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Eff'ect of the morphology of patterns on the scaling functions: OH'-critical quenches
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We present results of a numerical study of the Cahn-Hilliard model for phase separation for
off'-critical quenches in two dimensions. We have computed the scattering intensity, the pair
correlation function, and the cluster distribution function. We have found that these three quan-
tities can be described in terms of scaling with a time-dependent length and have compared the
relevant scaling functions with those obtained in the critical quenches. The time dependence of
the characteristic length of the domains is also studied.

In the "classical" theory of the kinetics of first-order
phase transitions, a distinction is made between two very
different mechanisms of evolution following a quench
from a very high temperature to a point within the misci-
bility gap. If the system is left in the metastable region of
the phase diagram (between the so-called spinodal line
and the coexistence curve) the systetn evolves by nu-
cleation and subsequent growth of the nuclei formed. Be-
tween the spinodal and the center of the phase diagram,
the system is unstable against long-wavelength instabili-
ties and evolves by spinodal decomposition. It is known,
however, that the transition from nucleation and growth
to spinodal decomposition and coarsening mechanism is
not as sharp as described in this theory. Even the meaning
of a spinodal curve has been questioned both theoretically
and experimentally. However, the interconnected struc-
ture, seen in the case of spinodal decomposition, has a
very different morphology from that appearing in the "nu-
cleation regime. " One of the most relevant questions in
the kinetics of first-order phase transitions is the effect of
the different morphologies on experimentally relevant
measuring probes, such as the scattering intensity. In
theoretical studies one finds that the time-independent
scaling functions, calculated from the structure factor, de-
pend on the concentration of one of the constituents, at
least in three dimensions and in the limit of small volume
fractions. The perturbative nature of these studies does
not allow an extension to large volume fractions. Also, no
such systematic studies are available in two dimensions.
Recently, the dynamics of critical quenches in two di-
mensions have been studied extensively by a variety of nu-
merical methods: Monte Carlo simulation of the Ising
model with Kawasaki dynamics, numerical integration of
Langevin equations with and without noise, ' and cell dy-
namics methods. ' These studies have provided reliable
data for the scaling functions. At this point, it seems
worthwhile to carry out a detailed calculation for off-
critical quenches and study the possible effect of the radi-
cally different morphology of patterns on the scaling func-
tions.

In this Rapid Communication we report results from a
numerical study of the Cahn-Hilliard model in two di-

mensions for an off-critical quench. We have chosen a
value of the (conserved) concentration such that the sys-
tem is on the mean-field spinodal curve. We have comput-
ed the scattering intensity, the pair correlation function,
and the cluster distribution function. We have found that
these three quantities can be described in terms of scaling
with a time-dependent length and have compared the
relevant scaling functions with those obtained in the criti-
cal quenches. The time dependence of the characteristic
length of the domains is also studied and is found to be in

agreement with existing theories.
In the Cahn-Hilliard theory, one is concerned with the

time variation of a locally defined conserved concentration
field, y(r, t). It is assumed that the system is driven by a
free-energy functional given by the Ginsburg-Landau ex-
pression. The resulting equation of motion then can be
written as

llPP [ by+ u y —K—V y] + rl,

where M is the constant mobility and b, u, and EC are phe-
nomenological (positive) coefficients. rl(r, t ) is the
thermal noise. Since we are interested in the scaling be-
havior of the system, the noise term is neglected in Eq.
(1), as it has been shown recently that the scaling function
does not seem to change with the inclusion of the noise
term. This equation can be written in a simple form after
rescaling the field y(r, t ) by its mean-field equilibrium
value v'b/u, the distance by the mean-field correlation
length dK/b, and the time by 2K/Mb . The resulting pa-
rameterless equation is '

IV y2( /2' y+ y3) (2)

We have numerically integrated Eq. (2) on a square
lattice of size 256 [in the dimensionless units of Eq. (2)]
with periodic boundary conditions. We chose the initial
configuration to be a Gaussian distribution centered at
yo 1/J3 with variance unity. In order to average over
initial random configurations, we have performed 40 runs
with different initial configurations. We have performed
the numerical integration up to t =20000 (in the above
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1G(r ~) = —z, (r((+r t)y(rt) —'y, t)),N r
(3)

We call this measure Rg (t ). Rg (t ) and RG (t ) behave
qualitatively in the same way and both follow the
Lifshitz-Slyozov law.

An important quantity in the description of this kinetic
process is the distribution function n (I, t ) such that
n(l, t)dl gives the number of droplets in the system of
sizes between I and I +a! at time t. Here, we have defined
a droplet as a simple connected set of sites with a negative
value for the field. The size of the cluster is defined as the
number of lattice sites that belong to it. Given the fact

QQ
C)

mentioned units) using a time step bt =0.025 and a mesh
size Bx 1.0. We have found that larger values of 8x pro-
duce droplets of the minority phase which grow anisotrop-
ically. With the choice of Bx =1.0 we find that the drop-
lets are circular and that the measure of the domain size
given by the radius of gyration agrees with the geometri-
cal radius. We have also checked that lower values of 8t
do not alter the quantities measured.

