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To study the nonmagnetic dielectric state and Mott transitions we consider an example of a two-
dimensional modified Hubbard model with a large number of colors. Low-energy excitations in this
phase are fermionic excitations and Bose excitations described by gauge fields of the U(1) group.
The transition into the metal state has little effect on the fermionic spectrum, but it results in the lo-
cal U(1) symmetry being broken and fermions becoming able to transfer charge excitations. Apart
from the half-filling, scalar Bose excitations also appear. Due to the presence of additional gauge
fields the physical conductivity is determined by the lowest conductivity of the Fermi or Bose sub-

systems.

I. INTRODUCTION

Interest in the Mott-Hubbard metal-dielectric transi-
tion has been revived recently by the discovery of high-
temperature superconductivity in copper oxides.!
Whereas the properties of metals can be described (at
least phenomenologically) by the Fermi-liquid theory, the
properties of the dielectric are still beyond complete un-
derstanding. Diverse dielectric phases can exist with the
choice being governed by the microscopic interaction
constants. In the simplest case this phase is a Néel anti-
ferromagnet. The nature of a dielectric state without any
magnetic long-range order is a far more complicated and
long-standing problem. The first formulation of this
problem dates back to 1941 when Pomeranchuk? sup-
posed that in a § =1 Heisenberg antiferromagnet the
long-range order is destroyed by quantum fluctuations
and in the resulting spin liquid the excitations are gapless
fermions. Later and independently Anderson® hy-
pothesized that the appropriate reference state for both
the S =1 Heisenberg antiferromagnet and the Mott-
insulating Hubbard model is a “resonating valence bond”
(RVB) state, and he gave the qualitative description of its
ground-state wave function. Recently Anderson conjec-
tured® the importance of the RVB state for high-
temperature superconductivity and proposed*”® a
different way for its description based on the idea that in
a RVB state pairing occurs between the electrons (or an
electron and a hole) on adjacent sites. We note in passing
that the analogous pairing between electrons on the adja-
cent wires of quasi-one-dimensional superconductors was
introduced and studied in.” In this paper we discuss the
properties of the dielectric RVB state and the Mott-
transition RVB metal employing the simplest model. It is
generally accepted that the Mott transition is described
by the Hubbard model:

— T —
Hy=3 tyccjat 3 (GUni—pn), mi=cleg, (1)
ij i
where a=1,2 stands for the electron spin index, u is the

chemical potential which should be chosen so that
(n;)=n,, where n, is the mean number of electrons per
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site (ng=1 corresponds to a half-filled band), and t; is
the tunneling amplitude between sites i,j. In the
interaction-constant region U/t >>1 (dielectric state) the
Hubbard model (1) is equivalent to the Heisenberg anti-
ferromagnet with a spin § =1.%

2
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Quantal fluctuations in this antiferromagnet are strong
enough that only numerical simulations can provide reli-
able investigations of its ground state. If the spin S is
large (S >>1) quantal fluctuations are weak and the
ground state is a Néel antiferromagnet. The antiferro-
magnetic interaction of the next-nearest neighbors frus-
trates the interaction and results in the helicoid antifer-
romagnet. At the boundary between the regions of Néel
and helicoid antiferromagnets quantal fluctuations are
strong: They destroy long-range magnetic order and
form a spin-liquid state’ in the exponentially small
[exp(—1/8)] region. Presumably this region becomes
rather large for small S, but the absence of a small pa-
rameter prevents the analysis in this case. Therefore, in
this paper we study the modification of the original Hub-
bard model (1), where the index a runs over N values
a=1,...,N. Mainly (if not stated explicitly otherwise)
we discuss the case ng=N /2 (N even) corresponding to a
half-filled band. Generalization for the case ny~N /2, n,
an integer, is straightforward and does not present any
difficulties. The case of a fractal n, (doped material) is
more subtle. We consider it in Sec. V, in the discussion
of the Mott transition and in Sec. VIII, where we discuss
the influence of doping on electromagnetic properties. In
the study of the Mott transition it will be more con-
venient for us to study the generalization of the Hubbard
model (1) with an additional four-fermion interaction:

H=Hy—3 I(cle) el . 3)
Lj

The term of the same form (with I,.j=t,§/ U) appears in
the second-order perturbation expansion over U in the
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original model (1). Recently this model was studied'®!!
within the framework of the mean-field approximation
(MFA).

In the MFA the order parameter A;= (c,Lcja) is
formed at low temperatures and fermionic excitations are
present in this model. Various phases and states are pos-
sible; the exact phase is determined by the interaction
constants (z;;,1;;) of the model (3). In the molecular crys-
tal phase the order parameter differs from zero only for
one bond per each site; in this phase the lattice period
doubles and fermionic excitations acquire a gap. In the
other uniform phase the order parameter does not de-
pend on the bond position and fermions fill the Fermi sea
to the Fermi surface. In the third phase (flux phase),
which was proposed in Refs. 10 and 12, the amplitude of
the order parameter also does not depend on the bond
position, whereas the sum of the phases ¢;
[A;=I|Alexp(i¢;;)] over the smallest plaquette is 7. In
this phase fermions have a linear (relativistic) spectrum,
and their Fermi surface collapses to a point.

The lowest order (over N !) and the most important
corrections to the effective action obtained in the MFA
are due to the quantal fluctuations of the phase ¢,; of the
order parameter. These fluctuations can be described by
two fields: the field ¥; (defined at a lattice point i) and
the field a;; (defined at bonds ij) with the latter being an
analog of the vector potential in the lattice electrodynam-
ics. The Mott-transition metal dielectric corresponds to
the disappearance of (cos®;) and restoration of the
gauge U(1) symmetry: v¥;—v;+¢;. In the dielectric
state the symmetry is restored, and the field a;; becomes
(at least in the long-wavelength limit) a genuine gauge
field. The averaging over fluctuations of 1; results in the
exponential decrease of the fermionic Green’s functions
corresponding to the charge transfer at large distances, as
it should be in the dielectric state. However, the spec-
trum of the fermionic excitations and fermion correlation
functions that correspond to the processes without the
charge transfer remain qualitatively the same as they
were in the corresponding phase before averaging over
;. Thus, in this state the long-wave excitations are fer-
mions and have a U(1) gauge field. In the metal state the
symmetry U(1) is broken and the averaging over v¥; does
not result in such dramatic changes in the behavior: The
spectrum of the fermionic excitations and their Green’s
functions do not change qualitatively, the gauge field ac-
quires a mass, and its interaction with fermions is small
so that the long-wavelength excitations in this state are
fermions near the Fermi surface, as it should be. In spite
of being small the fluctuations of the gauge field q;; turn
out to be very important for electromagnetic properties
since in the state in which the gauge U(1) symmetry is re-
stored they screen out the real electromagnetic field 4.

