed further in Sec.
IV. The interactions and states included in this Hubbard
model are illustrated in Fig. 1. The three-band Hubbard
model has the following form: >

H=3 gCiCi,+% X ,UijCiLCiaC,L'Cjo‘ , (1)

i,j,o i,j,0,0°
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FIG. 1. A schematic presentation of the orbitals and interac-
tions included in the Hubbard model Hamiltonian Eq. (1).

where the ij indices label the planar Cu and O sites, CR;
creates holes in Cu d(x2—y?2) or O po(x,y) states. The
one-electron and Coulomb-interaction parameters, respec-
tively, are the following: on-site (i =j) ¢,,U, and &;,Uy;
intersite (i=, nearest neighbor) 1,4, Upa, tpp, and Up,p. As
stressed by others,” the direct 0-O hopping term ¢, is im-
portant.

Underlying this model Hamiltonian is some set of ap-
propriate tight-binding orbitals which are assumed to
have something like an atomic range. Their exact details
are not specified but one should beware that the precise
values of the parameters depend on these orbitals. The or-
bitals used to calculate the parameters must reflect physi-
cally sensible choices and be consistent with the applica-
tion of the model. A related issue is the assumed vacuum
state, frequently taken to be Cu* and O?~ where the d
and p shells are fully occupied. Precise values of the pa-
rameters also depend on this choice. Finally, the effect of
all other electrons not included here are assumed to renor-
malize (screen) the active parameters.

Two classes of parameters are required for Eq. (1): the
one-electron g;, and the Coulomb interaction U;;. The
one-electron parameters are obtained under the assump-
tion that the LDA bands can be interpreted as corre-
sponding to the mean-field (MF) solutions of Eq. (1), as
pointed out by Emery.? The Coulomb parameters are cal-
culated from the total energy in the constrained-density-
functional approach. Of course, these two procedures are
coupled. Each depends on the full set of one-electron and
Coulomb parameters. A final, unique set of parameters is
obtained which is consistent both with the LDA band
structure and the constrained-density-functional total-
energy results.

The crucial one-electron parameter in the problem is
the difference in on-site energies e=¢, —¢,. In establish-
ing the parameters in Eq. (1), one must keep in mind that
the appropriate ¢ is “bare.” The £MF from the fit to the
LDA band structure is screened. The ¢MF is unscreened
to obtain £ using a mean-field solution to Eq. (1). This is
an approximation which we expect to be appropriate for
extended systems such as the present one with strong hop-
ping (covalency). Furthermore, the precise values of the
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&;; generally depend on the portion of the band structure
to be reproduced, e.g., the region near the Fermi surface.
The reason for this is the coupling of the orbitals in the re-
stricted space spanning Eq. (1) to other degrees of free-
dom, e.g., the Cu s orbitals. These issues are important
for obtaining a consistent set of parameters and are dis-
cussed in more detail in the body of the paper.

Since the Coulomb parameters U;; cannot be related
directly to a particular narrow band, two developments
are introduced in order to treat this more complex situa-
tion. We break the problem into two parts. First, the en-
ergy surface as a function of local charge state is obtained
microscopically using a constrained-density-functional ap-
proach. The constraint must be introduced explicitly into
the problem in real space since the orbital occupancy can-
not be independently controlled. The result of this calcu-
lation is a variationally optimized energy surface as a
function of appropriate local charge fluctuations. Second,
the Hubbard model Eq. (1) is solved explicitly in mean
field as a function of local charge state in parallel with the
density-functional calculations. The underlying Cou-
lomb-interaction parameters are then extracted as those
which give an energy surface matching that from the mi-
croscopic density-functional calculation. In this way, the
kinetic energy in the present covalent situation is properly
handled and the Coulomb-interaction parameters are
screened correctly for the appropriate crystalline environ-
ment. This approach not only yields the screened
Coulomb-interaction parameters from the effective curva-
tures of the energy surface near the ground state, but it
also can indicate secondary metastable states, if such ex-
ist, provided these states are connected with the ground
state via the charge fluctuations considered. Metastable
states have been found, e.g., in magnetic systems when
magnetization and volume were constrained.?* In the
present case, we found no indications of any metastability
within the space of Cu d and O p charge fluctuations.

J
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FIG. 2. A schematic presentation of the charge degrees of
freedom considered in the 2% 2 unit cell and the atoms taken to
be equivalent in the basal plane.

Most of the calculations were carried out for a 2X2 su-
percell indicated schematically in Fig. 2. The charge de-
grees of freedom considered are shown with the symmetry
indicated. In comparison to test calculations on 1x1 and
V2 x~/2 cells, it was found that the screening response to
the charge perturbations induced were sufficiently con-
verged with this size cell. This shows that the local charge
fluctuations were sufficiently isoiated. Various combina-
tions of constraints were considered to ensure that the en-
ergy surface was adequately sampled. Local constraints,
e.g., on the central Cu(1) site, lead to responses through-
out the cell in the channels shown in Fig. 2. In order to
form an orderly data set taking into account charge fluc-
tuations in the Cu d and O p channels throughout the 2x2
unit cell, the charge fluctuations were combined according
to the following form:

E= $U4l(6ns1)2+2(8n42) 2+ (6n43) 21+ $ U, 14(8n,1) 2+ 4(5n,2) 2]
+ U ,pu(48nq18n,1+ 481,280, +48n,28n,,+48n436n,,)

+U,,[4(8n,1)2+4(8n,2) 2 +86n,18n,,] .

Fitting of the calculated points on the energy surface
yields the curvatures U;;. These are then matched by the
curvatures found in the mean-field solution of Eq. (1)
which implicitly determines Coulomb-interaction parame-
ters Uj;.

The mapping onto the restricted subspace of Eq. (1) de-
pends on a consistent set of one-electron parameters ¢; of
which =g, — ¢, is the key. The results obtained from the
mapping for Uy, Upa, and U, are insensitive to &, while
U, is strongly dependent on e. The final** numerical re-
sults were as follows: U;=10%*1 eV, U, =3 to 8 eV de-
pending on ¢ varying from 4 to 2 eV, Upy=1.2%0.5
eV, and U,,=0. A consistent set of one-electron and
Coulomb-interaction parameters are collected in Table I.
These are based on a value of e=3.6 eV, a choice which is
justified in detail in Sec. IV. ‘

For comparison, the parameters appropriate for Eq. (1)

(2

TABLE I. Comparison of the present set of parameters for
the extended Hubbard model with the parameters recommended
by other authors. Hole notation is adhered to in ordering the
energies and the phase conventions according to Fig. 1 are used.
The value of U, depends sensitively on the choice of ¢ as shown
in Fig. 8.

