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A two-order-parameter approach to the theory of granular superconductors is presented, in
which the paracoherent transition and the superconductive one are treated accounting for their mu-
tual coupling. The appearance of a tricritical line in the phase diagram is discussed. Renormaliza-
tion of the amplitude of the order parameter is predicted in the whole temperature range, leading to
a satisfactory understanding of experimental data previously unexplained.

It is by now a well-established fact that strongly inho-
mogeneous superconductors (granular superconductors)
can be modeled by arrays of coupled Josephson junc-
tions.! The currently employed model Hamiltonian con-
tains a charging term’ besides the usual intergrain
Josephson coupling term E;; more recently dissipative
effects due to the coupling with a thermal bath® and/or to
quasiparticle tunneling® have been introduced into the
theory. From the most recent studies, at least three main
features appear to be emerging: first, the possibility of a
reentrant behavior of the critical temperature TJ,5 the
temperature at which the system wundergoes the
paracoherent transition; second, the feasibility of a
Kosterlitz-Thouless-Berezinskii transition in systems of
restricted geometries,6 and third, the role of dissipation.7

In the usual approach to the study of the paracoherent
transition, the phase ¢ of the superconducting order pa-
rameter of the grains A is the only relevant dynamical
variable. This picture is suitable, for example, when T is
much lower than the single-grain superconducting transi-
tion temperature T-. In the granular Al samples studied
by Shapira and Deutscher,® however, this two-step be-
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havior is not observed showing that T; << T cannot be
taken as a rule.

In such systems it seems more appropriate to treat the
two transitions on the same footing; this implies that we
cannot any longer disregard the | A| dependence of E;.
This leads to a coupling between the two order parame-
ters | A| and ¥ which describe, respectively, the onset of
the single-grain superconductivity and the locking of the
phases in the array.

The aim of this article is to present the appropriate free
energy for dealing with the case T, ST, and to show
how, even in the simplest evaluation scheme, the cou-
pling between | A | and W provides a richer picture. We
will show, for example, that the paracoherent transition
is likely to be first order for suitable sizes grains.

The treatment of Ambegaokar, Eckern, and Schon
(AES) can be generalized for our purposes. We express
the partition function as

Z= [ DADS exp[ — (A, ¢) /%] , (1)

where
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and G,? is the Nambu-Gor’kov matrix Green’s function of the ith grain, A is the Bardeen-Cooper-Schrieffer (BCS) cou-
pling constant, U is the charging energy a(7—7') is the kernel describing the dissipation spectrum, and the integral in

the second term refers to the grain volume.

The first two terms in Eq. (2) refer to the single grains, while the remaining ones describe, respectively, charging,

Josephson, and dissipation effects.

The need of retaining the full functional dependence of & on | A| requires the inclusion of the first two terms in Eq.
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(2), this last not appearing in Eq. (32) of Ref. 7. In fact the AES approach rests on the assumption that the single grain
(as, for example, the mean-field value of | A|) and the coherence properties of the array are decoupled because the
single-grain condensation energy is large on the scale of E;. Then AES evaluate | A| from the first two terms in (2)
while the remaining becomes the well-celebrated effective phase action for the granular system. When the above as-
sumption is not valid (as, for example, when T; S T ) a generalization of the AES treatment is in order.

Performing the Hubbard-Stratanovich transformation to the phase-dependent part of & (Refs. 1 and 9) (which intro-
duces the auxiliary complex field ¥, see Ref. 1), and expanding the first two terms of Eq. (2) in powers of |A |, we
present, in the continuum limit, the following expression for the partition function Z = f D|A| DY exp(—F), where
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where the coefficients are
a=—8"'1—T/Tc)B,/B.),
b=[7&3)/87*16 (B, /B,) ,
¢, =(1)z(Ry/Ry)B; /B2 w(@,) ,
d=(1[z(Ry/Ry)B; /BHw(0)]?,
g=(1)z(Ry /R, (B, /Bw(0)p? ,

with

wlw,)= foﬁﬁdﬂe"‘f’”)ei%ﬁ(o’ Yoexp(—iw,T) ,

V(r,7)=B" '3 V,(r)explio,T) ,

w,=2mn/Bh, n=12.

