
PHYSICAL REVIEW B VOLUME 39, NUMBER 13 1 MAY 1989

Dissipative quantum mechanics of a particle in the washboard potential:
Application to the Josephson junction
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The dependence of the mean value of the voltage of a Josephson junction on temperature and

current is obtained for low viscosity. No resonant response to high-frequency-driven force exists in

the mean value of the voltage when the frequency is close to the distances between levels at quasilo-
ca)ized states.

I. INTRODUCTION

In the last years many authors have actively investigat-
ed the dissipative quantum mechanics. This interest is
partially connected with the large progress in the
preparation of Josephson junctions of very small size.
Such junctions are in fact particularly suitable to the
study of dissipative phenomena in quantum mechanics.

The essential theoretical progress in this topic was
made by Caldeira and Leg gett. ' They proposed an
effective action, which allows the description of the
inAuence of the environment on the motion of a quantum
particle. Later the effective action was obtained micro-
scopically by Schmidt. For the Josephson junctions the
effective action was discussed in Refs. 3 and 4. In princi-
ple, the method of functional integration enables to And

the density matrix and hence it gives a full description of
the system. The validity of such a quantum-mechanical
description of a Josephson tunnel junction was demon-
strated by Martinis, Devoret, and Clarke ' in experi-
ments on the enhancement of the decay rate of metasta-
ble states by high-frequency field. There is good agree-
ment between experimental and theoretical results. '

In many cases the knowledge of the transition proba-
bility from one well to another is sufficient. If the energy
difference between two wells is not too small, this transi-
tion probability is known in a11 regions of values of both
temperature and viscosity. ' " Here we are dealing
with small values of the slope of the washboard potential,
that is, small currents and small values of temperature
and viscosity. In this region the quantum-mechanical in-
terference phenomena are essential. This problem was
studied by Likharev and Zorin. ' Our results differ
markedly from those of Ref. 12.

II. THE EQUATION FOR THE DENSITY MATRIX
IN THE REPRESENTATION OF

QUASILOCALIZED STATES

The dynamics of a particle, interacting with the envi-
ronment, can be described with the aid of the density ma-
trix p (t, P, P) 'The .value of the density matrix at a time
tf can be found from its value at time t,. by resorting to
the functional integral, '

i (tf.V.e) =f&e&O exp[t A (O.O))r(t, .O. e)

The functional integral is taken over all values of coordi-
nates P, P at times between t; and tf. The effective action
A (P, P) is equal to

A (P, P) = Ao(P) —Ao(P)+ A, (vr, P),
where

2

—V(P)

The potential V(p) and the "mass" m for the tunnel junc-
tion are

V(P) = —Eicos(2$ ) IP/e, —

EJ=I, /2e, m =C/e, C=CO+3EJe /8g

Here I is the driven current through the junction. The
mass m depends on the capacitance Co of the junction
and has some additional contributions arising from virtu-
al transitions of the quasiparticles. ' 6 is the order pa-
rameter of the superconductor, and I, is the critical
current of the junction. The voltage V across the junc-
tion is equal to eV= ( dpldt ). The functional Az(p, p) is
given by Eq. (4),

iAz($, $)=— f dt f 'dt, [%'(t —t, )cos[p(t) p(t, )]+A(t, ——t )cos[p(t) p(t i )]]—8 e+, f dt f dt, &(t, t ) c[oPs(t) —P(t, )] . —
R, e t
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For a tunnel junction shunted by a normal resistance
8, the kernel %'( t ) is equal to

where Jk is a Bessel function. The constant C~ can be
found from the normalization condition and is equal to

1/4
oo%'(t)= f dc. A(s)exp( is—t),2'

(6)
Co= (14)

A(e) =—1+coth

In the quasiclassical approximation the action (2) leads
to the Langevin equation for P

a'y av aym + +g

1

e2

The random quantity g has a correlation function

(g(t)g'(t') ) =2Tri5(t t') . —

In the potential (4) quasilocalized states exist which are
solutions of the Schrodinger equation