Present Ref. 7 Ref. 25
eMF 1.3 B 1.2
5 3.6 1.5 s
tpd 1.3 1.07 1.6
top 0.65 0.53 0.65
Ua 10.5 9 8.5
U, 4 6 4.1-7.3
Upa 1.2 1.5 =06
Upp 0 1 « s .
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have been estimated by other groups in various ways. Jen-
nison and Stechel’ have combined the band-structure re-
sults for the one-electron parameters with interpretation
of Auger spectra for related oxides and screening esti-
mates to obtain the U;;. The parameters have also been
independently calculated by other groups using an ap-
proach similar to but different from that employed
here.!?>26 A key difference is that the orbitals of in-
terest, e.g., the Cu d, have been artificially isolated by
zeroing the relevant Hamiltonian matrix elements cou-
pling that orbital to the others for purposes of varying the
orbital occupation to obtain the Coulomb parameters,
e.g., Uy. This procedure also provides an alternative ap-
proach for obtaining the on-site energy difference £. This
isolation of the relevant orbital reproduces the limit where
the strongly correlated electrons (large U) are in a local-
ized (atomic) level with no coupling to a continuum. It is
presumably still quite reasonable for the case of finite cou-
pling to a continuum. Our procedure, in contrast, is ex-
plicitly designed for the present case of periodic correlated
electrons with strong hopping and where the “continuum”
is derived in part from the electrons which themselves
have important local Coulomb correlations. These dif-
ferences of approach are described in more detail in Sec.
IIID. Interestingly, there is general agreement between
the parameter sets. Parameters have also been suggested
using a cluster-based analysis of experiments and a tight-
binding fit to the LDA bands.?’

The balance of the present paper is organized as fol-
lows. Section II contains a brief description of the con-
strained-density-functional approach. The details of the
application to the La,CuQy system are contained in Sec.
III. The results are discussed in Sec. IV, in comparison to
other calculations and available experimental data. The
various mechanisms for pairing proposed on the basis of
the Hubbard model Hamiltonian are analyzed in view of
our results.

II. CONSTRAINED-DENSITY-FUNCTIONAL APPROACH

The constrained-density-functional approach has been
described in rather general form.!'* Applications have
been made to Coulomb-interaction parameters in narrow
band'® or impurity !*!* situations as well as to the study of
itinerant magnetic systems.?*> Here we outline the ele-
ments of the approach required in the present context.

For purposes of developing the approach, the case of lo-
cal d-charge (IV;) fluctuations is considered. The energy
as a function of Ny is required. This is obtained in the
density-functional approach by minimizing the total ener-
gy subject to the constraint that the local d charge by N;,.
The value of the local d charge on site i is defined in terms
of a projection operator:

nia(r) -Z;(n,,ﬂ Piapm () |?. 3)

Here the ¢,k are the Kohn-Sham orbitals in the density-
functional approach with occupation n,,. States are in-
dexed in a periodic crystalline system. The required form
of the projection operator P;; depends on the model. In

this case, it must be centered around the relevant Cu site,
have some specified range, and perhaps impose a particu-
lar shape as well. For example, the projection might be on
a specific form of the d(x?—y?) orbital. A somewhat
general form acting on function f(r) might be

Piaf) (1) =94t —R;) fdr'q):;" T —-R)fG), @

where normalization of the volume integral of |¢4|? to
unity ensures that P;; is idempotent as well as Hermitian.
The choice of the radial form of ¢, in the present problem
should be dictated by the orbitals underlying the Hubbard
model Eq. (1).

The total energy of the constrained system can be es-
tablished variationally,'* just as in the standard case.?®
The relevant energy expression is

E(N;z) =min [E [n]+2r4 [fdrn,-d(r) =N,~d] ] , (5)

where E[n] is the usual density functional and A;; is a
Lagrange multiplier. Upon carrying out the minimization
using the usual procedure, there is an additional term in
the Kohn-Sham equations (a local impuritylike potential)
which enforces the local constraint:

(T+ VexttVu+ ch+xidﬁid)¢nk = EnkPnk - 6)

Here the usual terms enter: the kinetic energy, external
potential (interaction with the ion cores), the average
electrostatic potential (Hartree), and the density-func-
tional exchange-correlation potential. The additional
term arises from the constraint and acts to change the
value of niy(r). In principle, A;; is varied to satisfy the
constraint. In practice, for each A,; a particular N;; re-
sults and the energy surface E (IV;;) is obtained.

This then is a variational procedure for calculating the
energy associated with local charge fluctuations. As such,
it produces the optimaly screened energy. Also, because it
is variational, this procedure yields an energy surface
which is quadratic in Nig — N to lowest order where N
is the ground-state value (i.e., no constraints).

The procedure described is easily generalized to the
case of interest here where both O p charge NV, and Cu d
charge N, are involved. Because we use a one-to-one
mapping of the constraint N;,; and the Lagrange multi-
plier A;; (assuming that the ground state is stable in the
regime of charge fluctuations considered), it is simpler to
think of the A;; as a perturbation leading to a particular
charge response V;y. In order to map the energy surface
adequately, perturbations are considered in the Cu 4 and
O p channels both separately and together. Because of
the strong covalent overlap, perturbation of a particular
central site will lead to charge response in the Cu d and O
p channels on neighboring sites as well. Therefore, strictly
speaking, the present approach maps out the energy as a
functional of charge profiles in these channels. This is
treated by assuming that the energy surface near the
ground-state configuration can be expanded in terms of
the integrated local charge fluctuations on the central site
and those nearby, which was illustrated for the Cu-
centered 2x2 supercell case in Eq. (2). In this way, the
energy surface as a function of many individual charge
fluctuations is described compactly in terms of a few pa-
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rameters. We refer to this generically as E(N,,Ny).
Equivalently, we also considered O-centered supercells
which lead to expressions similar to Eq. (2).

Given the energy surface E(NV,,N;), the results must
be mapped back onto the Hubbard model. In the decou-
pled impurity limit (z=0), this is trivial. The Coulomb
parameters are the quadratic terms U in the energy sur-
face expanded with respect to Ny —NJ and Ny —N;?. The
present case is in the opposite limit, namely of strong co-
valent overlap. Because the hopping term is important,
the quadratic terms in the energy surface include a sub-
stantial kinetic energy contribution. This is a non-
negligible effect and is independent of the use of super-
cells. In order to properly obtain the Hubbard parame-
ters, the energy surface calculated in the constrained-
density-functional approach must be compared directly
with solutions of the Hubbard model. This is done using a
self-consistent mean-field (Hartree-Fock) solution of the
Hubbard model which maintains the analogy to the
density-functional calculations. Details of the necessary
tight-binding calculations are given below in Sec. III C.

1. APPLICATION TO La;CuO4

A. LDA calculations

The LDA calculations are carried out using the linear-
ized muffin-tin-orbital (LMTO) approach with the atomic
spheres approximation (ASA).?” The basic unit cell is
body-centered tetragonal with one formula unit per cell.
In addition to spheres around each atomic site, two empty
spheres are introduced. The positions and radii of the
spheres used are indicated in Table II. Two energy panels
are considered. In the lower panel, the La 5s and 5p
bands as well as the O 2p bands are treated. The balance
of the valence states are treated in the upper panel. The
remaining core charge is frozen. The angular momentum
components retained in the basis in each sphere are shown
in Table II. The Brillouin zone is sampled by 12 special k
points in two layers in the irreducible 1¢ portion of the
zone. Our results are essentially unchanged by use of
more points or by use of a linear tetrahedron sampling
technique. Densities of states presented below were calcu-
lated using the latter technique. The correlation data
used in the LDA is taken from Ref. 30.

