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Transport properties of anisotropic superconductors:
InAuence of arbitrary electron-impurity phase shifts
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We investigate electron-impurity scattering in a number of unconventional superconducting
states with a low impurity concentration, making no assumption about the phase shift in the normal
state. The scattering amplitude in the superconducting states is found not to exhibit particle-hale
symmetry, and not to be invariant under time reversal. As a consequence, we find that there can be
large thermoelectric effects, and that some tensor components of transport coe%cients that vanish
in the normal state can be finite in the superconducting state. Detailed calculations of the quasipar-
ticle relaxation time, thermoelectric coe%cients, viscosities and thermal conductivity are performed
for the axial and polar p-wave states and an axial d-wave state.

I. INTRODUCTION

Transport properties in heavy-fermion superconduc-
tors have attracted much attention since measurements of
them can possibly shed light on the nature of the super-
conducting state and scattering mechanisms. At low
temperatures, the transport coe%cients of these com-
pounds do not drop exponentially as functions of temper-
ature as predicted by the BCS theory of superconductivi-
ty, but rather are more like power laws. ' In UPt3, the
normal-state transport properties are those expected for
electron quasiparticles scattering from impurities, while
in other heavy-electron compounds it appears that both
electron-impurity and electron-electron scattering are im-
portant. In this paper we shall confine our attention to
the case of electron-impurity scattering alone.

Coffey, Rice, and Ueda, and Pethick and Pines'
showed that if electron-impurity scattering is treated in
the Born approximation, the quasiparticle relaxation time
at low temperatures in superconducting states with nodes
of the gap on the Fermi surface varies as an inverse
power of the temperature T. This behavior of the relaxa-
tion time was shown to give rise to transport coefficients
that are in qualitative disagreement with experiment.
Pethick and Pines then went on to show that the temper-
ature dependence of the transport coefficients could be
understood qualitatively if the electron-impurity scatter-
ing in the normal state were close to resonant, corre-
sponding to a phase shift 5&-m/2, and therefore could
not be treated in the Born approximation. Subsequently
a number of authors" ' have performed calculations of
transport properties of anisotropic superconductors as-
suming the electron-impurity scattering to be close to res-
onant. The calculations of Ref. 15 are based on the
quasiparticle Boltzmann equation, while the others use
the Green's-function formalism and allow for the effects
of pair breaking. Comparison of the two sets of calcula-
tions shows that the effects of pair breaking are expected
to be minor for experimentally realistic values of the
quasiparticle mean free path, except at the very lowest
temperatures.

In this paper we extend the calculations of Ref. 15 to
phase shifts other than small ones and m/2. The motiva-
tion for this is twofold. First, Ott et al. ' measured the
specific heat of UBe&3 for temperatures between 65 and
180 mK. Following the work of Hirschfeld et al. " on
the effects of pair breaking on the specific heat, they
could fit their experimental data using a phase shift
5tv =0.9'/2, hence giving experimental evidence for the
importance of phase shifts different from ~/2. Second,
qualitatively new phenomena arise when the phase shift
is neither small nor trl2. Monien et al. ' pointed out in
connection with calculations of the ultrasonic attenuation
that the quasiparticle-like and quasihole-like excitations
of the same energy have different relaxation times. In
Refs. 18 and 19 it was shown that the particle-hole asym-
metry could lead to a thermoelectric coefficient in aniso-
tropic superconductors orders of magnitude larger than
in ordinary BCS superconductors. In addition it was
demonstrated that angular asymmetries of the scattering
cross section can occur if the gap has a nontrivial phase
variation over the Fermi surface, and that, as a conse-
quence, some components of the transport coefficient ten-
sor can be finite in the superconducting state even though
they vanish in the normal state. A brief report of some of
our results has been given previously. %'e begin by cal-
culating, in Sec. II, the relaxation time and exhibit explic-
itly its behavior for quasiparticle-like and quasihole-like
excitations. In Sec. III we calculate the therma1 conduc-
tivity and the thermoelectric coefficient, and in Sec. IV
we calculate the viscosity, which is related to the ul-

trasonic attenuation coefficient in the hydrodynamic re-
gime. In Sec. V we compare our results with the avail-
able experimental data.