The plan of the paper is as follows: in Sec. II we dis-
cuss the mean-field solution and possible phases, in Sec.
III the fermionic spectrum in these phases, in Sec. IV we
study the main influence of the phase fluctuations (¢ fluc-
tuations) in the dielectric phase (U /t >>1), in Sec. V we
discuss how these fluctuations result in the Mott transi-
tion, in Sec. VI we return to the dielectric state and study
the influence of the a-field fluctuations, in Sec. VII we dis-
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cuss the role of instantons of a field, and, finally, in Sec.
VIII we discuss the electromagnetic properties of the
phases with a low density of holes.

II. DIELECTRIC PHASES

We start with the dielectric state at large U. In the
limit U— o the number of electrons at each site is fixed
and is equal to n,, and interaction between them arises in
the first order of the perturbation series in ¢t /U. The re-
sulting Hamiltonian in the subspace of states with exactly
n, electrons per site has the form

H= ‘EIij(Ci]:zcja)(CJTﬁciB)
ij
”‘ﬁzcitzcia'*'i 2 pilmi=no) ,
- i

L, @)
I;=I,+13/U,

where to ensure the condition n;=n, we introduce an
auxiliary field variable ¢;. Using the representation of
the density matrix exp(—pBH) in the path-integral form
we perform a Hubbard-Stratanovich transformation and
introduce other auxiliary Hermitian fields A;; which are
defined on each bond ij with #;;70:

p=exp(—BH)=f1)A,-jexp [—foﬁL dr] ,

L{A}=" (AP —Afcie;q)
ij

+3 [lig;—f)n;—ig;ng] .

In the leading mean-field approximation the functional
integration over A;; is replaced by a simple substitution
in the Hamiltonian (5); the value of A;; in the saddle
point

Ay =21, {Tic;q) (6)

where { - -+ ) means averaging over fermionic degrees of
freedom with the density matrix

pr=exp [—foBLFdT} , o

LF=2 Eiaa‘rcia_z A;‘*ja’acja+2 [n;lig; =) —ip;ng] .
i i,j i

If the value of chemical potential fi is chosen so that
the mean number of electrons per site equals n, even at
@=0, then, as we show below (Secs. IV and VI), the fluc-
tuations of the field @ are small and do not change the
solution of Egs. (6) and (7). Meanwhile, we neglect these
fluctuations and discuss the properties of solutions of (6)
and (7).

At high temperatures the solution is unique and trivial:
A;;=0. At lower temperatures other solutions appear,
and the critical temperature 7, can be determined by in-
serting, into the right-hand side (rhs) of (6), the Green’s
function expression:

D=2NT 3 liw, +u+A]7", (8)
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where A is the matrix A,-j, and D is the matrix
D;=4a,I ij’l. Expanding the rhs over A we get the equa-
tion for the critical temperature

Aij=[1ijN/(2Tc)]Aij ) ?

Equation (9) allows many solutions. The concrete form
of the solution should be determined from the condition
of the minimum of free energy. In the vicinity of the
transition point the free energy can be expanded over
powers of A and equals

N
DA ARALA;

|A; 1>+
o 1927} 7%

_N
v oar

(10)

In the simplest case the interaction I;;0 only for the
nearest neighbors, then the minima of the energy (10)
corresponds to three solutions:'*'> A, =A, for all bonds
between the nearest neighbors (uniform phase),
A;;=Apexpli¢;;) with ¢;+té; +¢,+t¢;,=m (flux
phase), and A;=A, for only one bond per each site
(molecular crystal phase) (Fig. 1). Inserting the forms of
the solutions into the free energy (10) and minimizing
over |A| we get the energies of these phases per site:

Ey=—(1/6)ITN?,
Ep=—(3/10)I7N?, (11
E,=—(3/8)IrN?,

where 7=(T,—T)/T. The molecular phase has the
lowest energy of all. In the lowest-order approximation
over N ~! which we consider here this phase is degenerate
with respect to different positions of the valence bonds.
This degeneracy is lifted by the next orders in N ~1if the
next orders in ¢t /U are also taken into account in agree-
ment with the result of the paper'® in which it was shown
that degeneracy of the energy of the trial wave function
corresponding to the molecular phase is lifted if the next
order over t/U is taken into account. In the molecular
phase the period of the lattice doubles and fermionic exci-
tations have a large gap. Other phases are far more in-
teresting. These phases can have a lower (than the
molecular phase) energy if the interaction (4) has a more
complex form than the nearest-neighbors interaction that
leads to (11). For instance, the next-nearest-neighbor in-
teraction lowers the energy of the uniform phase, leaving
the energies of the flux phase and molecular phase intact,
whereas the interactions of more distant sites belonging
to different sublattices lowers the energy of both flux and
uniform phases (note that interaction between the sites of
the same sublattice has no influence on the energy of the
flux phase). A low ratio ny/N (with n,, N being integers)
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also favors the uniform phase which becomes more stable
than the Peierls phase at ny/N < a,,~0.39, and the most
stable phase at ny/N <a,.,~0.27. In this connection we
discuss the influence of the next-order over ¢ /U correc-
tion to the Hamiltonian (4).

We consider as before the case of L =140 only for the
nearest neighbors. The first correction to (4) arises in the
third order of the perturbation expansion and equals

oO—O oO—o0
o — oO—o0
(a)

Q I
Q@ I
o
(b)
o— e o
]

(c)

FIG. 1. Different ways of pairing: ©0———0 stands for
A;j=04¢, O stands for A;;=iA, (a) molecular crystal
phase, (b) uniform spin liquid phase, (c) flux phase of spin liquid.
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po—_ £

3
U™ | tikn ijAk

where the notation [ijkl/] means a sum over ijkl which
constitutes a plaquette.

The analogous correction for the original Hubbard
model was obtained in Ref. 13 which differs slightly from
Eq. (12) by the values of the coefficients in the second and
the third terms since, in the present model, the virtual
processes with intermediate states in which two electrons
(or holes) occupy the same site are not prohibited, as they
are in the Hubbard model with N =2. In the leading
mean-field approximation in the vicinity of T, the term
(12) is proportional to A* and thus does not change the
transition temperature 7,. To take into account its
influence on the ground-state energy in the leading order
over A; we can replace c;cj, in it by its average
(c,Lcja)’—:AU/(ZI). We get

Vi = u

20 53 AjAjAgb+3 3 [A;1?1A 2
[ijki] i,j#k

13 1a,0%) . (13)
bj

Adding this term to the free energy (10) and minimizing
again over |A| we get new values of the ground-state en-
ergy

Ey=—[6—49x]1"'I7?/N?,
Ep=-—3[10+93x] 'I7*N?,
E,=—3[8+84x]"'I7’N?,

x=0N/U)?.