The resulting self-consistent band structure is given in
Fig. 3 with the corresponding density of states in Fig. 4.
Comparison of these results to full potential linear
augmented-plane-wave (LAPW) calculations'>!” shows
that the important Cu-O bands are well represented. The
position of the Fermi level relative to the small van Hove
singularity just below is correct. This also agrees with
earlier LMTO calculations.?' The three notable devia-
tions from the LAPW calculations are (i) the quantita-
tively incorrect dispersion and placement of the empty La
d and f states; (ii) the weight in the occupied density of
states is distributed more asymmetrically; (iii) the Cu-O
bands are about 1 eV wider. These differences are not ex-
pected to have significant impact on the present calcula-
tion of the Coulomb-interaction parameters.

TABLE II. Atomic positions, sphere radii (S) and basis
functions used for the present LMTO-ASA calculation for
La,CuOs4. O(1) denotes the planar oxygen, O(2) the apical oxy-
gen, and E an empty sphere. Positions are in units of a/2 with
a=3.79 A and c¢/a =3.485 in the body-centered-tetragonal cell.

Position S Basis

x y z R) panel 1  panel 2

Cu 0.0 00 0.0 1.233 spd spd

o) 1.0 0.0 0.0 1.115 sp spd
0.0 1.0 0.0

0@ 00 00 —1269 1115 sp spd-
0.0 0.0 1.269

La 1.0 1.0 —0.962 1.820 spd spdf
1.0 1.0 0.962

E 10 00 17425 1.162 sp spd
0.0 1.0 1.7425

In order to spatially isolate to the extent possible the
perturbations used to induce charge fluctuations, super-
cells are employed. Several cases involving one-, two-, or
four-formula units per unit cell were considered, both al-
lowing a single Cu atom or a single planar O atom to be
crystallographically inequivalent from the others. The
cases considered were 1X1, V2 x \/5, and 2x2, all in the
basal plane. Interplanar coupling is not important. In the
largest unit cell, the Cu charge fluctuations are separated
by about 7.6 A. The final results are given for a Cu-
centered four-formula unit cell which is 2X2 in the basal
plane. The symmetry is indicated by Fig. 2 showing three
inequivalent Cu sites and two inequivalent O sites in the
plane. Screening responses from all atoms in the full unit
cell are allowed. The lattice is a special case of the triclin-
ic type with a vertical mirror plane along the diagonal.
The parameters of the calculation carry straight over from

ENERGY (eV)

°ra U ZAT XS z

FIG. 3. The LDA energy band structure from the present

LMTO-ASA calculation plotted along symmetry lines following
Ref. 10. The Fermi energy is the 0 of energy.
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FIG. 4. The LDA density of states from the present LMTO-
ASA calculation. Gaussian broadening of 0.1-eV full width at
half maximum is included.

the 1x1 cell to the present case with a fourfold increase in
the basis set size. The irreducible quarter of the Brillouin
zone is sampled by 16 points that result from folding the
12 point set used in the 1x 1 body-centered-tetragonal cell
back to the present zone. This results in complete compa-
tibility with the calculations in the original unit cell and
properly preserves the original symmetry in the absence of
perturbations. By basing the final results on a single su-
percell geometry, numerical “noise” in the total energies
is kept to a minimum.

B. Calculation of the energy surface: LDA

The use of the LMTO-ASA approach for the total en-
ergy calculations essentially dictates a natural approxima-
tion for the projection operator in the constraints. The
projector is taken to be simply the angular momentum
projector P; inside the relevant atomic sphere and zero
outside. This corresponds to evaluating the relevant
charge channel as the angular momentum decomposition
of the charge in the atomic sphere. Thus, the Cu d
charge, for example, is constrained to have a particular
value in the Cu atomic sphere. A specific orbital shape is
not imposed and the different m orbitals in the d manifold
are not distinguished at this stage. The resulting con-
straint potential in the Kohn-Sham equations is simply a
constant for the d electrons inside the Cu atomic sphere
and zero otherwise. For the relatively localized Cu 3d or-
bitals, limiting the constraint to the atomic sphere is not
too severe an approximation. Most of the atomiclike wave
function is inside the sphere. However, the more extended
O 2p orbitals have significant weight beyond their spheres.
Part of the weight that falls in the O p channel in a
simplified tight-binding picture is actually represented in
the present basis by other angular momentum channels
centered on other sites. This complicates the counting of
charge in the p channel. Since the projector (and hence

the constraint) are confined to the atomic spheres, two is-
sues must be addressed: (i) does a perturbation that is in-
dependent of the quantum number m produce charge fluc-
tuations in channels other than the desired one, e.g.,
x2—y? for the I =2 case; (ii) proper account must be tak-
en of the charge that falls outside the atomic sphere.

The m decomposition of the resulting charge fluctua-
tions 8n can be checked. In the case of the Cu d charge,
almost 100% falls in the x >2—y 2 channel with a negligibly
small portion in the other channels. However, the O p
charge is nearly uniformly distributed among x, y (o and
n), and z components. For the O p channel, one has
therefore extra degrees of freedom. In general, one does
not expect the intraorbital Coulomb matrix element to
equal the interorbital one. However, this effect can be
easily estimated from atomic calculations. For O atoms,
the ratio Ujpter/Uintra is approximately 0.9. In forming the
expression in Eq. (2), this is taken into account by ex-
panding the &n, into intra- and interorbital components
for the on-site terms and introducing the atomic ratio.
Note that Ujnr, enters the Hubbard model Eq. (1).

Consistent treatment requires that all the relevant
charge be taken into account. The final results are being
mapped onto the simplified orthogonal tight-binding form
given in Eq. (1). By using simplified projectors in the
LMTO calculations, the issue of specific atomiclike or-
bitals has been avoided. Nonetheless, the intergrated
ground-state charge in the Cu 4 and especially the O p
channels should reproduce the tight-binding result. Of
course, Ny and N, calculated in the LMTO atomic
spheres fall short. (Actually, this is a general feature of
trying to parse up space and assign angular momentum
weights to the charge density.) To overcome this, the
LMTO-ASA results are scaled to reproduce the electron
count in the tight-binding model (mean field, fit to repro-
duce the LDA bands in Fig. 3). This is obtained by in-
tegrating the occupied portion of the square amplitude in
the relevant channel. Then it is assumed that charge fluc-
tuations scale with the total charge. The scale factors em-
ployed are 1.033 for N, and 1.313 for IV, with the choice
of atomic sphere radii given in Table II.

The present approach then proceeds with a series of
self-consistent LDA total energy calculations for various
patterns of imposed perturbations {A;}. For each of these,
the change in density in the Cu 4 and O p channels is eval-
uated as is the effective energy from Eq. (5) yielding
points on the energy surface approximated by Eq. (2).
The perturbations fall into four distinct classes required to
adequately sample the energy surface so that all four pa-
rameters in Eq. (2) may be determined. With reference
to the 2x2 unit cell and Fig. 2, these are (i) Cu(l) 4
alone; (ii) O(1) p alone (all four together); (ii) Cu(1) 4
and O(1) p together and with the same sign; (iv) O(1) p
and O(2) p together and with both relative signs. Pertur-
bation of the Cu(1) d channel alone, for example, does
lead to some small changes in the other channels. Howev-
er, this does not give adequate weight to the intersite
terms in Eq. (2) which forces the necessity of perturba-
tions in classes (iii) and (iv). In perturbing the O sites, we
have chosen to treat all four O(1) sites together. In this
way, all the calculations are done in the same unit cell
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with the same symmetry and Brillouin-zone sample which
minimizes numerical errors.