We now present the main results of this study. In Fig. 1

we present a typical morphology of the system at
t =20000. The few droplets seen in this figure have
evolved from a situation at much earlier times in which
there were many droplets. The big droplets then grew at
the expense of the smaller droplets which shrank and then
finally disappeared. This situation is very different from
what has been seen in numerical studies for critical
quenches. As is obvious from the figure, the droplets
are very circular and it, therefore, makes sense to define a
typical domain size as the radius of gyration RG(t). We
have found, however, that a more suitable quantity (from
the statistical point of view) is the first zero of the circular
average of the pair-correlation function

that the droplets are very large in terms of the lattice
spacing, this definition is equivalent to defining the droplet
size as the geometrical area. The numerical computation
of the function n(l, t) is difficult, because even for a 256
lattice the number of droplets at late times is not very

large (around 25-30, see Fig. I). In order to improve
statistics we have calculated n(I, t) by counting the num-

ber of cluster between sizes l —Bl and 1+6/. The neces-
sary values of 8l to get smooth data need to be increased
with time, e.g. , Bi=20, 30, 40, and 50 for t =8000,
12000, 16000, and 20000, respectively.

The Lifshitz-Slyozov theory and other phenomenologi-
cal scaling theories predict a scaled form for the droplet
distribution function of the following form:

(4)

where I(t) is the mean area of the clusters at a given time
t Sin.ce l(t) (x Rs(t) we have checked this scaling ansatz

by plotting n(l, t)Rs(t) vs I/Rs(t) in Fig. 2. In this
figure we see that scaling holds reasonably well at late
times.

An experimentally accessible quantity is the structure
function, defined as the Fourier transform of the pair
correlation function

S(k, t) =pe'"'G(r, t) . (5)

The vector k belongs to the first Brillouin zone in the re-
ciprocal space. We concentrate on the circularly averaged
structure function S(k, t):

k- —,
' ~« / ~I ~ k+ —,

'
~k

S(k, t) (6)

I ——2N & l&l ~k+ —2bk

The quantity defined in the denominator of Eq. (6)
denotes the number of lattice points in a circular shell of
width Bk, centered around k. Due to the discreteness of
the lattice used, S(k, t) might depend on 8k for small

values of k if Bk is not small enough. " We have used
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FIG. 1. A typical configuration at t 20000 during the evo-

lution of the system. The number of droplets in this particular
case is 25. Note that the droplets are circular in shape as indi-

cated by drawing circles (solid line) with radii equal &2R (t6)

where RG(t) are the corresponding radii of gyration of the clus-
ters. The part of the circles outside the inner frame indicate im-

ages coming from the periodic boundary conditions.
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FIG. 2. Scaling plot of the cluster distribution function n(l, t)
in order to check scaling ansatz IEq. (4), see textl. Since the

clusters are circular we have used l(t) reRr(t)(t) . Note that
the scaling holds reasonably well after t =8000.
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FIG. 3. Plot of the normalized pair-correlation function
G(r, t) vs r/Rs(t) to check the scaling ansatz [Eq. (7), see textl.
Within the accuracy of the data scaling is well satisfied after
t =4000. We also include the scaling function derived in a criti-
cal quench (Ref. 6).

g

FIG. 4. Plot of the normalized structure factor S(k, t) vs

kRs(t) to check the scaling ansatz [Eq. (8), see text]. Within
the accuracy of the data scaling is well satisfied after t =4000.
We also include the scaling function derived in a critical quench
(Ref. 6).

S(k, t)= . ' Rs(t) F(kRg(t)).
G(o, t)

(8)

Figure 4 shows the comparison of the scaling functions
F(x) derived from our numerical study and from studies
of critical quenches of the Cahn-Hilliard equation. It is
interesting to note that both scaling functions have a simi-
lar shape and that the peak is located at the same position.
We also note that the off-critical structure functions cal-
culated in a cell-dynamics model' also suggest the same
qualitative conclusions. It is also pointed out in Ref. 12
that the noise effect becomes important when the off'-

criticality is increased.

Sk (2x/256) x0.75 and Bk (2n/256) x 1.0 and we have
found no appreciable difference in the results.

The dynamical scaling ansatz for the circularly aver-
aged pair correlation function G(r, t) states that

G (r, t ) G (0, t )g (r/R (t ) ) . (7)
JL

We include G(0, t) in this equation because this allows us
to compare the scaling function with that computed for
critical quenches. In Fig. 3 we plot G(r, t) =G(r, t)/
G(0, t) vs r/Rg(t) and show that scaling holds extremely
well at times greater than t 4000. In the same figure, we
include the scaling function for a critical quench.
Surprisingly enough, despite the radical differences in
morphology, the scaling functions are very close to each
other. Similar conclusions are reached when comparing
the scaling functions obtained from the structure function.

The dynamic scaling hypothesis for S(k, t) is

Theoretical calculations by Tokuyama, Enomoto, and
Kawasaki show that, in three dimensions and for small
volume fractions, the shape of the structure function
changes substantially with the volume fraction. One ex-
pects that similar qualitative conclusions should apply as
well in two dimensions. Our study indicates that the scal-
ing functions for quenches on the mean-field spinodal line
and critical quenches are quite similar. However, we
should point out that it is numerically very dificult to con-
clude whether the large-r behavior for the pair-correlation
scaling function is indeed independent of the volume frac-
tion. Similar reservations should apply to the structure
function for small k values. Even then, it is apparent from
this study that even if there are some changes in the scal-
ing functions for these two quenches, the differences are
smaller than that seen in the theoretical studies, consider-
ing the fact that the volume fraction changes by a factor
of 2.5 for these two cases. This might be due to the fact
that the detailed quantitative conclusions of the theory are
different in two and in three dimensions or that the theory
breaks down for the large volume fractions considered
here.
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