(14)

Comparing the energies (14) we conclude that at large
tN/U (x 2 10/231) the uniform phase has the lowest en-
ergy of all.

Now we discuss the validity of our disregard of all
higher-order terms in ¢t /U at tN/U~1. Using formula
(4) we infer that the main contribution to the density ma-
trix comes from the states with exactly n, electrons per
site, which is justified if the excitation energy U >>T, i.e.,
(using the estimate T~T,=Nt2/2U), at N'/*t /U <<1,
which is compatible with x =1 at N >>1. Taking into ac-
count the virtual states with n=£n electrons per site re-
sults in the considered series over ¢ /U.

The next order of this series, as can be easily verified, is
proportional to A%, so we conclude that in the vicinity of
T, the parameter of expansion is NtA/U=xV1<<1
which justifies our consideration of the third term and
disregard of higher-order terms. We will come back to
this point once again in our discussion of the Mott transi-
tion.
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III. SPECTRUM OF FERMIONIC EXCITATIONS
IN DIELECTRIC PHASES

Within the framework of the mean-field approximation
the fermionic spectrum is governed by Ly (7) with fixed
A;;. In the molecular phase the energy of one-particle
fermionic excitation does not depend on its momentum
and equals |A,|. In fact, these excitations violate the
conservation of a number of particles at each site and are
absent. Eventually, the spectrum of excitations has a gap
2|A,| and begins with two-particle excitations. In the
uniform phase A;; can be chosen real and equal for
equivalent bonds, and the excitation spectrum follows
from Ly (7):

e(k)=—13 Acos[k(z;—z;)] - . (15)
j

In the case of nearest-neighbor interaction it is simplified
to

e(k)=—2A[cos(k,)+cos(k,)]—[ . (16)

This form of spectrum implies a nonzero density of states
at the Fermi surface, which, in turn, means that the heat
capacity is linear with T at low temperatures. The one-
particle Green’s function in this phase is

G plo,k)=— foﬁz explioT—k(z;—z; )¢ Tc,-acfﬁ )

io—e(k) ’

In the flux phase it is convenient to choose phases of
the order parameter A; so that ¢;;=0 at all vertical
bonds and ¢;;==m/2 at all horizontal bonds with signs
+ alternating in chess order (Fig. 1). This choice of A
makes a distinction between different sublattices; there-
fore, it will be convenient to introduce an auxiliary index
7 which equals 1 in the first sublattice and 2 in the second
one, and performs the Fourier transform of Fermi fields
in the first and in the second sublattices separately:

(17

Ckn= 2, ciexp(—ikz;) .
ic{n}

In this notation the Hamiltonian for the Fermi fields ac-
quires a.simple form:

Hp= [ dk[—c], A (K)cp,—Rctcin] » (18)

where the integral over k is performed over a new Bril-
louin zone which is half of the original one. Generally
the matrix A, has the form

(AR Ay
A= a0 Ak

»

where A,(k) is the Fourier transform of A;; between the
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sites of one sublattice, and A,(k) is that between the sites
of different sublattices. .

Diagonalization of the matrix A yields the spectrum of
Fermi excitations:

€1,,=— A (k)—pE|Ay k)], (19)

which consists of two branches jointed only at points k*
at which |A,(k*)|=0.

In the simplest case in which A;;70 only for the
nearest neighbors

A(k)=0, A,(k)=2A(cosk,+icosk,) .

Thus k7, =(x7/2,7/2). At half-filled band the chemi-
cal potential i =0, and the Fermi surface collapses to two
points KT ,.

In the vicinity of these points the spectrum (19) is
linear, the heat capacity is proportional to T2 at low tem-
peratures, and the Hamiltonian (18) can be rewritten in
explicitly relativistically invariant form. For this purpose
we denote the pair of Fermi fields (¢ 1,¢4k2) by X and
treat the regions of k space in the vicinity of points k{ ,
separately. In these regions we introduce a new momen-
tum variable p =k, —k in the vicinity of k, or p =k, —k
in the vicinity of k,. Using this notation we get

Hp=2A [ (dp)¥.0pP:% Xz » 2o

‘where a =1,2 denotes the regions of k space, a; are rela-
tivistic matrices: a,=—0,, a,=o0, (o; are the usual
Pauli matrices), and we redefine spinor field in the vicini-
ty of k,:

Yalp =Xa1p’ Ya2p :01Xa2p .

Hamiltonian (20) is evidently relativistically invariant.
Moreover, it possesses a number of other symmetries: It
is invariant under group U(2N) which acts upon the pair
of indices (aa), and it is invariant under parity transfor-
mations. Two types of parity transformations can be
defined for a relativistic Hamiltonian (20): the “physical”
parity transformation which transforms k,——k,,
k,—k, (in the original notation) and which in the nota-
tion of (20) becomes X,ip,—>01Xa2ps Xazp > 1Xa1p"
p'=(—py,p,); and the “unphysical” parity transforma-
tion X yqp —> 01X qpr Which really changes particle and an-
tiparticle. The origin of these parity transformations is
quite different: The “physical” parity symmetry is al-
ways present in the initial Hamiltonian (1),(3); it can be
broken only spontaneously by some order parameter,
whereas the particle-antiparticle symmetry which is im-
plied by the ‘“‘unphysical” parity transformation is cer-
tainly absent away from half-filled band.

In Secs. VI-VIII we study the interaction of these fer-
mions with gauge fields which appear naturally in this
problem. To study this interaction the bare spectrum of
fermions described by Hamiltonian (20) should be regu-
larized by an infinitesimally small mass. Two types of
mass terms are possible which regularize Hamiltonian
(20) in quite different ways.!* The first type of mass term
has a form m’(jYleao)?alp ~Xa2p@®Xazp) and preserves
the physical parity but breaks the “chiral” UQ2N) symme-
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try to its subgroup [SU(N)XU(1)]%. The second type of
mass term has a form m (Xqq,@oXqq,)» Which preserves
the chiral U(2N) symmetry, but breaks the physical pari-
ty. Since the chiral transformations imply symmetry be-
tween real particles and antiparticles (bear in mind that
Xazp =0 1Xa2p), this symmetry is broken by an
infinitesimally small doping which serves as a natural re-
gulator in the present problem. In this paper we shall
study only the Hamiltonian (20) regularized by the first
type of mass terms:

Hfl‘:HF+m’fdp(721pa(ﬁalp —YZZpaOYaZP) . 2D

IV. FLUCTUATIONS OF THE PHASE
OF THE ORDER PARAMETER

Hitherto we have discussed the results of the mean-
field approximation which implies the replacement of the
path integral over the fields A;;,¢; in (4) by a substitution
of their values at the saddle point. Fluctuations of the
amplitude of A are small everywhere except the narrow
(7« N ') region in the vicinity of the transition point
which we do not consider here.