Typical values of the bare perturbation range up to 0.4
Ry. The on-site response varies up to about 0.3 electrons
with the neighboring sites showing a screening response
typically a factor of 4 to 8 smaller. As a general rule, the
Cu d perturbations lead to less neighboring O p response
than the opposite case. As an example, consider perturba-
tions in class (i), Cu d only. For A =0.4 Ry, the partial
density of states on the perturbed Cu atom is shown in
Fig. 5. The repulsive perturbation pushes Cu d weight up
to and past the Fermi level in comparison to the unper-
turbed case. The net change in Cu d charge is —0.370
electrons. This charge shows up in various channels. The
net changes in the central Cu s and p charges are 0.087
and 0.057 electrons, respectively, showing that due to hy-
bridization, a substantial amount of the screening of the
perturbation is on site (about 40%). The redistribution of
the partial density of states can be seen in Figs. 5(a) and
5(b). The next most prominent change is on the neigh-
boring Cu(2) atoms (of which there are two; Fig. 2)
where the change in d electron count is 0.047 per atom
and on the planar O(1) atoms (of which there are four)
where the change in p electron count is 0.020 per atom.
The balances of the changes are smaller and spread
throughout the other atomic spheres in various angular
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FIG. 5. The partial density of states on the central Cu atom
of the 22 unit cell in the s, p, and d channels [(a), (b), and (c),
respectively] plotted for the unperturbed case (dashed line, in-
tegrated values 0.405, 0.451, and 9.242 electrons) and for the
case of an A =0.4 Ry perturbation in the Cu d channel (solid
line, integrated values 0.492, 0.508, and 8.872 electrons).
Gaussian broadening of 0.1-eV full width at half maximum is
included.

momentum channels. When an isolated O atom is per-
turbed in the p channel, a rather different redistribution is
observed. For a similar on-site change in p charge
(—0.326 electrons from A =0.4 Ry), there is virtually no
on-site screening while the Cu d charge changes by about
0.022 electrons per atom and most of the rest of the
screening is in the La d and f channels.

This discussion illustrates the essential complication in-
troduced by the strong covalent overlap in the present sys-
tem. The local, on-site perturbations lead to a charge
response in the channels explicitly treated in the model
Hamiltonian Eq. (1) at least on neighboring sites and in
some cases further. Clearly, these extended charge re-
sponses are characteristic of the couplings and the partic-
ular atoms perturbed. It demonstrates the very weak me-
tallic screening exhibited by the present band structure
and the importance of local fields in the dielectric screen-
ing (microscopic variation in the screening response
through the unit cell). One important question is whether
the perturbations are sufficiently isolated in the 2 X2 unit
cell. We have found that the patterns of screening charge
around the imposed charge fluctuation from the 2x2 unit
cell superpose to yield the separately calculated V2x2
case rather closely. This suggests that the charge fluctua-
tions are sufficiently separated to allow full screening.

The second point this emphasizes is the importance of
using an extended form for fitting the energy surface as
shown in Eq. (2). This is illustrated in the following
simplified example. Since the O p response to the Cu d
perturbations is rather small, it is reasonable to examine
the Cu d system in isolation as a first approximation.
Even so, there is an extended pattern of d-charge response
as described above. To account for this, an effective single
d charge can be defined by

(8n4.em) 2 =(8n41)2+2(8n42) 2+ (6n43) %, (@)

and given the sign of ény,. The calculated effective ener-
gy is then fitted to the first term in Eq. (2). The resulting
fit is shown in Fig. 6, where a U; =13.5 eV results after
renormalization of the d charge by the factor of 1.033 not-
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FIG. 6. The effective change in total energy as a function of
effective change in Cu d charge calculated in the 2x2 cell using
the LDA. The solid line is a quadratic fit with no linear term
and rms error 0.02 eV.
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ed above. (Figure 6 does not include the renormaliza-
tion.) The quality of the fit is apparent. The slight asym-
metry reflects the intersite coupling to the oxygen p chan-
nels which was neglected. Note that Uy still contains ki-
netic energy contributions.

"~ The full data set is fitted by Eq. (2) using a linear
least-squares procedure The result of the fit is U,=13.4
eV, Up=12.6 eV, U,,d=-01 -0.2 eV, and Up,,==07 eV.
The rms fitting error is about 0.02-0.05 eV for total ener-
gy changes ranging up to about 4 eV depending on the de-
tails of the data set used in the final fit. The results of the
fit are insensitive to small changes in the data base used.
The inclusion of U, in the fit is important for the final
value of U, because neglect of it would lead to an approxi-
mate increase in the apparent value of U, by 2U,,". In the
next section, we describe the mapping onto a mean-field
solution of the Hubbard Hamiltonian. This procedure
then allows us to separate in U the Coulomb-interaction
parameters U and the kinetic energy contribution.

C. Calculation of the energy surface:
Mean-field Hubbard model

We begin with the three-band Hubbard model given in
Eq. (1) and apply the usual mean-field approximation
(Hartree-Fock) to the interaction terms. This generates
mean-field diagonal energies

eMF =g44+(ny - )Us+4Upy Z (Mpe?) (8a)
entF=g,+(n, - a)U,,+2U,,d2‘,<nd,>+4U,,,,Z(n,,,,

(8b)

for the unperturbed, translationally invariant case. For
the perturbed case (e.g., 2x2), inequivalent sites are
treated separately. The off-diagonal hopping terms 7,4
and t,, are also renormalized by Uys and Uy, a small
effect which we neglect in the present analysis. A self-
consistent solution of this Hartree-Fock model, for suf-
ficiently large interactions, yields an antiferromagnetic in-
sulator. As a further approximation, we adopt a spinless
formulation (n, =nz=n) which is compatible with the
paramagnetic solution found in LDA. This is essentially a
Hartree approximation to the Hubbard model which does
not yield the antiferromagnetic ground state. The Har-
tree approximation modifies the relation between ¢ and
eMF given above accordingly. We use this for purposes of
self-consistent solutions of Eq. (1) in mean field. Howev-
er, when the bare on-site energies are derived from the
band structure ¢MF values as discussed in the next section,
the Hartree-Fock mean-field solution Eqgs. (8) is used to-
gether with the mean-field occupation numbers and the
Coulomb-interaction parameters.

Now a 12x12 (four unit cells) tight-binding Hamil-
tonian matrix can be written down. A self-consistent solu-
tion is obtained iteratively by integrating in k space the
(hole) states up to the Fermi level, evaluating the indivi-
dual occupation numbers, and reevaluating the matrix ele-
ments. In order to impose charge fluctuations away from
the ground state, additional potential terms {A;} are added
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to the corresponding diagonal terms in analogy to the
constrained-density-functional calculations. The total en-
ergy is evaluated by summing over the eigenstates and
correcting for the overcounting terms. The energy surface
EH(N,,Ng) _ 1s fitted according to Eq. (2) and effective
curvatures U}/ ; are obtained. These depend implicitly on
all the model parameters g;; and Uj;.

D. Calculated parameters for Hubbard model Hamiltonian

Before the final Coulomb-interaction parameters can be
extracted, several issues have to be cons1dercd First con-
sider the kinetic energy contnbutlon to U,, To illustrate
this, we plot the quantities U,, as a function of the hop-
ping integral t,4 (z5, =0) in Fig. 7. The chosen parame-
ters are Uy =10.5 eV, U, =3.5¢eV, Ups =1.2 eV, U,, =0.0
eV, and £=3.5 eV. It becomes evident that the effective
curvature U,7 is strongly hybridization dependent. For a
covalent system such as La,CuOy (¢, = 1.3 eV), the ki-
netic energy contribution can dominate over the Coulomb
contribution. This is particularly the case for the O p
channel.