Now we shall write the density matrix p (t,P, P) in the
form

P (t,P, P) =g Pk (t)P„(P)gk (P)exP i—(E„—sk )t
n, k

where

&n=
e

To get the equation for the density matrix pk(t) we can
use the standard method' consisting in the expansion of
the exponent in formula (1) in powers of Az($, $). As a
result we get to the erst approximation on the parameter
g the equation

] Q2

, + v(4) eN(0) =&NON(4') .
2m Qp2

The function fz has the form

f~(p)=g Ak2)o((2mQ)'~ (p —
pk ~iV )),

k

(9)

(10)

R,e
—

p~f g A( —ek )Jk (4/z )
k= —oo

+( —l)~ f g %(Ek )Jk(4/z )pk+ f
k = —oo

(16)
where

4k =&k +
2
al csin

4EJ
Q = 1—

Pl

' 2 1/2

L

mI Bo(x)=exp( —x /4) .

To And the coeScients Ak we use the quasiclassical solu-
tions of Eq. (9) under the barrier and exact solutions of
Eq. (9) near the bottom of the potential V(P). Matching
these solutions we Gnd the equation for the coe%cients
Ak,

To obtain Eq. (16) we use the following formula for the
transition matrix elements:

f "add'1e. (0)ek(0)ek(01)ef(ei)cos(0

=( —I)"+iJk „(4/z)J„(4/z),
(17)fdf df1 gk ($)gf ($)g„($1)pf($1)cos(p —p1)

= ( —1 )' fJ„,(4/z )J„ f (4/z ) .

Now in order to obtain the quantity ( P ) we shall use the
quantum-mechanical formula for the velocity

Ak+1+z(k —p) Ak+ Ak 1=0, k =0,+I, . . . ,

where

(12)
Using the expression for the transition matrix element

e n 1 &o —I'(0o)
mI 2 Q

2m''~2exp(S+ —,
' ) .

eQ

f de 0 (4)4' 4(4) ~+~k, ~k, +1

we get from Refs. 15, 18, and 19,
T

kA( e k )Jk (4/z )
R,e

(19)

Here S is the action under the barrier for the transition
from well 0 to 1. The solution of Eq. (12) that vanishes
for k)+~ is ;a~ & k

Pk+ le P

~k =co( —1)"Jk 2 P=O,
z

(13a) +pk exp
—imI

e
(20)
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The first sum in (20) can be easily found as

k&(Ek)Jk(4/z) = (21)
k = —oo ez

The last two terms in the bracket depend on the initial
conditions and decay in time exponentially. From Eq.
(16) we get

k kX Pk+1 Y XPk+ I

k k

where the decay rate y is given by
r

46
R eS

(29)

and hence

I a 2)
e6

(30)

For temperature T equal to zero and I «6e we find from
(23)

@=2 g A(Ek)Jk(4/z) .
R, e

(23) III. DENSITY MATRIX IN BAND REPRESENTATION

At a current I equal to zero there exists a band of
width 6. The value of 6 is connected with the action 5
under the barrier

5=, exp( —S—
—,
' ),4B

(24)
1 1+ln
2

E(k) =—+c(k),0,
2

s(k) = ——cos(~k ),6
2

(31)

For small values of current I & 6e it is convenient to go
to the density-matrix representation in the band. In the
case of narrow band that we considered here, the wave
functions and spectrum are

In the region of large currents I ))6e, it is necessary to
take into account the dependence of the action 5 on the
current. This leads to appearance of additional factor in
expression (20) for (P)

where k is a wave number

—1~k &1 . (32)

e62

2' ln
2eO 0 (25)

The wave functions pk(p) are normalized to
2rr5(k —k'). Moreover to find the equation for the densi-
ty matrix it is necessary to calculate three transition ma-
trix elements

In formula (25) we omitted the oscillating term, because
its value depends on the initial condition and decays ex-
ponentially in time. Expression (25) for ( P ) has a .
minimum at current value I;„given by

5(k —k, ),

f d4' dol ok(41)ok/(41 wkp(( )ek(0) c(o'st' (('j )

dmin
2eQ

Xp

In(64EJ /0) =(2vr) 5(k —k)5(k2 —k+1), (33)

I&eQ . (27)

The lower boundary can be found from the simple condi-
tion that the distance between levels must be larger than
damping y, that is

I—)y.
e

2xp =cothxp xp =0.7717

The upper limit of validity for the current of expression
(25) for (P) is eQ,

k k k 1 ki 1

=(2') 5(k —k+1)5(k, —k, +1) .