Now we turn to the study of phase fluctuations of A;.
Usually in a two-dimensional case thermal fluctuations
destroy the mean order parameter. In our case these fluc-
tuations are much stronger; they destroy the order pa-
rameter even at zero temperature.

It is convenient to represent the phase field ¢;
(A;;=AWexp(i¢;) (where A is the solution of the
mean-field (MF) equations which we discussed in Sec. II)
as a sum ¢;; =v; —; +a;;, where the fields ; are defined
in the lattice sites, whereas ¢,; and a;; = —a;; are defined
at bonds (ij). This separation of ¢,; into ¢; and a;; is am-
biguous, but it can be determined from some auxiliary
condition imposed on a (choice of gauge); we discuss the
most convenient form of this condition below. The in-
tegration over phase fluctuations ¢,; can be performed in
two steps: at first over the field ¥; and then over the field
a;; with the auxiliary condition (to prevent double count-
ing). Now we discuss the effective action of these fields.
To begin with we note that the obtained free energy
F{A}=InTrp, (10),(13) does not depend on ¥; in the vi-
cinity of the transition temperature 7,. To prove this
fact in the general case we represent Trp, as a path in-
tegral over the fermion field:

Trp,= [ DeDe exp |— fo"[za,c +Hy(T,0)]dT

and perform in this integral the variable transformation
c;—c;expli;) ,
. (22)
s T
which leads to the additional term in Hp
8Hp=inoy; ,

that is, the total derivative is over time and does not
change the effective action InTrp, at the integer n.
Thus, in new variables Hy has the same form as before,
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but A;; changes to A;;=A exp(iyh; —it;).

Therefore, the effective action does not depend on the
field ¥. In Sec. VI we discuss the effective action of the
fields a;;,;, while now we discuss the integration over
the field ¢;.

To compute any fermion correlator we should average
its expression with the weight p, over the fermion field
and v field, then the variable transformation (21) in such
an integral changes all variables ¢,c in this way:
¢—c exp(iy;). Thus, the averaging over v results in the
cancellation of any fermion correlator that corresponds
to a charge-transfer process (e.g., one-particle Green’s
function). This averaging results also in a zero mean of
the order parameter. The averaging over ¥ does not
change the fermion correlators that correspond to the
processes without charge transfer, e.g., the two-particle
correlator

(T(cheip)c]eis)) = aﬁsys Gi(r). (23

B450p, —

The second term in this expression is a small correction
to the first (over N~ !); it is due to fluctuations of the a;;
field (Sec. VI). In the case N =2 this correlation function
means that the spin correlator is described in the RVB
state by the ordinary metal Ruderman-Kittel-Kasuya-
Yosida expression. The averaging over 3 does not
change the partition sum, thus leaving intact the free en-
ergy so that all statements about the low-temperature be-
havior of specific heat (Sec. III) are still valid. A similar
phenomenon that integration over bosonic field fluctua-
tions changes the fermionic Green’s function, but not the
spectrum of fermionic excitations, was observed in Ref.
15.

V. METAL-DIELECTRIC TRANSITION

Above we considered the dielectric state at large U so
that all states containing any other than n electrons per
site make a negligible contribution to the partition sum.
Thus we take into account these states as virtual states
only. With a decrease of the repulsion U the transition
into the metal state occurs. In this transition region and
in the metal state we cannot regard only the states with
n, electrons per site. A small doping also results (even at
large U/t) in the appearance of states with n=£n, elec-
trons per site. To describe these transitions it is far more
convenient to discuss the modified Hubbard model (3)
with an additional interaction T ;:

H= Z[— ij Ctacja)(chCtB)+tzjcta a]
ij
—n3In+iUu I n?. (24)
i i

Unlike the case of a large U (4), where the interaction ap-
peared naturally in the first order of the perturbation ex-
pansion over ¢ /U and was equal to t /U, now ‘Z', is an
independent parameter; moreover, at half filled band we
shall consider only the region T >>t /U, whereas at
low dopmg and U/t >>1 we can treat also the region
TSt j/ U. Proceeding then analogously to Sec. II we
make the Hubbard-Stratanovich transformation in the
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path-integral representation of the density matrix and in-
troduce the auxiliary field ¢; uncoupling the interaction
Un? and the field A;; uncoupling T; cI,c o€ ch,B We get

L= Ecmafc,a+2[‘lA,,|2‘T T+t — A% ethe)al

ij
. 1 5
> ,— A ———p? | . 25
+ - (l¢l ll’)n!+2U¢l ( )

New terms present in this Lagrangian [cf. (5)] affect
slightly the mean-field equations (6) and (7) for A;;, but
these terms violate the symmetry of the action with
respect to ¢ transformations. To find the effective action
of the ¢ field we again make the variable transformation
(21). Now this transformation changes the effective ac-
tion and helps us to pick out nonvariant terms. After the
variable transformation (21) the Lagrangian becomes

L= zclaafcla+zc1a a[ tl_]exp l¢l+l¢j)

ij
+exp(—ia;; )AE;”]
+3 (g w35 @~ | 26
i

It is convenient to choose the gauge transformations (9)
so that the resulting ¢; does not depend on time and re-
places the path integral over ¢; by a path integral over
¥;(¢) and an ordinary integral over ¢, =@¢,. The constant
¢, should be determined from the condition of the free-
energy minimum:

i<citzcia>:iU<¢i—¢0> ’ @7

where (---) means an average with weight
exp[ — [ L d7] with L being defined by (26). The fluctua-
tions of the g;; field have a small parameter N 1, We
postpone this discussion until Sec. VI. Here we only state
that their effect on the effective action if the ¢ field is
small.