II. REI.FIXATION TIME

In this section we calculate the relaxation time for
quasiparticle-like and quasihole-like excitations due to
elastic scattering by nonmagnetic impurities, allowing the
normal-state scattering phase shift 6& to be arbitrary. In
equilibrium, the quasiparticle energy spectrum is given by
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E =(g'+~ S')'"
P~ P P P

where gp=uF(p —p~) is the energy of a quasiparticle in
the normal state relative to its value at the Fermi momen-
tum pF (if terms of higher order in p —pF are neglected),
and 6 is the gap matrix, which is a 2 X 2 matrix in spin
space. UF is the Fermi velocity, which we shall assume to
be isotropic. In this paper we shall restrict ourselves to
superconducting states for which 5 is unitary, and
therefore the energy spectrum E„ is independent of the
spin. At impurity concentrations n; so low that broaden-
ing of quasiparticle states is negligible, the relaxation rate
for a quasiparticle of momentum p and spin o. is given by

for the superconducting states considered here is given by

T =k~r3[1+i rrN(D)k~g (E)~3] (10)

where r; (i =1,2, 3) are Pauli matrices in particle-hole
space, N(0) =m*pz/(2n fi ) is the density of quasiparti-
cle states at the Fermi surface for a single spin, and
k~= —tan5~/mN(0). In these calculations we assume
that the scattering in the normal state occurs only in the
s-wave channel. The function g (E) is

dO E,
g (E)=— dg PE2 E2

P

= „n, y It;,...I'5(E,. E„.—).
Pg Pc I

(2)
where Eo is an energy cutoff which satisfies the condition
6 «Eo «E~, where Ez is the Fermi energy.

The components t; . are then given by
Here t'. ~ is the amplitude for scattering by a single
impurity of a quasiparticle from a state with momentum

p and spin o. to a state with momentum p' and spin 0',
which was found in Ref. 15 to be

t)2 —t2) —0,
1 sin6&

mN(0) cos5~ ig (E—) sin5~

(12)

(13)

Sppu(t/j)ppup+up(t]2)ppup

+ up, (t2& )p pup+ u .(t22 )p pup, (3)

b, =icr cr h(p) (4)

where the spin indices have been suppressed for brevity.
The quantities t, (i,j =1,2) a.re the components of the
T matrix in particle-hole space, and (u, u ), and

(up, —u p) are the eigenvectors of the single-particle
propagator. '

We consider the three superconducting states studied
in Ref. 15, namely the polar and axial p-wave states with
triplet pairing, and the axial d-wave singlet pairing state
which is consistent with hexagonal and cubic symmetries.
In the case of triplet states the gap matrix is given by

and

1 s1n5~

mN(0) c so5&+ig(E) sin5&
(14)

Itpp =
—,
' tr[lt» I upup. upup+ It22I up up. upup

+2 Re(t] j t2?up'u p'upup ) j (15)

In this paper we are not interested in spin-dependent
properties, and therefore for calculating transport prop-
erties it is enough to know the squared scattering ampli-
tude summed over final spin states and averaged over ini-
tial spin states. This may be obtained from Eq. (3) and is
given by

where, for p-wave states

&(p) =&(p)d,

with A(p) given for the polar state by

5(p)=b, (T) cos8,

and for the axial state by

h(p) =b ( T)(i+i j) p =b ( T)e'~ sin8,

(6)

It „I'+ It„I'

b= It))l' —It?21'

(16)

where tr refers to the trace in spin space and Re(f)

stands for real part of f. Using the usual definitions of up
and U and introducing the quantities

where i, j, and k are unit vectors in the 1, 2, and 3 direc-
tions in momentum space, and d is a fixed unit vector in
spin space satisfying the unitary condition d Xd*=0. In
the case of the d-wave state we have

and

where

t'ai t22

5„=icr2b, (p),
where

b, (p) =26(T)e'~ si 8cns8 o. (9)

sin5~

AN (0)
the squared scattering amplitude can be written as

(19)

In Eqs. (6), (7), and (9), b, (T) is the maximum value of the
energy gap on the Fermi surface, and 8 and P give the
directions of p in polar coordinates.

As explained in detail in Refs. 10 and 15, the T matrix
for scattering of a quasiparticle against a single impurity

ltppl'= ~ 1+ ' ' +kpkp

EPA
+Re c tr

P P

b '+'
E E ~

2
(20)
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When expressed in terms of the phase shift and the func-
tion g, the quantities a, b, and c take the forms

cos 51v+ lg(x)l sin 51v
2 2 2 2 (21)

l
cos 51v +g (x ) siil 5~ l

g(x)= '

X 1+X—ln
2 1 —x

—i —x, for lxl &1,

x+1 for lxl &1,
x 1

(26)

Im[g (x)] cos51v sin51vb= —2
leos 5z+g (x) sin 5~l

(22)
for the polar state by

and

c =
2 Icos 51v lg (x) l

sili 51v g(x)= '

—lxl —ix ln
7T

2
1+(1—x )'

(27)

2i—Re[g (x)] sin51v cos5N } (23)
~ 1x arcsin —,for lxl & I,

X
where x =E/b, and Im( f ) stands for the imaginary part
of f.