Second, the results of the mapping depend on the
chosen on-site energy difference, &. Flgure 8 shows that a
given set of effective curvatures Ujf can be obtained by
different combinations of U;; and &. While Uy, Upa, and
U, are relatively insensitive to &, U, and ¢ are strongly in-
terrelated. For instance, for a prechosen £=2.0 eV
(eME=0.0 eV), the mapping yields U, =8 eV while for
e=40eV (MF=16eV), U,=3eV. This dependence of
the extracted U, on the chonce of & again reflects the
strong influence of hybridization.

o

ENERGY (eV)

(o) I L
1 2
tpd (eV)

FIG. 7. The dependence of the effective parameters (curva-
ture of the energy surface) on the Cu-O hopping parameter
(tpa) as calculated from the self-consistent mean-field solution
of the Hubbard model Eq. (1) with the values e=3.5 €V, #,, =0,
Us=10.5eV,U,=3.5eV, Uy =1.2¢V, and Uy, =0.



9036 HYBERTSEN, SCHLUTER, AND CHRISTENSEN 39

12 _
Udq
10} Z
S 8t Up 2
=
% ef
o
=
w 4r
2} u
pd
0 Uoo 55 y Z 2w
T T T
2 3 4 €
ENERGY (eV)

FIG. 8. Final ranges of calculated Coulomb-interaction pa-
rameters as a function of the assumed value of the bare on-site
energy difference e=¢, —e4 (for holes). The MF is also shown
on a secondary scale.

Finally, the one-electron parameters must be deter-
mined. A consistent set of &, ¢,4, and ¢,, are required.
The crucial parameter that must be established is ¢, as the
other two basically follow from it. As mentioned before,
e=g,— ¢4 and eM" =MF — eMF are the bare and screened
on-site (hole) energy differences between the O po(x,y)
and the Cu d(x2—y?) orbitals. One approach adopted
here (following Emery?) is to find the screened value from
an appropriate tight-binding fit to self-consistent ab initio
band structure calculations. This was first done by
Mattheiss'? using a minimal orbital set d(x?>—y?2) and
po(x,y). He pointed out that ¢MF was small and chose
eMF =0 for simplicity. It is clear, however, that an equally
“good” fit can be obtained for the upper Cu-O band (e.g.,
in Fig. 3) with éMF ranging from 0 to 2.5 eV by appropri-
ately changing t,4s and t,,. In the limited space used in
Eq. (1), these parameters cannot be precisely fixed
without appealing to quite detailed features of the calcu-
lated LDA bands which is not justified given the large
central assumption of identifying mean-field solutions of
Eq. (1) with the LDA bands in the first place. It is clear
that the lower-lying bonding partner of the Cu-O band is
significantly coupled to other channels outside the restrict-
ed space in Eq. (1). More complete tight-binding fits have
been done3? ™34 to the calculated LDA energy bands using
either orthogonal or nonorthogonal basis sets. In either
case, values of eMF vary from 1.1 to 2.1 eV. One caution
regarding this approach is the following. One should now
reduce this fit back to the small space spanning Eq. (1).
In so doing, the parameters in that space are somewhat re-
normalized, a presumably small effect not accounted for
here. In any event, it is clear from this discussion that eMF
is relatively small, much smaller than for the early
transition-metal oxides as has been repeatedly pointed
out.®> The final choice of ¢ is dictated by a broader com-
parison to available data, as discussed below.

As noted in the Introduction, our identification of the
LDA bands with the mean-field solution of the Hubbard
model Eq. (1) differs from the decoupling approach in
Refs. 11 and 25. The latter is modeled after the atomic-
like limit where the orbital for the highly correlated elec-
trons is weakly coupled to a metallic continuum (Ander-
son impurity model). Then the analog of the on-site ener-

gy difference ¢ is the position of the local level relative to
the Fermi level. In the limit of no coupling, this is ap-
propriately found from total energy differences between
configurations with NV and N — 1 electrons on the local lev-
el, i.e., a discrete removal energy which may also be ap-
proximated using a Slater transition state. We point out
two important differences between the present three-band
Hubbard model for the Cu-O layers in La;CuO4 and the
model just described. First, the hopping (coupling) is
large. Second, the band structure (Fig. 3) shows that the
relevant Cu-O bands which are modeled by Eq. (1) and
are subject to strong correlation also form an important
part of the “continuum” in this system. This is in contrast
to the flat localized band weakly coupled to a nearly in-
dependent and uncorrelated continuum. We believe that
the present situation requires an alternative treatment.

We provide here a brief argument in support of identi-
fying the LDA bands with a mean-field solution of the
Hubbard model. This makes clear where the approxima-
tion enters in our approach. An orthogonal tight-binding
fit to the LDA bands yields in addition to the one-electron
parameters, the number of Cu d and O p holes on respec-
tive sites. These parametrize the density for a density-
functional treatment (DFT) of the Hubbard model Eq.
(1). In such a model, the hopping parameters represent
the kinetic energy and all the interaction terms are
lumped into a single effective potential consisting of the
bare external potential and the Hartree plus exchange-
correlation potentials. Here this is parametrized by a
screened on-site energy difference, ePFT=g+¢cH+ ¢
The variation of the density is achieved solely by varying
this £PFT. Then it is clear that the sPFT can be, in princi-
ple, exactly obtained by reproducing the density (hole
count) in the full microscopic calculation. The problem
lies in unscreening T to obtain the bare &. The Hartree
potential contribution (&) is trivial, but the density-
functional exchange-correlation (xc) potential part (£*)
is, in general, unknown. Now the nature of our approxi-
mation is clear. We replace the density-functional ex-
change-correlation potential by the exchange potential
calculated from a Hartree-Fock procedure which yields
Egs. (8) where we identify PFT with eéMF (evaluated for
paramagnetic spin occupations, following Emery?). This
procedure may overestimate the exchange-correlation
contribution to the screening of ¢ so that perhaps the actu-
al value should be shifted towards the purely Hartree re-
sult (which would increase & somewhat).

The present approach differs from that of Refs. 11 and
25 in the localized limit discussed above. The foregoing
discussion shows that this is due to differing approxima-
tions for the exchange-correlation part of the screened
ePFT It is important to note that these different approxi-
mations make a relatively small difference in the present
case. Quantitatively, the procedure of Refs. 11 and 25
gives a value for the bare ¢ which is about 1 eV smaller
than that which we find here.