The last term in the effective action (26) describes a
system of noninteracting rotators governed by the La-
grangian L:

2 ($; —i@o)* , (28)

where we use real-time representation. The presence of
the cross term ;¢ in the Lagrangian L, distinguishes
these rotators from the ordinary ones. To obtain their
energy spectrum we employ the Schrodinger representa-
tion. The canonical momentum M conjugate to the vari-
able ©; is

1.
M =, —igq) . (29)

Inserting the expression (29) for a canonical
momentum into Hamiltonian H =My—L we get
H=1U(M+igy/U)*. The wave function Y (1) should

be periodic over 1 so that eigenvalues of the operator M
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are integers m and the corresponding energy levels are
€n=1U(m +ipy/U)* . (30

In the rotator ground state m =m,, where m is the
integer which is closest to —i@y/U. (It can be shown
that @, obeying the condition (27) is purely imaginary so
that i g, is real.)

Now the Eq. (27) acquires a simple meaning: It en-
sures that the mean number of electrons in the system
equals the mean value of the operator — M.

The second term in the effective action (26) describes
the interaction of rotators with each other and with fer-
mions. Using the large-N approximation we can replace
CinCjq in it by its mean (cjc;q? =A4;;(2T;)"". Thus, in
the leading order of the large-N approximation the
effective action of the Bose field ¥, becomes

L{y}=Lo{$} +Lin Line= X Tycos(hi —¢;)
i’j

- . (31
tU‘%AMZTW ,

where L, describes the interaction between neighboring
quantum rotators. The effective action for the system of
interlzzcting Josephson junctions also has the form of
(31).

In the absence of doping we should choose
ipoe/U =ng, which ensures that each rotator spectrum is
symmetric around my= —n, so that the condition (27) is
satisfied. In this case the energy spacing between the ro-
tator ground state and its first excited level is U/2,
whereas the interaction energy is of the order of tN.
Thus, at small tN /U long-range order is absent in this
system even at zero temperature. At larger ¢ (such that
tN/U~=1), the transition into the ordered state takes
place in this system. Unfortunately, we are not aware of
any reliable analytical method which allows one to study
the properties of the system (31) near the transition into
the ordered state (at tN /U =1). However, the properties
of the transition can be studied analytically for the sys-
tems with strong repulsion ¢V /U <<1 and low doping.

In this case the interaction between rotators is small.
At nonzero doping the mean value of M is fractional,
which implies that the rotator wave function is a super-
position of wave functions with m,=—n, and with
m,=—(ny—1). Thus, in this state we may choose
i@y/ U to be close to ny—+ so that the level spacing be-
tween levels m; and m, is of the order of t. The level
spacing between other levels remains U >>tN. Therefore,
in this state each rotator can be described by a two-level
system. The excitations to the higher level are Bose par-
ticles, they can be described by the operators S; which
are equal to the operator exp(—iy;) projected on the
remaining two levels. If the density of holes is small then
the number of Bose excitations is also small and it is con-
venient to represent the operators S,—,S,-T as a series over
creation-annihilation operators of the Bose field. We
make use of the Holstein-Primakoff transformation and
get

st=bf(1—b'b,), ‘ (32)
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where we retain only the leading and the next term of the
expansion over the boson density. The projection of —M
on the remaining two levels equals no—bfb,- describing
the number of bosons. Thus in the Bose representation
the condition (27) acquires a simple form,
(¢}l ein) +{bb,; ) =n,, which is exactly the constraint in-
serted by hand in the slave-boson approach.’ It means
that the number of bosons equals the number of physical
holes. In the Bose representation the Hamiltonian of the
rotators becomes

H{b}=H,{b}+H, (b},
Ho{b}=3T7,b/b,+e3 bb, , (33)

ij i
Hi(b}=—3% T,j(bin;b,-b,-—FbTbTb-b. )€ bininibi )
ij

Jo1TrT

where € is the level spacing between m | and m, levels:
e=igy—(ny—4)U . (34)

If the hole density is small then the gas approximation
can be employed to study the Bose system (33). In this
case only long-wavelength bosons are important; their
bare spectrum follows from the Hamiltonian H{b}:

€ k)=t(k)+e=e—ty+t k?*. , (35)

We note here that the long-wave properties of the Bose
spectrum €,(k) are insensitive to the fermionic state: In
both the uniform state and the flux state ¢, ~¢; ~¢tN with
only numerical coefficients in ¢, ¢, being different in these
states.

At €>1, there are no bosons in the ground state. At
€ <ty the bare spectrum becomes unstable, but the Bose
interaction described by H,, {b} corresponds to repul-
sion between long-wavelength bosons, therefore in this
case a Bose condensate is formed, {5 )=£0. In the gas ap-
proximation the density of this condensate is governed by
the scattering amplitude " of two bosons:

to—e€
INw=0, k=0) °

The scattering amplitude I" at zero frequency and zero
momentum can be obtained with logarithmic accuracy
from a summation of ladder diagrams:

= 2=
n.={b)| 3 (36)

4t

r=— "
Inltg/(1g—€)] (37)

In the leading order over {In[z,/(¢t,—€)]} ! the total
density of bosons n coincides with n.. The difference be-
tween n and n, is proportional to the next order of the
small parameter {In[t,/(t,—€)]} 1

n—n,~(ty—e€)/4mt,
~n {In[ty/(t,—€)]} " . (38)

Thus in the present system the total number of bosons
(and thus the hole density) is zero at n, =0, which means
that at n, =0 the band is half filled. This is a general re-
sult for the Bose system with repulsion; attraction be-
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tween bosons results in a macroscopic collapse. In Ref.
17 it was shown that for a system with one type of bosons
there is no alternative to a one-particle condensate other
than collapse. However, another scenario is possible if
there are several types of Bose fields in the system. In
this case a pair Bose condensate can be formed:
(b?bP)=£0, (b?)=0. For instance, this is the case for a
system consisting of a number of planes in which a weak
tunneling between planes results in an effective attraction
between bosons on adjacent planes, whereas bosons on
the same plane still repel one another. (This mechanism
of boson attraction was proposed in Ref. 18.) The ap-
pearance of these Bose condensates results in the break-
down of the local gauge symmetry related to the fields
aij,(p.
The additional interaction

3 Ty e pcip)

uz Cia

in the model considered in this section results in pairing
of an electron and a hole at adjacent sites. An analogous
interaction

2 T j(eihefa Neipesp)
ij

results in electron-electron pairing at adjacent sites. The
properties of the dielectric state with this interaction
differs slightly from the properties of the dielectric state
in the model (24), but in the metal state the formation of
the order parameter (A;; ) means superconductivity with
the usual electron spectrum
E(k)=tXk)+AXk) . (39)
Far more interesting is the combined effect of the in-
teraction

27 (eleja)e scip)

and palring

> ’f'j
ij

/3)( ja€iB

which corresponds to a two-electron tunneling process
from the i to j sites. Along with a one-electron tunneling
process, this term violates local U(1) symmetry and re-
sults in the effective action of the i field with potential
energy

zt A%(2T ;) " cos[ 2, — ;)] .

