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Exact calculation of the two-electron interaction in the ground state of the Hubbard model
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The single-band Hubbard model has been studied in both the one-dimensional ring and two-
dimensional torus. By the exact calculation of the pair correlation function F(i,j) defined as the
possibility of finding an electron at site j when there has been an electron at site i, it is shown
that for two electrons, the interaction is always repulsive in the ground state for any positive value
of the on-site Coulomb interaction U.

INTRODUCTION

Since the discovery of the high-T, ceramic copper-oxide
superconducting materials' there has been a great the-
oretica1 interest in the Hubbard model which may pro-
vide a new mechanism for such phenomena. Up until now
there has been much work in this area. However,
those calculations of correlation function of the full Hub-
bard model have been limited to small lattice sizes of the
order of fifteen in one-dimension (1D) and order 8x8 in
2D. The finite-size effect, as is pointed out by Stollhoff,
calls for even larger size calculations to allow the true na-
ture of the Hubbard model to be understood. Further-
more, as most of the calculations are either done in the
large- or small-U limit, it is desirable to have an exact cal-
culation for the ~hole range of U.

In this work we have been able to derive an exact for-
mula for the ground state of two electrons in both one-
dimensional Hubbard ring and two-dimensional Hubbard
torus. Therefore, we can do the calculation for all on-site
interactions U, and generally any size of lattice. Thus, the
finite size eA'ect is eliminated in our treatment. Here we
will first discuss the formulation and then present the re-
sults. Finally, we will draw some conclusions.

FORMULATIONS

The single-band Hubbard Hamiltonian is written as

H= —t g ctc, +Hc. +Urn tn i, (1)
, (i j),o, i

where c;, c;, arid n; are the creation, annihilation, and
number operators, respectively, for an electron of spin a in
the Wannier state on the ith lattice site. (i,j ) means that
only nearest-neighbor site hoppings are allowed. One can
easily show that the total spin and its z component com-
mute with the Hamiltonian. Therefore, we can diagonal-
ize the Hamiltonian simultaneously with the total spin S
and S,. In the following we will concentrate on the two-
electron problem within the Hubbard Hamiltonian.

To give a brief illustration of our treatment, let us solve
a simple two-site problem for the two-electron case. One

can see that there is a total of six states: l 1 t, 1 j &,

12t,2l), I 1 t, 2t&, I ll, 2l&, I 1 t, 2l&, I ll, 2t). It ts easy
to show that the ground state is

&/2
1 dU'+16t ' —U

I ilto&
=—

~ I I t, 1 ) &+ 12 t 2 j)I

+ 1 4U'+16t '+U
JU'+16t '

(2)

and the ground-state energy is

Eo = ——,
' (4U +16t —U) . (3)

The other energy eigenvalues are 0, U, —,
' (VU2+16t

+U). It may be seen that the ground state is a spin sing-
let. This is the most important feature in the construction
of our correlated ground-state wave functions shown
below.

ly&=gg(i j)jlit, j/& —ii),j t&j
f Wf

+gg(i, i) li t,i J &. (4)

Here l t t,j l & means that one electron on lattice site i with
spin up and the other electron on lattice site j with spin
down. The g(i,j ) are variational parameters. Owing to
the symmetry of the ring structure, it is obvious that
g(i,j) should be a function of li —j l only. From the
statement above we can rewrite the wave function (4) as

l=o
(4')

One-dimensional ring

From the exact solution (2) of the two-site problem, we
know that the ground state of the two-electron system is a
spin singlet. Unlike the Gutzwiller ansatz, we write the
correlated ground-state wave function in the form
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where

I yo& X I & t &l&,
i 1

I yi& = f I
t't, jl& —

I fl, jt&l,
Ijl J

and N is the number of lattice sites of the ring. We call
I y~& the state class I which consists of all the singlet states

comprising two electrons separated by a distance of I
units.

Let us treat the even lattice-site ring N-2k (k ~ 2)
explicitly. First, all states are sorted in classes according
to the separations. One can see that there is a total of
k+1 classes of states with separations I =O, l, . . . , k
units. All classes, except the one that is k units apart,
have N singlet stages in each. Whereas the remaining one
includes N/2 singlet states. Therefore, we obtain

I —20—
I

] 9 ~ 20 eemyeaaa 20

—13 —14 —19 —19—
I

8 —9 —13 —18 —18—

4 —5 —8 —12 —17 —17—
I—1 —2 —4 —7 —11 —16 —16—

b I

1 —0 —1 —3 —6 —10 —15 —15—

-b-b -b-b-b-—
k

(yI y&=N xo+2+xP —xk, N=2k.

k —
1

2 g x;x;+) —(U/4t)xo
i=0E —4t

k

x'+2+x' —x'
N =2k, k~ 2.