IV. DISCUSSION

Let us return first to the issue of applicability of the
LDA to the calculation of Coulomb-interaction parame-
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ters. We have noted that the LDA clearly fails to describe
correctly the ground state of La,CuO,. However, we have
argued that this failure occurs on a characteristic energy
scale of magnetic interactions which is 1 to 2 orders of
magnitude smaller than the characteristic Coulomb ener-
gies U. There are many analogous cases, the simplest of
which are free-atom Coulomb energies. These can be
measured as differences between ionization energies and
affinities. The calculations can be done analogously to the
present case by varying the occupation of the relevant
atomic orbital. For Cu??, the free ion U derived from
E(d'")+E(d®) —2E(d®) is calculated to be 17.1 eV as
compared to the experimental value of 16.5 eV. For Cu™,
the corresponding values are 13.8 and 12.6 eV. These
Coulombic energies are well described by our method in
contrast to the inability of the LDA to correctly describe
the exact ion-multiplet ground states. Applications of the
LDA to Coulomb parameters in impurity cases'* as well
as other oxides was also mentioned. '°

We now turn to the discussion of the individual parame-
ters as they are listed in Table I. In hole notation,
Weber '*32 proposes the values t,;=1.4 €V, ,,=0.5 eV,
and eMF=2.1 eV using an nonorthogonal orbital set in-
cluding all the O p, Cu d, and La d orbitals, fit to the
LAPW band structure of Mattheiss.'> The crystal field
places the planar oxygen px orbitals lower than the po or-
bitals in Eq. (1) by 1.6 eV. An orthogonal fit (to LAPW
bands) by Park etal.3* yields t,s=1.4 €V, t,,=0.6 eV,
and eéMF=12 eV, in quite reasonable agreement with
Weber. However, this fit places the planar O px orbitals
only about 0.4 eV lower than the po orbitals. Another or-
thogonal fit by Papaconstantopoulos, Deweert, and Pick-
ett>’ to LAPW bands gives #,s =1.2 €V, #,, =0.1 eV, and
gMF=1.7 eV. McMahan, Martin, and Satpathy? quote
tpa=1.6 €V, 1,,=0.65 eV, and eMF=1.2 eV obtained by
fitting to their LMTO band structure through the in-
tegrated coupling constants they establish in their impuri-
ty Anderson model analysis. Similarly, Zaanen etal.'!
find eMF=0-1 eV. Over all, the hopping parameters are
in rough agreement, but the degree of crystal-field split-
ting allowed as well as the quantitative results for the po-
sition of the oxygen pr orbitals vary considerably.

We propose the values given in Table I for the one-
electron parameters, but caution that mutually compen-
sating variations of the one-electron parameters are possi-
ble. The values given in Table I are based on the choice of
£=3.6 eV (¢MF=1.3 eV). This represents a compromise
between a value of € which gives U, in the experimentally
suggested range (discussed below), and a value of ¢MF
which is compatible with the more complete tight-binding
fits just described. Then, tps and t,, follow from a fit to
the upper Cu-O band. The resulting 7, is larger than that
found by Weber, reflecting the broader Cu-O band in Fig.
3 as compared to the LAPW result.'>!” More refined fits
to the LDA bands could be possible by including further
consideration of the wave-function character or the Fermi
surface topology. As noted below, the calculation of the
spin-superexchange energy J depends rather critically on
values of 1,4, 15y, and ¢, as stressed by Stechel and Jen-
nison.” Thus, J could also be used as a constraint on the
choice of one-electron parameters.

The calculated Coulomb parameters are also summa-
rized in Table I. Our value of U;=10.5 eV is slightly
larger than the ones calculated by McMahan, Martin, and
Satpathy?® (8.5 eV) and by Chen et al.?® (9 eV). Calcu-
lations cited by Zaanen et al. '! suggest U; =8 eV. The U
values are reduced from the ionic (e.g., Cu?") value of
16.5 eV due to local dielectric screening. Note that in
these other calculations'!+?>2¢ the coupling of the Cu d or-
bital to the O p orbital has been dropped isolating the Cu
orbital and allowing the O p states to fully participate in
the screening. This probably leads to the smaller esti-
mates for Uy in that work. We note that the O p channel
is treated dynamically here in a three-band Hubbard
model so it is not appropriate to have that extra O p
screening renormalize the U,;. Analyses of experiments
have also suggested a large Cu Uy. The Uy is inferred
from the valence-band satellite seen in resonant-valence-
band photoemission which is attributed to a d® final state.
The value of 6.5 eV is deduced from a simplified analysis
by Shen et al. *® Also, comparison of core-valence Auger
with core and valence x-ray photoelectron spectroscopy
(XPS) data allows one to extract the extra energy Uy as-
sociated with the localization of two holes on the same Cu
site. These data®’ suggest Uy in the range 5-7 eV. A
simplified calculation of the intra d-shell shake-up pro-
cess3® suggests that the observed position of the satellite is
consistent with Uy =5 eV.

The value of U, =4 eV based on 6=3.6 €V is in reason-
able agreement with the results of McMahan, Martin,
and Satpathy?® (4-7 eV) but differs significantly from the
14 eV found by Chen et al. 2 However, the latter is ques-
tionable because it is based on incorrectly assumed ionic
on-site energies as pointed out by McMahan, Martin, and
Satpathy.?® The possibility of finding a sizable U, associ-
ated with oxygen in an ionic material has been questioned
on the basis of the small U values (<1 eV) for free O~
ions. While screening in the solid would indeed reduce
this small value further, Madelung-type localization will
dramatically increase U. In an ionic solid, the range of
02~ or O ~ wave functions is not given by the free ion ra-
dius. The constraints imposed by the Madelung-type po-
tentials and orthogonality requirements significantly con-
tract the wave functions which increases U accordingly.
In fact, U, values of order 5 eV, derived from spectrosco-
py, are typical for oxide materials. *

Relevant to the value of U,, observation of a direct XPS
satellite is reported*® which resonants with the O 2s ab-
sorption threshold and suggests a value of 3-5 eV. The
XPS-Auger comparison®’ yields a value of U,=~35 eV.
According to our calculations, this value is possible if
e=3-4 eV or eMF=0.8~1.5 eV. Since ¢ is not unambi-
guously determined from the fitting procedure to the LDA
bands, we have used this experimental value of U, as in-
put to our final choice of £in Table I, as noted above.

The intersite Coulomb energy U,y is calculated by us to
be 1.2 eV, in good agreement with the value of = 0.6 eV
quoted by McMahan, Martin, and Satpathy.?> Chen
etal.?® arrive at a higher value of U,y =1.6 eV, but this
may be unreliable given the unphysical U, found in their
calculation. A value of order 1 eV for U,,; seems rather
reasonable to us and is compatible with scaling arguments



9038

as presented by Stechel and Jennison.” Experimentally, a
satellite in the Auger spectrum was assigned by Ramak-
er*! to the charge-transfer excitation, yielding a value of
Upa =2 eV. We have also included in our analysis an O-
O intersite Coulomb energy U,,. Within error bars, this
value was negligibly small.