Here 8=B,[N(0)Q]"!, N(0) being the electron density
of states at the Fermi surface and Q the volume of the
grain, {(3) is the Riemann § function, z is the lattice
coordination number, R,=h /4e%, R, is the normal
sheet resistance, p is the lattice constant, V', is the
volume of the elementary cell, |A| is chosen to be dimen-
sionless via the transformation B,|A|—|A|, and (),
refers to the average over charging and dissipative part of
the action. The integration in (3) is the continuous limit
for the lattice summation, i.e., 3 — [ .

The previous expression for the free energy was de-
rived under the following assumptions.

(i) Due to the smallness of the grains, | A| is taken
uniform inside the grain [the r dependence in Eq. (3)
takes into account only long-wavelength variations from
grain to grain].

(ii) Quasiparticle excitations are entirely neglected,
whereas the finiteness of the grain size is accounted for
via the parameter 8. !°

il

(iii) The Josephson coupling is evaluated neglecting
O(|A]®).

(iv) Quantum fluctuations in | A | are neglected.

The obtained free-energy functional can be viewed as a
novelty; indeed it is worth noticing that although a simi-
lar expression was derived elsewhere!! by a different
method, the functional approach here developed allows
to introduce just from the outset both charging and dissi-
pative effects.

The coupling between the two order parameters | A |
and || is of the kind | A|?|W|2. This can be under-
stood noticing that for T, close to T we can use the lim-
iting form of the Ambegaokar-Baratoff expression of E;
for | A| —0. Moreover in this region the static ansatz
for |A| is appropriate. Even if for the high-
temperature-limit results presented in this article ¥ can
be considered as classical too, we retain its 7 dependence
because the present expression is feasible to further inves-
tigate the effect of charging in the semiclassical region.!?

The coupling between a complex field (in our case ¥)
and another scalar ordering field (A) becoming critical at
a different temperature has been extensively treated into
the literature'® for the understanding of the interplay of
different modes of ordering. The situation here is some-
what more complicated because we do not deal with the
real coexistence of two orderings due to the fact that the
paracoherent transition is unthinkable without the previ-
ous onset of local superconductivity. This is reflected in
the peculiar form of the obtained free energy.

Even in the mean-field approximation for | A| novel
aspects due to the coupling of the two order parameters
are revealed. To this end we disregard, for the moment,
fluctuation effects in A because they do not affect qualita-
tively the new findings which merely depend on the form
of the coupling.

As in the standard approach to the theory coupled or-
der parameters, minimization of F(A,¥) with respect to
A yields

|A() [2=— [a—B23 ¢, | W,(r)| 248623 IV,‘I’,,(r)|2] [b—f—dﬁ"‘z\Il,’,‘l(r)\l’,,z(r)\l',*,‘s(r)\P“(r) L@

A first interesting point is that the coherence properties of the system lead to a renormalization of | A |, usually con-
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sidered in the literature as a single-grain parameter; this can be of some relevance as will be discussed below.

The effective free energy Ff(W) is obtained,

FN W)= [ dr l—a2/2b B2 (14ca/b) | ¥, (1) |2
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The free energy (4) differs from the one usually treated! in
the form of the involved coefficients.

An interesting feature clearly revealed by our treat-
ment is the change in the order of the phase-locking tran-
sition, this last being a typical occurrence in systems with
coupled order parameters.!® As it is well known, the con-
ditions for the appearance of a tricritical point is the van-
ishing of both the zero-frequency coefficients of | W |?
and | ¥ |*in the free-energy expansion

14+(a/b)e=0, (6)
da’/b—c3=0. (7

Let us remember that we are dealing with the case
T; STc. In this limit we will show that the system ex-
hibits a first-order transition for grain sizes large enough
to allow the neglecting of the charging effects. Using the
proper expression for the involved coeflicients we obtain
the following condition for the transition to be first order:

S <[m/4(3)]t; (1 —1,)?, (8)
where t;=T;/Tc. It is clear that a lower bound for the
grain volume exists in order that the system undergo a
second-order phase transition. As shown in Fig. 1 for
t; 51 a first-order phase transition appears for not-too-
small grain volumes as stated above; at lower ¢, the tran-
sition is of the second order for real systems, so to fall in
the framework of the usual phase approximation theory.