The squared scattering amplitude, Eq. (20), is then
given for triplet states by

+b '+'
E E ~

+2Re c
P P

lt;,, l'= a 1+
P P

(24)

and for singlet states by

k,kilt' I'= . 1+PP
P P

+b +
E„ E„

2

h„Ap.+2Re c
P P

(25)

The scattering amplitudes (24) and (25) do not have a
definite symmetry under the operation g&

—+ —
g~, and

consequently particle-hole symmetry is violated, and the
scattering amplitudes for quasiparticle-like excitations
(p &pz) and quasihole-like excitations (p &pF) of the
same energy are different. The second terms on the
right-hand sides of Eqs. (24) and (25), which are responsi-
ble for the asymmetry about the Fermi surface, vanish for
phase shifts 5z «n. /2, in which case tii = —

t22, and for
6&=m. /2, since then t&& =t22.. in both cases b =0. The
physical reason for the asymmetry is that the amplitude
t»(E) for a positive energy is the amplitude for scattering
a normal-state quasiparticle of energy E, while t22(E) is
the amplitude for scattering a quasiparticle of energy—E, that is a quasihole. These amplitudes are generally
different because the basic interaction between a quasi-
particle and an impurity is the opposite of that for a
quasihole and an impurity. Only to lowest order in tan5&
and for resonant scattering ( l 51v l

~m /2) are
l
t » (E) l and

l t22(E) l equal. For other values of the phase shift a virtu-
al bound state tends to form in the quasiparticle channel
for positive energy if tan5& )0 and in the quasihole chan-
nel for negative energy if tan5& & 0.

From Eq. (11), the expression for the function g (E/b, )
is given for the axial p-wave state by

In Eq. (28)

1
( 1 x 2)1/2]1/2

2
(29)

[1+(1 x2)1/2]1/21
2 (30)

For E )6, we have for all superconducting states,
Im[g (E/b)]=0, and consequently lt» l

= lt22l and b =0.
Therefore, the asymmetry in the scattering amplitudes
exists only for intermediate states for which E & 6, and
vanishes for states with E & A. The asymmetries vanish
also for E~O. Thus, for anisotropic superconductors
having nodes in the energy gap on the Fermi surface, the
transport properties at T-T, /2, which are dominated
by quasiparticles having energies comparable to the max-
imum of the energy gap, should be strongly affected by
this asymmetry. Also we expect physical processes in
which asymmetry about the Fermi surface plays an essen-
tial role, such as the thermoelectric effect, to be greatly
enhanced. The study of such an effect is deferred to Sec.
III.

Another interesting feature of the scattering ampli-
tudes (24) and (25) is the structure of the terms
Re[cd~ 4~ /(E~Ez )] and Re[chzh& /(E~Ez )]. Intro-
ducing c =c, +ic2, the last two terms can be written, re-
spectively, as

c2 Im
P P

(31)

and

and for the d-wave state by
r

x + dp
p p (

4 2+x 2/4)1/2

g(x)=. —i—j. . . „„for lxl&1, (28)
.X» dP

p, (
2 4 2/4)1/2 '

for lxl & 1 .4 +2+x 2/4) I/2 '
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Re c =c, ReEE EE
—c2Im

(32)
The second terms on the right-hand sides of Eqs. (31) and
(32) exist only for phase shifts 5~ difFerent from zero and
m /2, since for 5z (&n/2 and for 5z =sr/2 the quantity c,
Eq. (23), is real and c2 =0. They also exist only for super-
conducting states with an energy gap having a phase vari-
ation on the Fermi surface. Therefore, this term is
nonzero for the axial p-wave and d-wave states, while it is
zero for the polar state. For both axial p-wave and d-
wave states, this term is proportional to sin(P —P'), and
consequently (31) and (32) do not have a definite parity
under the operation P —P'~ —(P —P'), and the scatter-
ing amplitudes to two final quasiparticle states with mo-
menta symmetric with respect to the plane formed by the
incoming quasiparticle momentum and the energy-gap
symmetry axis will be different. This absence of
reAection symmetry will lead to new thermal-
conductivity, thermoelectric, and viscosity coefficients.
A study of such effects will be presented in Secs. III and
IV.

In terms of
~ t»& ~, the relaxation rate is given by D ki,

1p TQ
( )

a b (38)

quasihole-like excitations. Therefore, the relaxation rates
for excitations with positive and negative g are different.
Particle-hole symmetry, usually taken for granted, is
violated. The asymmetric term bg /E disappears for
very small phase shifts and for a phase shift 6&=~/2,
since then b =0. It vanishes also for states with energy
greater than the maximum of the energy gap and plays an
important role only for intermediate quasiparticle states
with energies less than the maximum of the energy gap.