We turn now to the discussion of various general impli-
cations of our results for the electronic parameters of
La,CuOy4. A satisfactory solution of the multiband Hub-
bard Hamiltonian Eq. (1) has not been possible to date.
Several simplifying approaches have been used. One may
neglect the hopping parameters t,, and t,,, at which point
the solutions for the disconnected set of atoms becomes
trivial. Although La;CuOy is in the opposite limit of large
hybridization, the ¢ =0 approach yields some useful infor-
mation in the form of “band centers.” In this limit, the
ground state of La,CuQy4 contains one hole per Cu atom,
i.e., the configurations are d°p® (E"=0) as follows from
the positive & (for holes). The low-lying (charge) excita-
tion is dlop5 at EN=¢+ Upa, for a hole transferred to a
neighboring ligand. If the hole is transferred to a distant
ligand site, then the energy is EV =g+ 2Upq. In a photo-
emission experiment, an extra hole is created and the en-
ergies of the various (NV+1) hole states are d’p> at
ENtl =g, +2U,4, d®® at ENY'=¢,+U,;, d'%p°p° at
ENTV=2¢,—¢;4+2U,;, and d'%p* at ENFl'=2¢,—¢,
+U,+2U,;. The lowest energy charge excitation de-
creases from e+ U,y in the insulator to ¢ near one oxygen
hole or down to £ —3U,, near three oxygen holes. For the
removal of a hole (inverse photoemission), the energy cost
is just EN"l=—¢, Combined with the En+;
configurations, the possible charge-transfer excitation en-
ergies are recovered, depending both on proximity to oxy-
gen holes as well as whether the charge transfer is local
(excitonic) or extended.

These simple relations can be used to roughly compare
the value adopted here for ¢ together with the Coulomb
parameters to experiments which probe the charge-
transfer energy. The simplest case, in principle, is the
combined photoemission/inverse photoemission spectrum.
The data in Ref. 37 have been interpreted to imply a
charge-transfer energy (separated) of 1-2 eV, the separa-
tion between the edges in the spectrum. If one adopts the
t =0 limit above, the charge-transfer energy would be just
£+2U,q4, taken between “band centers.” In this interpre-
tation, one compares to the separation in the peak posi-
tions between the spectra, e.g., about 6-7 eV. From our
value of Uy, one extracts e=4 eV. Recognizing that the
main photoemission peak includes hybridization with the
Cu d electrons, this may be adjusted somewhat to lower ¢
into the 3-4 eV range. A summary comparison of the
present calculated parameters for the Hubbard model to
the experimental data is given in Fig. 9. Just as in Ref.
37, photoemission data*’ is combined with inverse photo-
emission data.*? The predictions of the =0 solution to
the Hubbard model are also indicated together with the
interpretation of each peak. On the photoemission side,
the main feature B is emission out of the ligand band
(p®— p?®), feature C is a satellite that has been estab-
lished to be O derived involving two holes on an O site (a
feature sometimes claimed to be surface sensitive),
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FIG. 9. The photoemission data of Thiry et al. (Ref. 40) and
inverse photoemission data (BIS) of Royer etal. (Ref. 42) are
combined on the same scale. For comparison, the “band center”
predictions of the Hubbard model with ¢ =0 using the present
calculated parameters (Table I) are shown.

feature D is a Cu-derived satellite involving two holes on a
Cu site and features E and E' are Ba derived and of no in-
terest here. The low-energy bremsstrahlung isochromat
spectroscopy (BIS) peak is interpreted as adding an elec-
tron to a Cu site (d°— d'°). The energies are assigned in
the ¢ =0 limit as described above yielding the relative po-
sitions of these band centers. (The absolute position is ad-
justed.) As can be seen, the charge-transfer gap, the
difference between the p®— p> photoemission peak and
the d®— d'® BIS peak, agrees very well with our value
for e+Upqs. The positions of the satellites is also in good
agreement with the calculated values of U, and Uy, re-
spectively. The =0 analysis is clearly oversimplified.
Nonetheless, the agreement seen in Fig. 9 lends support to
our calculated parameters given in Table I. Figure 9 also
illustrates that La,CuQ,4 is a charge-transfer insulator,
but weakly so because the large hopping integrals broaden
the bands significantly. As noted above, the separation
between the band edges is only 1-2 V.

The optical absorption**3 and reflectivity®’ experi-
ments show structure near 2 eV and a strong edge near 4
eV. With this value of ¢, the strong rise in absorption
above 4 eV would be due to charge-transfer excitations.
However, the latter may also be due to transitions involv-
ing cation states, e.g., on the La or Ba sites.*> The
charge-transfer interpretation has been adopted by Mila?’
and by Geserichs etal. ** This then leaves the lower-
intensity structures near 2 eV a bit open. Geserichs et al.
identify these with intra-atomic Cu d transitions. Alter-
natively, these may be excitonic charge-transfer transi-
tions (lowered by U,y in this simple 7 =0 picture). Clear-
ly, hybridization plays an important role in the interpreta-
tion of these experiments, but the value of e=3 eV ap-
pears to be consistent.

The question of the deposition of extra holes due to dop-
ing may also be addressed initially in the ¢t =0 limit. Be-
cause of the large size of U; as compared to ¢, the holes
will be of predominantly oxygen character. Further
refinement would amount to the inspection of the crystal-
field splitting obtained from the band-structure fits.

-
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When one does so, it is evident that the px configuration
of oxygen p(x,y) orbitals is favored in keeping with the
results of more complete calculations by Guo, Langlois,
and Goddard.?' This is, however, not terribly meaningful
at this level since the splittings are small or comparable to
the kinetic energy (hopping energies). More detailed cal-
culations are required to address the precise orbital occu-
pied by the extra holes.

More physical insight can be gained from considering
small finite clusters (with open or periodic boundary con-
ditions). Many such studies have been undertaken. A
rather extensive discussion is given by Stechel and Jen-
nison.” In particular, the Cu-Cu super-exchange J can be
computed in this way. We stress that because of the large
values of the hopping matrix elements t,4 and ¢, the
fourth-order (in ¢) formulas frequently given in the litera-
ture are inadequate. Direct calculations are required.
Furthermore, because of the strong hybridization, results
converge slowly with cluster size. Calculations on three
and nine atom clusters’ yield J values in the 100-meV
range which is compatible with the two-magnon light
scattering experiments.*> These results depend rather
sensitively on the chosen parameters, notably ¢,4, which
was taken as 1.1 eV in Ref. 7. Subsequently, cluster cal-
culations have been done*® using the parameters from
Table I. These yield J =130 10 meV in excellent agree-
ment with experiment.*> This result confirms the present
calculated parameters and in particular, the choice of .
Further cluster calculations*® show that parameters based
on a smaller value of ¢, e.g., of order 2 eV, show a slightly
reduced value of J. However, parameters based on larger
values of ¢ yield values of J that are much too small.

The quantum chemical calculations by Guo, Langlois,
and Goddard?! for clusters containing just two Cu atoms
gave a superexchange energy about a factor of 3 to 4
smaller than experiment. Furthermore, they concluded
that the lowest-energy state with an extra hole placed the
hole in the pr orbitals on the oxygen. Subsequent calcula-
tions by Stechel and Jennison*’ for a Hubbard Hamiltoni-
an, extended beyond Eq. (1) to include the pr orbitals,
showed that the pr orbital is preferred by the extra hole
only in the smallest cluster investigated. When clusters
with a more realistic number of atoms are considered, the
hole has it weight in the po orbitals on the oxygen atoms,
provided the on-site crystal-field splitting between the o
and & orbitals remains smaller than about 1.8 eV. We
note that the pr orbitals may still play an important. role
in excitation processes.