The important difference from the potential energy (31) is
the factor 2 inside the cosine function. If the repulsion U
is small so that this term violates the symmetry and
{cos(21)) is formed, one symmetry is still left: It is the
transformation ¢ — —c(¢¥=m), that corresponds to the
local Z, gauge group. In this state one-fermion charge
transfer excitations still cannot exist, but two-fermion ex-
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citations can transfer charge. Thus, in this state normal
current is impossible, whereas a genuine superconductive
state can be formed.

VI. COLLECTIVE EXCITATIONS
IN THE SPIN LIQUID

Hitherto we averaged over phase fluctuations ¢,; of the
order parameter A;; and over the field @; restricting these
fluctuations to the sector that can be parametrized by the
Y field: ¢,;,=¢,—¢,, @;=v;. In this section we discuss
the effect of the averaging over the remaining fluctuation
sector.

First of all we choose the parametrization of these fluc-
tuations. We note that the representation

¢ =v;—¢;ta; (40)
corresponds to the gauge transformation of the a field.
Thus the independence of the effective action In Trp, un-
der the variable transformation (22) means that the
effective action InTrp,{¢,;,¢;} does not change under
the gauge transformations if the field ¢; (scalar potential)
is also transformed:

—; . 41)

The averaging over ¢ fields means in these terms also
averaging over the gauge transformation, and the remain-

‘ing fluctuation sector corresponds to fluctuations of the

fields F

Now we discuss the form of the effective action of these
fields. In this section we shall consider only the dielectric
state neglecting the influence of fluctuations of the 1 field
on the action of the gauge fields (a,¢). The bare action
(without fermions) is zero, but the integration over fer-
mion fields results in a large action (it contains a factor
N) so that the resulting fluctuations of these fields are
small and we can safely retain only terms quadratic over
a,p in action. As before (Sec. VI) it will be convenient to
choose the gauge imposing the condition ¢, =¢, Ex-
panding then the action (26) over small a;; and keeping
only the terms of second order, we perform the averaging
over fermions and get

~Sla}= f drdr %a,,(rmgﬁak,(f')

XA(O)GU T—T )ij —7)

_f dr ZaZA‘O)G (0) . (42)

Since the fluctuations of a;; have a small parameter, only
long-wave fluctuations of the a field can result in
dangerous consequences. For these fluctuations we can
replace the link field a;; by its continuum limit:

i =(z7—z)a,l(z;+z;) /2], the effective action of these
ﬂuctuatlons becomes



a,(k,w)agk,w) gk, 0)(d?k)

=z |-
W
Sy
I
S
—
:tM

o =f(d2 ) nip+k/2)—n(p—k/2) de 3e
aB o—[elp +k/2)—elp —k/2)] dp, dpg
%
——n(p) (43)
9p,9pp i

n(p)=(exp{le(p)—ul/T}+1)"1.

In the uniform phase only the first terms in the expan-
sion of I1,45(w,k) over w and k are required for the follow-
ing. We find

kok -
M= |8,5— kf v,(k)—l|%l-+v2(1?)k2
ko k
+ Z4Bw2vp(eF), (44)

where v,(k) and v,(k ) are smooth functions of k =k /|k|
and are due to anisotropy of the spectrum e(k). Their ex-
plicit form is unimportant for the following estimates in
Sec. VII, where we put

vilk)=1, v (k)=A, vplep)=A"!

In the flux phase the electron spectrum is relativistical-
ly invariant near the Fermi surface so that the effective
action of the gauge field a, should also be relativistically
invariant. Generally to two types of relativistically in-
variant terms are possible: apart from a purely trans-
verse term with I,z given by

1 @™ot (SK),5— 8%k kg
8 [0)2+S2k2]1/2

the other term is also possible which acquires a more sim-
ple form in the real-space representation:

M,p , S=2A, 45

S'=~c¥N [drd’zepa.fp, .
(46)
S oy =0pa, —9yap .
The coefficient 7 of this term depends crucially on the
regularization of the Fermi spectrum in the vicinity of
points k* (Sec. III). If the regularization is provided by
the parity-conserving mass term, ¥ =0 and this term is
absent as it should be since it violates parity. On the oth-
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er hand, if the regularization is provided by chirality-
conserving mass, ¥ =2 and the parity is violated. In this
paper we discuss only the former case. We only note that
this term, if it exists, would have serious consequences for
the statistics of low-energy excitations, and, in fact, may
inhibit the Bose condensation of holons discussed in Sec.
V, so that this problem deserves careful study.

The form of the effective action (44) means that collec-
tive low-energy bosonic excitations of the gauge field are
purely relaxational in the uniform phase with the decay
rate @=iv,k*v;. In contrast, in the flux phase, low-
energy excitations are purely oscillatory with the spec-
trum o ==Sk.

The effective action (43) contains a large factor N so
that the correlators of these fields are small and the
corrections to the spinon correlators that originate from
the bosonic exchange are also small (<N ~!). For in-
stance, in the correlation function (23) the last term is
due to the exchange of the a, field. (It can be easily ob-
tained in the gauge diva +9,¢=0.) For fixed indices a,3
this term is small over N ~!; however, it cancels the other
term in the trace of this correlation function over pairs of
indices (a,3) and (,8). This cancellation means that the
correlation function of the density operator n; is exactly
zero as it should be in a dielectric.

VII. THE ACTION OF INSTANTON

In the lattice (2+1)-dimensional electrodynamics the
interaction of photons and instantons result in an ex-
ponentially small mass [m «<exp(—1/e?)] for photon
and quark confinement.!® In this theory instantons form
a very dilute gas. In our case the singularity of the
effective action (44) and (45) at small momenta which
originates from the interaction of the gauge field with fer-
mions changes the situation dramatically and results in a
zero-density instanton gas and zero photon mass.

To prove it we compute the action of one instanton.
The action is a periodic function of a;;. Thus it is also the
periodic function of the lattice “magnetic” field

bzza,j +ajk +ak1+a1,-

(z is the center of a plaquette [ijkl]). the simplest way to
take into account this periodicity is to introduce the auxi-
liary integer-valued field n, and rewrite the action in the
form

S =%fdr’d7' [2 e,-jkl(T'—T)e,-j(r)ek,(f')-l—Eluzzf(f-—r')[bz(r)—Zﬂ'nz][bzr('r’)—27rnz:] ] , 47)

ijkl

where e;=0,a;; is the ‘“electric” field: in the long-
wavelength limit e;; =e,(z7—2z]), e,=0d,a,, b=V Xa, €
is the dielectric constant, and p is the magnetic permea-
bility; in the long-wavelength limit they acquire a simple

form in the momentum representation:

r

ko k k k
€apl@, k)= |8,5— sz €+ ;2662’
vW\N veN
€= ! , €= a (uniform) ,
lw|k k?
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u = V2N N (48)

NS?