For the scattering amplitude to violate particle-hole
symmetry, the superconductor must have both real and
imaginary parts of the density of states nonzero at the
same energy. The effect can therefore not occur in a BCS
superconductor with an isotropic gap in the absence of
depairing processes, since the real part of the density of
states vanishes for energies less than 6, while the imagi-
nary part of the density of states vanishes for energies
greater than A. Particle-hole asymmetry can, however,
occur if the superconductor is anisotropic, or if pair-
breaking mechanisms exist. Consequences of these effects
for BCS superconductors will be considered elsewhere.

The relaxation time obtained from Eq. (36) is given by

n, g~t, ~
5(E E,). — (33)

7
p /

P

Using Eq. (24) or (25), we obtain the following expression
for the relaxation rate for all superconducting states:

where the quantity D is defined by

D= 1

a —b U

(39)

n, ~t~~ a +b N, (Ep),N E s P
(34) aild

where N, (E)=—,
' g 5(E E) is the —density of single-

excitation states in the superconductor on a particular
branch (particle-like or hole-like) and of a particular spin.
In obtaining this equation we used the fact that on carry-
ing out the sum, the contribution from the term

g g»/(E E ) appearing in the scattering amplitudes (24)
and (25) vanishes for all superconducting states, while the
term coming from Re[cd, .b.~./(E, E )] in (24) vanishes
because of the odd parity of 5, and the one coming from
Re[cd,zb, z /(E E )] in (25) vanishes when carrying out
the integration over Q, since b~(P+~)= —b~(P).
Defining the average ( . ) by

p p

E

1 1
~ (1) a '

where in this case a is given by

a =(cos 5&+(1) sin 5~)

so that the relaxation time, Eq. (41), becomes

(41)

(42)

For energies greater than the maximum of the energy gap
we have b =0 and D,reduces to D =1/a . Consequently
the relaxation time takes the form

1 $ 5(E E)—
2N(0)

p

(35)
Tp T+

cos 5~ +(1)sin 5z1)
(43)

the relaxation rate is then given by

kia+b (1),
Tp 1 pf Ep

(36)

For phase shifts 6& &&~/2 or 6& =~/2, both expressions
(38) and (43) reduce to the results found in Ref. 15. The
average over the Fermi surface of the relaxation time
given by Eq. (38) is

where w& is the relaxation time in the normal state, which

is given by
(a(Du)+b(Du )),1

1
(44)

n, N(0) ~t~ ~

(37) for quasihole-like excitations, and

(a (Du ) b(Du ) ), —
1

(45)

In Eq. (36), g is given by +(E —~A ~

)' for
quasiparticle-like excitations and by —(E~ —~Q ~~)'~ for for quasiparticle-like excitations. The angular integrals

P
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(1), (DU ), and (Du z g arU ~ are listed in the Appendix for the
three superconducting states considered.

InFi . 1g. , we have plotted the relaxation times ~, /~N as

0.5 0.8
functions of E/5 for phase shifts x /2 hs x~ w ere x =0, 0.2,

ial and polar p-wave states,. , and 1.0, for the axia
an for the d-wave state. Note that by 5N =0
we mean the limit 5N~O. For ene

g )l ((ltan5~l, in the case of the axial p-wave

where
1/2

S(5~)= 1+
m-2

cos 5~cot 5z 1+S(5&)
S(5~) 1 —S(5~)

ln

4.0
I
I

3-5—

3.0
;0.

2.5

2.0

1.0

0.5

l

l

)0.5
8~

ptI

6
0

In the case of the polar state, we have

S —cos 5~lcot5~l
N l»(a/E)l '

and for the d-wave state we have

S
cos 5~lcot5~l E lin(2b. /E) I

For energies close to the energy-gap maximum hum we ave
se o the axial p-wave state for both

cles and quasiholes
or o quasiparti-

0.0

4.0

0.5 1.0
E/6

For the polar state we have

3.0

2.5

Z
2.0

h

1.0

0.5

0.0
0.0 0.5 1.0

E/6
1.5

s 2
cos 5N+ sin 5

7T
S111

and for the d-wave state we have

S -ln sin 5N
N IE

A general feature of the relaxation tim
'

h fimes is t at for

is alwa s rea
and E (b the relaxation ti f 'hime or quasiholes

is a ways greater than the one for quasip t' 1 . Rpar ic es. esults
nega ive phase shifts are obtained by interchan in

o es in t e results for positive

3.5

(c) III. THERMAL CONDUCTION
AND THERMOELECTRICITY
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FIG. 1. Plots of the relelaxation times for quasiparticle-like
and quasihole-like excitations for phase shifts 5

t e polar p-wave state, and (c) in the d-wave state

BnP

oil
(46)

BE

A. Thermal conduction

In th'this section we calculate the thermal
ropic super conductors using the 8oltzmann

equation approach in the hydrod nam
in e s. 4 and 15. As ointed op out e e, uch

pared with th
is va 1 provided fre uen

'

q ncies are small com-

compared with the tern era
wi t e gap frequency, len th

p - pg, an t e width, due toto pair breaking processes f
e quasiparticle states

'
ates is small compared with both the

, 0

quasiparticle energies of interest and b, ( T).
We start from the linearized B lto zmann equation