It is quite amusing that the appearance of this novel
feature in the phase diagram of the system (under proper
conditions) streams directly, in a much more realistic
context, i.e., accounting for the A-¥ coupling, from a
deeper treatment of a model Hamiltonian that is widely
accepted—even in its restricted version—as a suitable
description of the physics of a granular superconductor.

As discussed in Ref. 12 fluctuations of |A| can modify
only quantitatively the obtained phase diagram without
infirming the very existence of the newly found tricritical
line. It is worth stressing that the renormalization of |A|
predicted in Eq. (4) for T < T, can be found also in the
low-temperature limit.

At lower temperatures, the two order parameters’ free
energy cannot be expressed in the Ginzburg-Landau form
because the usual power expansion in |A| for the
single-grain part is not valid, and the coupling is now of
the form |A| |¥|? as can be readily verified in the

f

proper limit of the well-celebrated Ambegaokar-Baratoff
formula. Even if in a more complete treatment the quan-
tum fluctuations in | A | must be taken into account, the
static mean-field approximation is enough to show the
new findings.

By the same Hubbard-Stratanovich technique applied
to Eq. (1) resorting now to the 7—0 limit, it is possible
to obtain the appropriate (A, V) (we skip the standard
calculations for brevity), the minimization of which leads
to a generalized BCS equation for A. If we are near to
the paracoherent transition,

2|A| [=S(E—E}H~'—BA/A | +B~ zc,,l\lf,,l2

9)

where { are the Matsubara frequencies and E, the quasi-
particle excitation energies [the others quantities entering
(8) have been already defined]. In Eq. (8) the last term
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FIG. 1. The phase diagram in the plane #,-8 showing the

curve of the tricritical point; 8 is inversely proportional to the
volume of the grain and for grain sizes ~ 1000 A is about 1073
while it approaches unity for sizes of ~ 100 A. It can be readily
observed that the neglecting of charging is consistent with the
mentioned values.



represents the correction due to the coherence properties
of the array and reduces to the BCS equation when ¥ =0.
Rearranging Eq. (8), taking the 7—0 limit, and bearing
in mind that near the paracoherent transition ¥ is small,
one finds the relative correction for A at T =0,

(JA] =8| )/ Ag| =(8/B.Ay)E(a—a. )", (10)

where A, is the BCS order parameter of the grain as if
alone, ¢y =limg_, ,, B lw(0), a=zE,; /U, a, is the critical
value for which T,(a)=0, and 7 is the critical exponent
for ¥ (we did not call it B as usual to avoid a misunder-
standing with the inverse of the temperature).

Equation (10) shows several aspects not accounted for
in the usual phase Hamiltonian approach: Indeed we
predict a scaling law for the depression of the gap as the
critical temperature 7, approaches zero [we remind that
T; < (a—a.,)?].

This effect has been detected experimentally by tunnel-
ing measurements (see Ref. 14 for a detailed discussion),
and it cannot be understood in the framework of the
phase model. We admit that we cannot perform a quan-
titative comparison with the experiments but, in our ap-
proach it is a simple consequence of the A-V¥ coupling.

It is worth noticing that the “strength” of this correc-
tion strongly depends on the prefactor of the rhs of Eq.
(9); therefore according to its value this effect could be
weak. (This could be the case in the experiments of
White ez al.'®)
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In our opinion the scope of this work is twofold and is
essentially summarized in Egs. (5) and (10). First, a
“new” free energy is presented for the analysis of the
paracoherent transition: it has the usual O(2) symmetry
but different coefficients due to A-¥ coupling. The ob-
tained form is far from containing a mere renormaliza-
tion because as we showed in (7) it leads to the appear-
ance of a tricritical line in the phase diagram. The choice
of a mean-field approximation for |A| could be question-
able, although it must be stressed that the very existence
of the first-order phase transition is not affected by |A|
fluctuations'? and that these last are seriously suppressed
because of the coupling between grains.

Second, we show through Eq. (10) how the A-¥ cou-
pling is relevant in the low-temperature region to explain
tunneling data. It is our purpose to work out more deep-
ly the consequences of this approach in order to explain
other features such as the broadening of the gap edge
with increasing Ry which cannot be understood inside
the limits we have posed to the actual analysis.
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