Cap™dues W=STe= 8(w?+S2%?)

One instanton centered at the point O corresponds to
the n-field configuration in which the sum of n, over any
surface enclosing [in (2+ 1)-dimensional space] the point
0 is unity. For simplicity we choose n(7,z)=8(z)0(r).
Now we should minimize the action (47) and (48) with
this source. In the momentum representation the
saddle-point configuration of the field a (we work in a
gauge ¢=0) is:

(flux) .

2y S O) Cow En=1), 49)
a,=2m €= —€p, €E,=1),
a o €,0% + k> B B> €12
and the corresponding action equals
(2mine)*e
So=41|dkdo————. (50)
o 2 f €,0%+pk?

Since one instanton corresponds to n,=iw ! the in-
tegrals in (50) for the uniform and flux phases become, re-
spectively,

vivy(dw dk)
(Vo] +v,k*)| 0]

— N2 f (do dk)S*? N
4 (w2+szk2)3/2 -
These integrals diverge at small momenta, thus the ac-
tion of one instanton is infinite and their density is zero in
both phases. The main contribution to the integral (51)
comes from the region of small frequencies and momenta
which justifies the employed long-wavelength approxima-
tion. In the flux phase the divergency of the integral (51)
is only logarithmic.
Evaluating in this case the contribution of the one-
instanton configuration to the density matrix of the sys-
tem with volume W we find that it is proportional to

W exp(—Sg)=exp[(1—N/24)InW]

So=2m*N [

(uniform)

(51)
%m(k;‘) (flux) .

So

and, thus, can be neglected only if N=N,=24. At
N =N, the second-order transition takes place, and at
N <N, the main contribution to the density matrix
comes from configurations with macroscopically large
numbers of instantons. In Euclidean (imaginary time)
language, the instanton is a “magnetic” monopole with
unit charge. The transition which happens at N =N, is
similar to the vortex unbinding transition discovered by
Berezinsky, Kosterlitz, and Thouless?® in the two-
dimensional (2D) XY model. The properties of the
present model in the vicinity of the transition point N,
can be described by the renormalization-group theory
developed in? for the 2D XY model. Since we regard the
problem of the physical properties of a model with
N =~ N_ as unphysical, we shall not dwell upon this point
here, but discuss the qualitative properties at N S N,.

We use the Euclidean language. The energy of a
monopole configuration can be obtained analogously to
the derivation of one monopole energy (50). It comes to a

transparent form if we express it through a monopole
charge density ¢ =0dn /81. (We note here that this for-
mula is not Euclidean invariant, since in the present mod-
el there is no lattice spacing in the imaginary time direc-
tion; otherwise n would be vector n,, and this formula
would read g =divn). We get

__N77'2 lquZ
E= 4 f PE

dp, q,=23 q;exp(—ipR;), (52)

where we use three-dimensional notation: p =(wS ~',k),
R =(1S,z). Each monopole generates a three-
dimensional magnetic field H =2mp,/|p |2 [where
H =(b,eS " !)]. In the absence of monopoles the correla-
tion function of magnetic fields H u follows from (47), and
the presence of monopoles modifies it by the correlation
function (gq ), of the monopole charge density:

PuPy PuPv
8™ Mz + #{:

<H#HV)=%|p| 47*(qq), .

(53)

At N <N, at large distances (R * R.) monopoles be-
come free and fluctuations of the charge density can be
described by the usual weight exp[ —E {g,}] in which the
charge density g, can be regarded as an independent vari-
able. Evaluating in this way the correlation function
(gq?,, we see that it cancels the singular term in (53).
Therefore, at N <N, the transverse part of the gauge field
cannot propagate to scales larger than R_, in other
words, at N <N_ the gauge field acquires a mass
m «< R c_l.

VIII. ELECTROMAGNETIC PROPERTIES

We have shown that low-energy fluctuations in the
present model are described by Fermi fields and gauge
fields in the dielectric state and by Fermi, gauge, and
Bose fields in a state close to the dielectric. In this sec-
tion we discuss their interaction with a real electromag-
netic field and the resulting electromagnetic properties of
the whole system. We shall consider only the model with
large repulsion (¢tN/U <<1) and low (or zero) doping.
Moreover, since we are interested mainly in the qualita-
tive interplay between superconducting and normal prop-
erties we shall suppose some scattering mechanism (e.g.,
by defects) which results in finite conductivity at 7=0 in
the normal state of the Fermi liquid.

To obtain the effective interaction with an electromag-
netic field 4 we recall that the electromagnetic field re-
sults in the appearance of a phase factor exp(i 4z;;) in the
term t,-jc;rac i« describing the hopping processes in Hamil-
tonian (24). Proceeding further analogously to the
derivation of (26) and introducing the operators b;
describing the Bose field at low doping, we obtain the
effective interactions of Bose and Fermi fields with the
gauge field g;; and the electromagnetic field 4:

Ly =3 Ciocjqexplidz; )[t,-jb,-b;—exp( —ia; AP .
Lj

(54)
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The action (54) is invariant under gauge transforma-
tions 4—A4+V0,, c—cexpif,, and a;—a;+6,
—0,j, ¢c—cexp(—if,), b—bexp(if,), which means
that the charges of the Fermi field with respect to gauge
fields A and a;; are +1 and —1, correspondingly, the
charges of the Bose field with respect to gauge fields 4
and a;; are 0O and —1.

In the absence of holes the term proportional to ¢; in
the effective action (54) can be omitted, so that the gauge
fields are present in the action in the difference Az;;—a;;
only. In that case the effective long-range action of the
gauge fields 4,a;; can be expressed through the fermionic
polarization operator I1 g

S| A,a;=§fdk S ([ Ag(,k) —ag(@,k) e,k

X[ g0, k)—aglw,k)]} . (59

Therefore, in that case the average over a;; results in the
action which does not depend on the electromagnetic
field at all. This means that in the absence of holes the
electromagnetic response is absent as it should be in a
dielectric.