Bn',—E v.
P P T
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where v is the quasiparticle velocity given by

P

where W reflects the deviation from the local equilibrium
Fermi-Dirac distribution function, n = n (E ). The col-
lision integral then takes the form

Uz is the Fermi velocity, and n
p

is the equilibrium quasi-
particle distribution function evaluated with the local
equilibrium values of the energy, chemical potential, and
temperature. The collision integral [the right-hand side
of Eq. (46)] is given by

2~
n, y ~t;,, ~'n(E, —E,, )PP P P

Bn ~

0

X (4 —4, ).
P

(49)

Bn

coll
n, g t'.

~
5(E E)(n— n)—.

P

(47)

Inserting this expression for the collision operator into
the Boltzmann equation (46) leads to the equation

Bnp
np =np+ +pBE

(48)

Here E is the quasiparticle energy including possible
nonequilibrium contributions to it. In this calculation we
are neglecting the counter Aow contribution to the
thermal conductivity, since the ratio of the conductivity
due to counterfiow to that due to normal Quid Aow is of
the order of AT/EF. We linearize the quasiparticle dis-
tribution function n about the local equilibrium distri-
bution function by writing

Ev —= — 4 + n, g it',
z 6(E E ~ )4—VT 1 2m

(50)

Since w'e have linearized the transport equation, we may
replace the quasiparticle energies in Eq. (50) by their glo-
bal equilibrium values (1). Using the expressions given by
Eqs. (24) and (25) for the scattering amplitude ~t' ~, and
Eq. (36) for the relaxation time, we obtain for the p-wave
states the equation

(1) a+b 4 — n; re g a 1+rp

E, P A
' 2

+Re 2c

+b '+'
E E ~

o(Ep Ep )4p =r—~E vp.
TT

(51)

and for the d-wave state

(1& a+I e,—gp

p' P P

+b '+'
E E ~

T

TT+Re 2c 5(E E~ )4 .=r~E vz.—P P & P P
(52)

(» a+b C—gp
P

P

The driving term in the two previous equations has odd parity, and since the collision integral preserves parity, 4
will have odd parity. Consequently Eqs. (51) and (52) reduce, respectively, to

2~ 2, E„E ~

n; rz+2Re c 5(E E, )4 .=r~E~—v . (53)

(1) a +b 4& =r&E~v~.P & P P
(54)

where we have used the fact that the d-wave state has
even parity. One notes that the second term on the left-
hand side of Eq. (53), which corresponds to the vertex
corrections of the microscopic calculations, does not van-
ish here for the p-wave states as opposed to the cases of
phase shifts 6z (&~/2 and 6+=m/2 treated in Ref. 15,

+p T&EpD a —5 vp .&p vr
E, P T (55)

Since the collision integral conserves energy we may add

for which it does vanish. This is due to the fact that, be-
cause of the particle-hole asymmetry for general phase
shifts, @~ is not an odd function of g . For the d-wave
state the vertex corrections vanish for any value of the
phase shift. The solution of Eq. (54) for the d-wave state
is then given simply by
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(1)4 —2D a —b (Re
kp

P
P

h, .hp

", ; ")
4p VT

a —b VP.
P

(56)

to this solution of the transport equation an arbitrary
function of the energy. Such a function will not aff'ect the
heat current, so we shall not mention it further. Using
the definition (35) of the average, we can rewrite Eq. (53)
as

Multiplying this equation by h(p)/E&, taking the aver-
age, using the relation

(58)
Q2

and solving the resulting equation for & 4&h(p) lEu & gives

(@6(p))

where the prime on &
&' indicates that the sum is over p'.

For the polar state, this equation reduces to
T

&1&@ 2D —a b—
Z Z E,

P . P P

=r~E D a b—v . (57)kp VT

P

(D, ~ A(P )

)
&1& —2ac, (&D &

—&Du '&).

so that the function 4 for the polar state is given by

(59)

4@ =gr~u~& &D a b—
P

(60)

The quantities p, , i = 1, 2, or 3, are the direction cosines of p. For the axial p-wave state we have

&(p ) =&( T)(p„+~'p~ ),
and Eq. (56) takes the form

(61)

g g V;T
&1&@z—2D a b—

z [(c&p czp~—)&+p, &+(c2p,,+c,p~)&@p~ &]= gr&E&uFD a bp;—
(62)

Multiplying this equation by p, or by p, and taking the average, we obtain the following pair of equations for the two
unknowns, & @p & and & @p~ &:

[&1&—ac, (&D& —&DV &)]&@p„&—ac2(&D& —&Du &)&@p„&=—gr&E&uFb&Du p;p„&
1

(63)

V;T
ac&(&D& —&Du &)&4'p„&+[&1& ac, (&D& ——&Du &)]&@p &= —gr&E uFb&Du p;p (64)

In obtaining Eqs. (63) and (64) we used the relations

&Dp„p, & =0,
and

&Dp'„& = &Dp,' & =-,' &D(p.'+p,') & .