The density matrix p(t, P, P) shall take the form

dk dk)p" & &)=f, 2 Pk, (t)fk(4')ttk, (4) . (34)

Retaining only the first terms in the expansion of the
exponent in formulas (1) on I and g and taking into ac-
count relation (33) we obtain the equation for the density
matrix pk ( t)

at 'I R, e
dE~(

)
1

2rr 2s(k, ) —E —iv 2E(k) —8+iv

BE(k, )

aa,

exp[2i(tf —t; )][ ( s)k—E(k, )]—1
+pk 's"„"k %'[ —2E(k)]

2i(tf t,)—
a „a, il, a.(k)

~kPk~+ ~k Pk + (tf+t()Pk (35)
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The last term in formula (35) for nondiagonal elements of
density matrix obviously depends on (tf+t, ). It means
that nondiagonal elements essentially depend on the ini-
tial conditions and their dependence on time can be
found only from Eq. (1). However, it is possible to search
for the solution of Eq. (1) in the form,

pk (,)=n(k, t) 5(k —k')

For the diagonal elements of the density matrix such
difficulty is absent and from (35) it follows

() „ I Bn(k)nk= ——
ar

"=, ak

Xo = 1.83 476

that is equal to

I, ( x o ) /cosh(x o ) =0.42 393 . (43)

For large current values (I) iI5e) the parameter x is
small and relation (42) gives the same answer for (P ) as
forinula (25). For 'small value of the current (I« i)5e)
the parameter x is large and for ( P ) we get

1/2
m6 m I

(44)
R,e

that is for small value of current ( P) -I'~ .
In the region of high temperature ( T ))5) the function

n (k) satisfies the equation

+ I
—n (k)A[2E(k)+ n (k —sgnk )]

R, n(k) =—+F(k), x, =c 2eT
mI

X%'[—2E(k)] I .

The boundary condition for the Eq. (36) is

n(1)=n( —1) .

From Eq. (36) it follows the important property

(36)

(37)

()F(k) ex(
Bk ' T

= —2x, F(k) — s(k) .

The solution of this equation is

C6X )F(k)= sin(ark )
2mT

(45)

+— [n(k)+n(k —sgnk)]=0 .a I a
Bt e Bk

(38) 2x i+ cos(7rk )
2X]1—

2

(46)

I" dy P (t, p, (t'i)
1

The average velocity u = ( P ) can be found from the
quantum-mechanical formula xi5

Bt 4T 2x )1+
T))5 .

Finally, from formulas (39) and (46) we find

(47)

= f dk n(k) (39)

Now we shall solve Eq. (36) for two limiting cases:
low- ( T «5) and high- ( T ))5) temperature. At station-
ary fiow B„(k)/()t =0 and for T «5 from relations (36)
and (38) we get

c exp[x sin(hark ) ], ~
k I

)—,
'

n(k)= '

2c cosset(x) —c exp[ —x sin(~k )], (40)

where

From formula (47) it follows that temperature smears the
maximum in the dependence of (P) versus I. At T))5

(P),„=~5 /16T .
The value of the current in this point is

4eT 7T

R,e

The condition (38) enables to solve Eq. (36) in the full
temperature region. Omitting the intermediate formulas
for the average velocity value we get

2e5
~ I R,e

(41)

The constant c can be found from the normalization con-
dition

0.4

dk n(k)=l

that gives
1c=

2 coshx

0.2

(42)

Inserting expression (40) for n (k) into (39) we get

I, (x)
Bt 2 cosh(x)

Here I, (x) is the Bessel function.
The function I i(x)/cosh(x) has a smooth maximum at

0.2 04 0.6
I

0.8 1.0 I/e 5

FIG. 1. Dependence of ( g) on the current I for four temper-
ature values: curve (1) T=O; curve (2) T=5/2; curve (3) T=5;
curve (4) T=26. 0.=0.1.
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~x —f dkFO(k) f dk, FO( —k, )sin[a(k —k, )](
BP m6 1

+ f dksin(~k )Fo(k) f dk, FO(k, )cos(mk, )
0

(48)

where

k icos(mk, )
Fo(k) =exp —rex f dk, cos(hark, )coth (49)

and the quantity x is defined by formulas (41). The dependence of (P) on the current I for four temperature values is
given in Fig. l. In the dynamics of the two state system the validity of the first order expansion on the viscosity param-
eter g at high temperatures ( T )&6) was restricted by the condition r)T «6. Apparently the same restriction exists in
our case.