Cluster calculations have also been used to further in-
vestigate the nature of the quasiparticles introduced by
doping. Zhang and Rice? first suggested the formation of
a local singlet between the localized hole on the Cu and
the dopant hole spread over the four nearest oxygen
neighbors in the po orbitals. Later, McMahan, Martin,
and Satpathy?’ and Eskes and Sawatzky*® confirmed the
singlet as the lowest-energy quasiparticle state. The con-
trary conclusion of Guo, Langlois, and Goddard?! con-
nected with the occupation of the pr orbitals is probably
due to the restricted cluster size and severe underesti-
mates of the superexchange energy. A somewhat different
picture is proposed by Stechel and Jennison who introduce

a spin hybrid with varying degree of spin compensation.’
It is worth noting that their picture depends crucially on
the presence of direct oxygen-oxygen hopping ¢,,. Other
than considering small clusters, the Hubbard Hamiltonian
can be approximated as an Anderson impurity Hamiltoni-
an which amounts to keeping Uy but neglecting U, and
Upa as well as any indirect Cu-Cu interactions. This has
been done by McMahan, Martin, and Satpathy?® and by
Eskes and Sawatzky*® to explain photoemission spectra
and to investigate the stability of the singlet nature of the
quasiparticles as a function of ¢ and U;. These results
also appear compatible with the parameters given here.
We conclude this section with a brief discussion of the
implications of our calculated electronic parameters on a
variety of pairing models that have been proposed to ac-
count for high-temperature superconductivity in the Cu-
oxide systems. Emery, in his early pairing model due to
the magnetic fluctuations,” was the first to invoke (hole)
carriers localized on the oxygen atoms. This has subse-
quently been verified***>*® and agrees with our findings.
In his picture the pairing is mediated by a fourth-order
double-exchange mechanism resulting in an interaction
parameter of order 1 eV when evaluated with our parame-
ters according to his Eq. (4). This is of the right order of
magnitude to arrive at high transition temperature (7)
values when used in a BCS-type theory. Direct oxygen-
oxygen hopping (#,,) was not included. A similar BCS-
type pairing model between “spin-hybrid” quasiparticles
has been proposed by Stechel and Jennison’ based on a
parameter set in general agreement with our calculations.
Pairing interactions of holes localized in small clusters
have been studied numerically by various authors. Ogata
and Shiba*° consider the extended Hubbard model of Eq.
(1) assuming Uy > ¢ and 1, Up,Upg =0. They also as-
sume ¢ large which reduces Cu-O charge fluctuations.
Their chosen parameters allow them to transform Eq. (1)
into a new effective Hamiltonian (plus correction terms).
Using this Hamiltonian, they study clusters with sizes up
to 30 atoms. By direct diagonalization it was found that
each dopant hole indeed introduced local spin distortions
in the underlying antiferromagnetic background. Pairing
of two holes can then occur so as to minimize the extent of
this spin distortion. An attractive interaction between
holes was found for &< 3.5ty and U, large, within the
range of parameters in Table I. However, note that 7,,
and U,y were set to zero. This is in contrast to investiga-
tions by Hirsch et al. ® who considered clusters of up to 16
atoms with the full original Hamiltonian of Eq. (1). From
direct diagonalization, they found that the spin-mediated
pairing phase, suggested by Ogata and Shiba*° is sensitive
to finite values of ¢,,, Up, and U{,d. Similar conclusions
were reached by Balseiro eral.’' and by Schiittler and
Fedro.’? Based on an earlier proposal by Varma et al. L4
Hirsch ez al. ® suggest a charge-driven pairing phase which
requires a small ¢ for access to d '°p> configurations and a
relatively large Upq. In particular, for e=1.5 eV, t,, =0,
U;=10 eV, and U, =3 eV, Hirsch et al.® find that Upa
has to be of order 3-4 eV to stablize a pair of holes in
comparison to two separated holes. A smaller value of U,
would be favorable, but according to our calculations, this
should be coupled to a larger ¢ which would again be un-
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favorable. Furthermore, Hirsch et al. show that a finite
value of ¢,, is detrimental to pairing of dopant holes. It
seems that all small cluster simulations which have explic-
itly claimed either spin-driven or charge-driven pairing re-
quire electronic parameters which lie outside the inter-
mediate regime calculated here. There is, however, the
possibility that these cluster calculations are adversely
affected by finite-size effects. On the other hand, possibly
a mechanism dependent on both the charge and spin de-
grees of freedom can be realized within the range of ma-
terial parameters proposed in this paper Also, excitations
involving other orbital degrees of freedom may play an
important role. It should be kept in mind that all these
strong-coupling arguments only address the question of an
attractive interaction between holes. Superconductivity
does not automatically follow. The subtle interplay be-
tween the proposed attractive interactions and the kinetic
energy of the holes distinguishes the superconductive
phase from other charge or spin-ordered phases.

A different pairing mechanism, driven by intrasite Cu d
charge fluctuations has been proposed by Weber.?? In
this model, U, and ¢ are large and hole conduction occurs
only via the direct oxygen overlap #,,. The coupling to an
excitonic intrasite Cu d(x?—y?2)— d(z2—r?) excitation
is the mediating interaction in the pairing. Weber bases
his model on optical data in which he interprets the ob-
served structures** in the 0.5-2 eV range as due to in-
trasite Cu crystal-field transitions. He places the charge-
transfer excitations at higher energy. These values are
roughly consistent with the band-structure crystal-field
splittings and our choice of a large ¢. The latter would be
coupled with an intermediate to small U, in our parame-
ters. While the Cu d transitions set the energy scale, the
coupling between pairs arises from the difference AUy, in
intersite Coulomb energies between an oxygen hole and
either a d(x2—y?) or a d(3z%2—r?) hole. This difference
has been estimated to be of order 0.5 eV by Weber. This
is compatible with our calculations in general terms al-
though outside the restricted subspace considered here.
More analysis of the Weber model within the weak-
coupling BCS framework has been done by Jarrell, Krish-
namurthy, and Cox** who point out some crucial require-
ments in the interpretation of the low-energy optical data

on which the model hinges.

As a final note, there is the question of whether a one-
band Hubbard model is adequate to describe the extra
holes introduced in the doped Cu-O layers. Our parame-
ters bear on this question only in so far as such a one-band
model is derived from Eq. (1). Otherwise, the parameters
entering such a model may reflect a completely different
renormalization. Zhang and Rice? have argued in favor
of an effective one-band Hubbard model for the dopant-
derived holes starting from a version of the three-band
Hubbard model Eq. (1). Using our parameters, the sing-
let level associated with a local Cu d hole bound to an oxy-
gen p hole spread over four neighbors is split off by about
2 eV relative to the nonbonding p-hole combination. As
pointed out by Zhang and Rice, this is relatively large
compared to an effective hopping energy for the singlet
when direct oxygen-oxygen hopping is neglected. De-
pending on the sign of the ¢,,, the oxygen-oxygen hopping
may destroy the singlet formation.>? For the values fitted
to the band structure here, we find that the initial splitting
of the singlet from the nonbonding p-hole is enhanced, but
one must also take into account the itinerant character of
the oxygen hole introduced by direct oxygen-oxygen hop-
ping.

In conclusion, we have presented a complete set of elec-
tronic parameters for the extended Hubbard model Eq.
(1) for the description of the Cu-O planes in the Cu-oxide
materials. The results place La,CuQOy in the intermediate
range between the extreme spin-fluctuation regime and
the opposite extreme charge-fluctuation regime. This sev-
erly restricts the range of parameter space for theories of
quasiparticles, optical excitations, and possible pairing
mechanism based on the extended three-band Hubbard
model. It may be necessary to expand the subspace in the
model to achieve a viable representation of the important
physical processes in these materials.
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