The solution of Eqs. (63) and (64) are then given simply by

(66)

&@p &
= —g r&E uzbL [& 1&&DB' pp &

—a(&D &
—&Du '&)&DV'p, (c,p„c,py) &]—

T (67)

and
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V;T
(Cp )= —gr„E uFbL[(1)(Dv2p;p, ) —a((D) —(Du~))(Du2p, ;(c,p, +c~p ))] (68)

where the quantity L is given by

'=[&1&—,(&D &
—&D '&)]'+ ','(&D) —&D '&)'. (69)

Therefore the solution of Eq. (62) takes the form

D kp
N =g~zvFE

& &

a b—
P

where

V;T
p, —2bL (c~P;+y';) (70)

and

13;=&1&[(Dv 'p, p, &p. —&Du 'p, p,„)p, ]

y';=[c, &1& —a~el'(&D &
—&Du '&)][&Du 'p p„&p, + &Du 'p p, &p, ] .

(71)

(72)

(73)

Here orie notes that the quantities P; and y'; are, respectively, antisyrnmetric and symmetric with respect to the ex-
change of the indices x and y. As will be shown below, this affects the symmetry properties of the thermal conductivity
and thermoelectric coefficient tensors. The deviation 5n from local equilibrium of the quasiparticle distribution func-
tion is then given for the axial p-wave state by

5 = E b — 2bL —
( R'+ ')

for the polar state by

dno
5n =gr~vFEp

( )
D a b—

1 p p

and for the d-wave state by

' E', '
&1& —2ac, (&D &

—&DV'&)
(74)

(75)

A common feature of all these results is that 6n has odd parity but does not have a definite symmetry under the opera-
tion g ~—

g for all superconducting states considered. The heat current is given by

J~= g Ep(vp), 5n = I;,V T, —
p, o'

(76)

(77)

where E; is the thermal-conductivity tensor. All superconducting states considered have uniaxial symmetry, so we cal-
culate the thermal conductivity for heat conduction along the axis of symmetry and perpendicular to it. For very small
phase shifts 5z ((m. /2 and for 5z =n. /2, IC; was foun. d to be diagonal in Ref. 15 for this particular choice of geometry
Because of the reAection asymmetry previously mentioned in Sec. II, we expect some of the o6'-diagonal elements of E;.
in the plane perpendicular to the symmetry axis of the energy gap to be nonvanishing for either the axial p-wave state or
the d-wave state. From Eq. (76) we see that only the odd part of 5nz under the operation gz~ —

g~ contributes to the
heat current. Using Eqs. (73), (74), and (75) the thermal-conductivity tensor is found to be

E2 J J

for the axial p-wave state, and

Bn@

BE

2
vy

K; r~ g—E
p, c7

for the polar p-wave state. For

v' en'
aE'

p)o p

Du z b, P,PJ (DO' P, ,P, )
' E' (1)—2ac, ((D ) —(Du ') )

aI, I +2I2c,

the d-wave state we obtain

(1) aPiPJ' .

(78)

(79)

On carrying out the angular integrations, we see that all off-diagonal components of the thermal-conductivity tensor &,.
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vanish for the polar and d-wave states, but for the axial p-wave state the component K, and K~ ( = —K„)do not van-
ish. This means that a temperature gradient in the plane perpendicular to the symmetry axis of the energy gap in the
superconducting state will generate a heat current which has a component in the plane but perpendicular to the temper-
ature gradient. This is a new effect which can exist only for a superconducting state with an odd-parity energy gap hav-
ing a structure similar to that of the axial p-wave state considered here, that is an energy gap with a phase varying on
the Fermi surface, and when the normal state scattering phase shift is neither equal to m/2 nor very small.

The thermal-conductivity tensor can be written for the polar state as

Q2
KJ= K~(T ) f dE

for the axial state as

K„=",K (T, )
T 5„f dEE,

'

&D 'p';&a, '+25fdE
0

o(DU2p2~)
aE &1)

b c] &DU' '&'

aE (1) {1)—2ac, ((D ) —(D~ ) )

(80)

Q2
2f '—dE ~, n'

b Lc2((DU 'p, p, & &DU 'p, p„& &DU 'p—;p„&&Do 'p, py & )

Q2+2f dE
an' b'

L [c,&1)—alcl'(&D ) &»')—)]

and for the d-wave state as

X [(DU 'p, p,„)(DU 'p, p„)+ (DU 'p, p,, ) (DU 'p, p, ) ] (81)