In the lowest-order approximation over the hole densi-
ty the effective action of the gauge fields becomes

S{A,a}=—§—fdk2 ([ Ay 0,k)—ay(@,k)]

XHaB(CO,k)[ AB(CD,k)_aB(CD,k)]
+ay(o,k)r 6o, k)aglw,k)} ,
(56)

where the first term is generated by fermions that interact
with both fields 4,a;; and the second is generated by bo-
sons which interact only with field @;;. It is convenient to
single out from Il g and 7,4 their longitudinal and trans-
verse parts:

k.kg kokg
HaB= 8‘15-—— k2 H1+ k2 H2 >
.k (57)
kykg B
Tog™ |8ap— 2 T+ 22 Ty

The appearance of a Bose condensate means that
remains nonzero at w,k—0: m(w=0, k=0)=n,. At
temperatures above the critical point of Bose condensa-
tion m(k =0)=0,0+0(w?). If the repulsion U is
strong, then the number of bosons equals the number of
holes which implies, in particular, that o, becomes zero
in the case of a half-filled band. At finite U we should
take into account that the rotator should be described by
two Bose fields: One field corresponds to creation of exci-
tations with m >m, and the other to excitations with
m <mgy. The number of holes equals the difference be-
tween the numbers of bosons of these two types. At finite
temperature and for a half-filled band the conduc-
tivity becomes finite but exponentially small:
o, x<exp(—U/2T), since the minimal energy of excita-
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tion energy in this state is U /2. If the band is half filled
the gap in the bosonic spectrum which is nearly U /2 at
U>>tN decreases with U and becomes zero at
U=U,~tN. At U<U, a Bose condensate is formed
which breaks the gauge symmetry.

Now we turn to fermionic excitations. We begin with
the uniform phase. The exchange of virtual quanta of the
field a;; leads to repulsion between fermions separated by
a large distance. The exchange by virtual quanta of the
Bose field can lead to attraction at large distances but its
strength is proportional to the density of bosons (i.e., the
density of holes) and is weak. Thus, in the framework of
the simplest one-plane model with equivalent sites the
effective interaction of fermions is repulsive at large dis-
tances. The exchange of short-wavelength fluctuations of
the A;; field usually results in short-wavelength attraction
between fermions. Thus, in that system a weak supercon-
ductivity with a large correlation length is impossible, but
the possibility of a strong superconductivity with a small
correlation length § cannot be excluded on such general
grounds and deserves special study. If the system of fer-
mions is normal then IT,(k =O)=afco+0(w2). In more
complicated models the interaction between fermions can
become attractive; in this case at low temperature the
system of fermions becomes superconductive and
II(k =0)=p,+O0(w).

For instance, in the model which consists of many
planes coupled by weak tunneling the exchange of virtual
bosons results in weak long-range attraction between fer-
mions on adjacent planes. Since the gauge field a; is
purely two-dimensional the long-range repulsion between
fermions on different planes is absent. Thus, in this mod-
el the effective long-range interaction between fermions
on adjacent planes is attractive and leads to superconduc-
tivity of the fermion subsystem. This superconductivity
is unusual since it originates from off-diagonal pairing of
fermions on adjacent planes. This form of pairing was
originally proposed for layered materials in Ref. 7. All
the aforementioned reasons for existence (or rather
nonexistence) of a superconducting state in the uniform
phase can be applied as well to the flux state if N is
indeed very large (N > N_). However, as we have seen in
Sec. VII, at N <N, the nonperturbative mechanism pro-
vided by instantons results in the effective mass of the
gauge field, i.e., it favors the superconductivity of the
Fermi subsytem. The other important difference of the
flux phase is that, since the density of states is zero on the
Fermi surface, its conductivity is proportional to the tem-
perature in its normal state.

To get the effective action of the electromagnetic field
which describes its interaction with the whole electronic
system we should average the effective action (56) over

long-wavelength fluctuations of the gauge field a;;. Per-
forming the averaging we get
s(4}=L [ax
(4)=5 [dk 3 A (0,k)Posdgak)
n
K K (58)
Pos= saﬁ—%ﬁ— P, +—22—6—P2 ,
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Il
P,= 17y

= 59
I, +m, (59)

The current j appearing as a reaction to the external
electromagnetic field 4 is given by j =P A. Thus formula
(59) means that the physical conductivity of the whole
system is determined by the lowest conductivity of the
Fermi or Bose subsystems.

This means that if the Bose subsystem is superconduct-
ing and the Fermi subsystem is not, then the' physical
conductivity is finite and equals o ;. In the opposite case,
if the Fermi subsystem is superconducting and the Bose
subsystem is not, then the conductivity is also finite and
equals o ,. If both subsystems are superconductive then
the superconductive density of the whole system is
p=psps/(ps+py). If both subsystems have a finite con-
ductivity, then the resistivity of the whole system is the
sum of the resistivities of the subsystems:
o '=0;'+0, . If the band is half filled and U>U,,
then o, tends to zero at T—0. Therefore, the conduc-
tivity of the whole system is zero in this state at T"=0 in-
dependent of the state of the fermion subsystem.

IX. CONCLUSIONS

The main purpose of this work was the study of a mod-
el that provided gapless fermionic excitations in the
dielectric state. In the considered model the operators of
the fermionic quasiparticles (spinons) are operators of
real electrons dressed by a phase factor ¢, =explit;)c;.
In the dielectric state the local gauge symmetry is re-
stored, the fluctuations of are large, and the mean value
of the phase factor {expiy) is zero. Thus, in the state
with excited quasiparticles the mean number of real elec-
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trons is zero and spinons cannot carry the electric charge.
The transition in the metal state results in symmetry
breaking and formation of the order parameter
(expli))=£0, and the spinons become ordinary Fermi
excitations.

In this paper we studied a model with a large number
of colors N that allowed us to obtain quantitative results
using a N ! expansion. Apparently, for real materials,
N =2 and the obtained quantitative results (such as each
phase energy, and the phase diagram) are unreliable,
whereas the qualitative properties of each phase probably
do not change for N =2. We believe that the only way to
study the quantitative properties of a more realistic mod-
el with N =2 is the variational approach in which a wave
function for N >>1 can be used as a trial function. In the
present approach we have not considered the problem of
phase separation which can occur in the doped systems.
For instance, in the usual Hubbard model with low dop-
ing with strong repulsion U >>t the phase separation is
energetically favorable: The magnetic state with one
electron per site and a small ferromagnetic bubble which
contains all holes has lower energy than the uniform state
with an even distribution of holes.?!

The same phenomenon occurs in the present model if
>1 [note that in the Hubbard model without
modification (3) I =1%/U <<7]. In that case in the doped
system with n =n,—8 (n, integer) electrons per site the
phase separation takes place: In the main part of the sys-
tem the number of electrons is ny and in the other part it
is ny—1. Above we have considered the model in which 7
and I are independent parameters, in that model the op-
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