IV. THE INFLUENCE OF A HIGH-FREQUENCY FIELD ON THE DYNAMICS OF QUANTUM PARTICLE

We shall study the inAuence of a high-frequency field on the motion of a quantum particle in the region where the
condition (28) is fulfilled. In this region the distances between levels is larger than their width. In the opposite limiting
case strong resonant phenomena are impossible. The fulfillment of the condition (28) enables us to use the representa-
tion of density matrix in quasilocalized states. The action of the high-frequency field on the quantum particle can be de-
scribed with the help of an additional term in the potential V(P) given by

Ji
P cos(cot ),

e
(50)

where I, is the amplitude of induced current. As before, we retain only the first term in the expansion of the exponent
in formula (1) in I, . As a result in the representation of quasilocalized states, we get the equation for the density matrix

7T

R,e k= —oo

r

A+I,
(p~f+ ' —

p~f i )exp i cu-
2ez

mI
t + (pf —pf +, )exp I co

~ i . mI
(51)

We suppose, that the frequency co is near the resonant value. Since only the transition matrix elements for neighboring
levels are nonzero [formula (19)] the resonance can take place only for

co=mI/e . .

The velocity ( p ) is defined as before by the expression (18) and in a weak high-frequency field is equal to

k%'(s(k ))Ji, (4/z ) ——
R, e Z

. mI k+) . WI
p&+,exp i t +p& exp —i t

k+]%+i
2ez

mI k . aI
i co — t —pk+ &exp i cu-

e
(52)

From the Eq. (51) it follows that for the sum of near diagonal elements we have as before Eq. (22). It means that a
high-frequency field does not lead to the resonant change of velocity (P). According to Ref. 12 it must appear at co

close to rrI/e a step in the dependence of ( P ) on I.
Note that if at t =0 the particle was localized in one well (for example at / =0), then its wave function is

g(t =0,$)=
1/4

X)0(P(2mII)'~ )= g ( —1) J~(2/z)PJv($)
N= —oo

(53)
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and for the sum of near-diagonal elements of density ma-
trix (which are those of our interest) we get

g p„"+&(t=0)=—g J„(2/z)J„+&(2/z) =0 . (54)

The main reason why there exists a large difference in
the dependence of ( P ) on the current I in our paper and
that of Ref. 12 is the following. At a small value of
current transition with large change levels number X,

are essential. It means that essential coordinate
difference is

P-(e5/—I )»2m (56)

and therefore the exact form of effective action is impor-
tant.

V. CONCLUSION

%'e investigated the dependence of the velocity of the
motion of a quantum particle as a function of the slope of
the washboard potential and of temperature. To impose

to the Josephson junction the restrictions on the tempera-
ture, capacitance, and normal state resistance is very
hard. If we neglect the self-capacitance of the junction,
and take into account only the effect of renormalization
of capacitance, then the value of the band width 5 is
50 exp[ —6' (4R~e )]. It means that the quantity R~e
must be larger or of the order of 1. The actual parameter
a of the expansion on viscosity is a=a/2R, e . As it is
well known from the dynamics of the two-states system
11, the behavior of the system strongly changes at +=—,',
which means that the parameter R,e must be larger
than 1. As we have seen at T) 6 the maximum in the
dependence of ( P ) versus current I smears and de-
creases.

There exist two different additional restrictions on the
temperature. One is connected (as it was seen before) to
the validity of the first-order perturbation theory on the
viscosity —gT&5, the other is connected to the cir-.
cumstance that we neglect interband transitions. This is
possible only if T (0/ln(64Ez/0). In the opposite case
the particle shall tunnel in the excited state. The relaxa-
tion processes in this case are stronger (on the parameter
0/5), and it is very unlikely to see some deviation from
the quasiclassical picture in this temperature region.
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