K;, =5 K,;= K~(T) 5; f dE
an'
aE (82)

where Kz( T, ) =2m%(0)r~U~T. , /9 is the normal state thermal conductivity evaluated at the transition temperature T, .
The nonvanishing components of the thermal-conductivity tensor are given for the polar state by

18K
( )

T
d

E an p &d b, an i p(DU' ') 2 o b'c (Dp 2 2)2

T, fo T' aE (1) fo T' aE (1) (1)—2«, ((D ) —(DU ') )

(83)

K =K@= K~(T ) ~f dExx yy 2 N c
an (DU p
aE (84)

for the axial state by

E2K„= K~(T) j dE
aE (85)

K Ky K~(T ) f dExx yy 2 N c T 0 T2

On0

az
(D- 2p2 )

(1)

+2f dE

r

K„=—K„= K (T) j dEy y 2 N

an bL [c,(1)—a~c~'((D ) (DV') )](DU 'p—' )'

b Lc2(Du p,„)

(86)

(87)

and for the d-wave state by

K„= K~(T ) f dE
Tc aE (1) (88)

K „=K = K~(T) f dExx yy 2 N c (89)
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In the case of the p-wave states it is the "in scattering"
terms in the Boltzmann equation, corresponding to ver-
tex corrections in the Careen's-function calculations,
which give rise to the second and third terms on the
right-hand side of Eq. (81), and the second term on the
right-hand side of Eq. (80). At low temperatures they
give substantial contributions to the diagonal elements of
the thermal-conductivity tensor, but near the transition
temperature T, they become very small. The off-diagonal
elements Kzy Kyz in the case of the axial p-wave state,
Eq. (87), are completely due to the vertex corrections at
any temperature. The angular averages are given by

nal ones is a few percent. In Fig. 2, we show
K„T,/K~T, K T, /K&T, and K„ /K, for the axial
state for phase shifts 5& =xm/2 for x =0. 1, 0.3, 0.5, 0.7,
0.8, 0.9, and 1.0, where z is the direction of the symmetry
axis of the energy gap. In Fig. 3, we show K„T,/K~T
and K„T,/KzT, for the polar state, for the same phase
shifts as above, while in Fig. 4 we show those correspond-

1.2

&DU 'p'&=

where

(GU p; &, for E (6,
b2

&U p;&, for E)t,
a

(90)

(91)
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x =0.8
x = 0.7
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&T. 2
b,(T)=6(0) tanh

b, (0) 3f
AC Tc

C T

and r =a/b The a. verages (GV p; & and (U p; & are
given in the Appendix as functions of the variable E/A.
In order to calculate the temperature dependence of the
transport coefficients we need an expression for the mag-
nitude of the gap as a function of temperature. We em-
ploy the form used in Ref. 15, which was based on an ex-
pression used by WolAe and Koch:

(b)

0.8

I-

0.6—

I—

0.4
OC

T/ Tc

(92)

This tends to b, (0) for T +0, and its b—ehavior close to T,
is such that the specific-heat jump at T, calculated from
it is equal to b C/C. Here

0.0
0.0 0.2 0.4

T/Tc
0.6 0.8 1.0

(93)

is the mean-square gap compared with its maximum
value, b, C/C is the specific-heat jump at T„and b, (0) is
the zero-temperature gap. f is equal to —', for the axial
state, —,

' for the polar state, and —,', for the d-wave state.
For b (0) we adopted the weak-coupling values
b (0)=2.02T, (axial), b(0) =2.45 T, (polar), and
b, (0)=2.10T, (d-wave). We adopted the value
hC/C =0.86, the "idealized" value extracted by Sulpice
et aI. from their measurements for UPt3. The thermal-
conductivity tensor is diagonal in the cases of the polar
and d-wave states, but has off-diagonal elements K„„and
K in the case of the axial p-wave state. For these off-
diagonal elements of the thermal-conductivity tensor to
exist, three conditions must be fulfilled: (i) The normal-
state scattering phase shift has to be different from ~/2
and not very small; (ii) the energy gap must have a phase
variation on the Fermi surface; and (iii) the supercon-
ducting state must have odd parity. The order of magni-
tude of the ratio of the off-diagonal elements to the diago-
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FIG. 2. Thermal conductivity divided by the temperature as

a function of temperature for the axial p-wave state, and for
5&=x~/2, where x =0.1, 0.3, 0.5, 0.7, 0.8, 0.9, and 1.0: (a) the

component along the symmetry axis and (b) the diagonal com-

ponent in the plane perpendicular to the symmetry axis. (c)
OfF-diagonal component of the thermal-conductivity tensor di-

vided by the diagonal component of the thermal conductivity in

the plane perpendicular to the symmetry axis.
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FIG. 3. Thermal conductivity divided by the temperature as
a function of temperature for the polar p-wave state, and for
5&=x~/2, where x =0.1, 0.3, 0.5, 0.7, 0.8, 0.9, and 1.0: (a) the
component along the symmetry axis and (b) the component in
the plane perpendicular to the symmetry axis.
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FIG. 4. Thermal conductivity divided by the temperature as
a function of temperature for the d-wave state, and for
5&=xm/2, where x =0.1, 0.3, 0.5, 0.7, 0.8, 0.9, and 1.0: (a) the
component along the symmetry axis and (b) the component in
the plane perpendicular to the symmetry axis.