After some algebra one obtains

k —1

(yI H I y&
—St XN g x;x;+1 +U&Nxo .

i 0

Then we have the variational ground-state energy expres-
sion

(b)

I

I

I I

I I

C —A—

I I I —A—
I I I

8
I I I I—A —8 —8—
I I I I

A —8 —8 —B—
I I I

B —8 —8 —B—
I I I

A —A —A. —A—
I I I

(9)

By minimizing the expression (9) with respect to all the
x s the ground-state energy can be obtained. From the
known ground-state results of x s, the pair correlation
function (PCF) can be obtained which is proportional to

2

Two-dimensional torus

In general, by considering the periodic boundary condi-
tion, the M xN square lattice will form a torus of M &N
sites. Here we only treat the case of M =N=2k —1 ex-
plicitly. The clue which allows the treatment of M=N
=2k can be found in Ref. 8.

Let us take k =6 (i.e., 11 && 11 torus) as an example. As
the first step, we have to classify the structure of the corre-
lated ground-state wave function as we did in Eq. (4'). To
do this, all states are sorted to classes according to the sep-
arations. The classification is shown in Fig. 1(a). Only
unique ways of separations are shown, which are a total of
k(k+1)/2 =21. All diff'erent states can be obtained from
states shown by considering periodic boundary conditions
and translation invariance. In Fig. 1(a), numbers label
diAerent classes. For example, the number "0"stands for
the class of singlet states of which the two electrons are on
the same lattice site; while the number "2" represents the
class of singlet states of which two electrons stay at diago-

(c) IIO4; —s

II

O1 () —1 —3 —6

20

II
14 19 19

I I I I

13 18 18

II
12 17

II
11 16 16

II
10 —15 15

1 2 4 7 11 16

FICJ. l. (a) State classification for 11&11 square lattice in

which one of the electrons stays at the origin (the point labeled
"0"),and the other electron can be on any one of the numbered
sites. The numbers are labels for difterent classes of singlet
paired states. (b) According to the number of singlet states
within each class, all classes are sorted into three difIerent
groups. Each class belonging to group A has 2X (2k —1)2 sing-
let states, group 8 has 4(2k —1), and group C has (2k —1)'.
(c) The diagram for constructing function F[x;]. Neighboring
states, between which hoppings can occur, are connected either
by double lines (= or I I ) or by single line (—or I ), according
to the multiplicity of the hopping term, as described in the text.
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torus k ~ 2. (10)

Next we should find out how many different singlet states
there are within each class, which can be computed by
considering the symmetry of separation patterns and the
corresponding multiplicities. The results are shown in
Fig. 1(b) of which group A has 2(2k —1) states, group 8
has 4(2k —1) states, and group C has (2k —1) states.
By knowing the structure of the correlated ground-state
wave function, it is then easy to obtain

(yl y) =(2k —1)'G[x;],
[refer to Fig. 1(b)]

and

G[x;] =4+ x +8 g x)'+xebec,
i EA j&&

(i2)

(pi Hi y= —(2k —1) 16tF[x;] +(2k —1) Uxo,
(i3)

where [refer to Fig. 1(c) and Ref. 8]

F[x(]= 2 g x('xj 2 xp(/& —])/2
i and j connected by =

fk(k+ 1)—2jl2
+ g x;x, + g xi'.

i and j connected by — I =k (k —1)/2
(14)

Finally, we achieve the E~ for the (2k —1)(2k —1)
square lattice on the torus

F[x;]—(U/16 )xro
Eg = —16t 6 fx;]

RESULTS

Before we present the calculated results, it is interesting
to discuss some of the limiting cases. First, in the case of
U=O, one would expect that all the x s are the same.
Indeed, this is what we have found. Second, in the case of
U oo, i.e., the strongest correlation limit, one would ex-
pect there are some differences between 1D ring and 2D
torus. In fact in the case of 1D, and under the open
boundary condition, there is no way to exchange the posi-
tions of the two electrons. This makes the spin degrees of
freedom irrelevant, i.e., in the 1D open end chain, the
problem will be the same as that of the spinless fermion.
On the other hand, if there are only two electrons in a
ring, one cpn find a way of exchanging the positions be-
tween them, so one would expect that there will be a
difference between open and periodic boundary condi-
tions. However, once we put more than two electrons in
the ring, all electrons become ordered in the U c limit,
and their relative positions cannot exchange arbitrarily.
Some spin degrees of freedom are lost. Making use of this
fact, the arbitrarily filled ID Hubbard model can be

nal lattice sites of the smallest square, etc. Therefore, we
can write down the correlated ground-state wave function
as

k(k + 1)/2 —1

I y) = g xI ~ y(), (2k —1)(2k —1),

solved with the Bethe ansatz. 9' As soon as we go to the
2D case, the Bethe ansatz does not work any more be-
cause these restrictions do not apply. With our method,
the two-electron problem can be solved in any dimension.
We will demonstrate that the nature of the correlation
within the Hubbard model depends on dimension.

Let us first discuss the 1D case. The minimization of
Eq. (9) can be done for arbitrary size. To save computing
time, it was carried out for a 80-site ring. Figure 2 shows
the PCF and total energy of the ground state as a function
of U. It has been calculated that in the infinite-U limit,
the total energy given by the Gutzwiller ansatz is
—4t(1 —1/N), while that given by the correlated ground
state in the large-U limit asymptotically is 4r (—1
—S/N ). So there is a significant deviation of the
Gutzwiller ansatz for the kinetic energy in this limit. The
PCF shows an even more dramatic change as a function of
U, as being shown by Figs. 2(a)-2(f).

One can see from Fig. 2 that the PCF shows almost no
changes for U/4t & I, i.e., the "kink" at the center of the
graph disappears. Therefore, one may safely treat the 1D
Hubbard model as spinless fermion, i.e., as U=~, when
U/4t & 1. However, one should be rather cautious when
one performs the perturbation around an intermediate
value of U (0 & U/4t (1).

A similar calculation was carried out for the 2D lattice.
Figure 3 shows the result for a 30x30 lattice on a torus.
One can clearly see that as U increases the two electrons
prefer to stay as far apart as possible, evidently it means
that the effective interaction between them is repulsive. It
is found also that the total energy given by Gutzwiller an-
satz is —St(1 —1/N ), and that given by correlated
ground state is —St (1 —a/N ). Here N x N is the lattice
size. a is found also N dependent, and is 0.618 for a
30x 30 lattice, 0.631 for a 50&50 lattice, and 0.682 for a
100x100 lattice. So the result of Gutzwiller ansatz is
only quantitatively wrong in the 2D contrary to its quali-
tatively wrong result in 1D before. It is worth noticing
that despite the fact that there is only the on-site Coulomb
repulsion U in the model, the PCF clearly sho~s that elec-
trons feel a long-range repulsion through correlation
effects. Again, from Fig. 3, one can see that PCF has very
slight changes after U/4t & 10, i.e., it is a good approxi-
mation to treat the system as if U=~. However, in the
range of physical interest (as in the case of a high-T, ma-
terial, where U/t is about 10), it is better to be cautious in
using the infinite-U approximation. Of real importance is
the difference between 1D and 2D in Auctuations. First,
the on-site Auctuation in 2D is much larger than that in
1D, i.e., while no sizable double occupation occurs in 1D
U/4t & 1, here it is found up to U/4t —10. Second, for
two electrons to come close, the probability is not as much
reduced in 2D as in 1D. It is shown in Figs. 2(f) and 3(f)
that the nearest-neighbor occupation in 1D drops off in a
way similar to what the double occupation does, while it
keeps a relatively larger value in 2D. This point can be
easily seen from the asymptotic behavior of the correla-
tion functions. The 1D correlation function varies like
1
—cosa1r, while in 2D, it behaves like 1 —e
Finally, just for the completeness of the model itself, we

have done a calculation for negative U for both 1D and 2D
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problems. This time the electrons would prefer to remain
close to each other to gain energy, as can be seen in the
PCF of Figs. 2(e) and 3(e).

CONCLUSION

We have studied the two-electron problem in both the
1D and 2D Hubbard model. In 2D, our result shows that
electrons behave differently than they do in 1D. The
correlation behavior comes out to depend on dimension as
does the quality of Gutzwiller ansatz. The fluctuations in
2D are much larger than those in 1D; the asymptotic form
of the PCF is diff'erent. For any positive on-site interac-
tion parameter U, it is shown from the PCF calculation
that in the ground state, two electrons prefer to stay as far
apart as possible to reach the lowest energy. This implies
that the eff'ective interactions between two electrons are

repulsive. It should be noticed that the correlated
ground-state wave functions constructed here are similar
to that of the most generalized resonating-valence-bond
state. '' The method used here can be applied in principle
in any dimension, so it might help to understand the na-
ture of the Hubbard model in higher dimensions.
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