ing to the d-wave state.
For all superconducting states, and for all phase shifts

the thermal-conductivity tensor shows a strong anisotro-
py as a function of temperature, since its components
corresponding to a heat Aow along the direction of nodes
(axial state) or in the plane of nodes (polar and d-wave
states) is enhanced compared to the ones corresponding
to the orthogonal direction. A common feature of the di-
agonal components of the thermal-conductivity tensor
for all superconducting states is that the results for a
phase shift 5&=0.9m/2 or greater are almost indistin-
guishable from those obtained in the unitarity limit ex-
cept at low temperatures. At low temperatures, for all
superconducting states, the diagonal components of the
thermal-conductivity tensor (relative to the normal-state
conductivity at T, ) increase as the phase shift decreases,
reaching eventually the Born-approximation result for
very small phase shifts, whereas at intermediate tempera-
tures, they decrease with decreasing phase shift. In the
case of the axial state, the off-diagonal components K„
and K go to zero when T~O or T~T„reaching a
maximum in between. This maximum increases up to a
certain value with decreasing phase shift, then decreases
with phase shift, in accordance with the fact that the

thermal-conductivity tensor is diagonal in the unitarity
limit or for very small phase shifts (see Ref. 15). For
T~O the results for all states and all components tend to
cos 6& times the corresponding result for small phase
shifts.

B. Thermoelectric eKect

The existence of thermoelectric effects in superconduc-
tors was first predicted by Ginzburg as long ago as in
1944, but it is only within the past 15 years or so that
techniques have been developed that have made it possi-
ble to measure the thermoelectric coefficient experimen-
tally. The basic effect is a Aow of normal current J" in
response to an applied temperature gradient, which is ex-
pressed phenomenologically by the equation

(94)

where I.;J is the thermoelectric coefficient tensor. The
thermoelectric coefficient in a superconductor cannot be
measured in the same way as in normal metals because
any thermoelectric potential differences developed in the
superconductor are shorted out by motion of the
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superAuid component. Nevertheless, the effect is predict-
ed to give rise to changes in the magnetic Aux in a ring
made up of two superconductors when a temperature
difference is applied between the two junctions, ' and
to charge imbalance voltages in the vicinity of the bound-
ary of a superconductor when a temperature gradient ex-
ists perpendicular to the surface of the superconductor.
Other possible manifestations of the thermoelectric
coefficient have been proposed, but experiments have
been performed mainly using these two methods. It is
difficult to interpret results of the first class of experiment
because the measured Aux changes have neither the tem-
perature dependence nor the magnitude predicted
theoretically, while the second class of experiment gives
results for Al which are in accord with theoretical expec-
tations.

Microscopically the normal current is given by

J„=eg 5np, (95)
pa m

where e is the electronic charge and m * is the quasiparti-
cle effective mass. The thermoelectric current is a conse-
quence of asymmetries about the Fermi surface. Usually
in both normal and superconducting metals these occur
on energy scales comparable to the Fermi energy, and the
thermoelectric coefficient is of order (o z/e)(T/TF)
where o & =2e N(0)vFr&/3 is the electrical conductivity
in the normal state and TF the Fermi temperature. We
have seen in Sec. II that in anisotropic superconductors
the asymmetries of the relaxation time occur on energy
scales of order the gap energy rather than the Fermi ener-
gy, and therefore in calculating the leading terms in
T, /TF one may neglect the asymmetries of p and m*
about the Fermi surface. The response of the quasiparti-
cle distribution to a temperature gradient is given by Eqs.
(73)—(75), and therefore from Eqs. (94) and (95) we find
for the axial p-wave state

3oN E
eN (0) T

~np D Q2
, b —v p, ,p 2aL —

p, , (c2P'+ y' ) (96)

for the polar p-wave state

3oN E
eN(0) T

and for the d-wave state

' '
&1) 2ac, (&D—) —(Du'&)

(97)

L"=—
1J

30N Ep Bn
p

eN(0) T BE@ (1) (98)

Throughout this paper we use units in which Boltzmann s constant is unity. Since the quantity b, which is a function of
energy only, vanishes for energies greater than the maximum of the energy gap, only intermediate states with energies
less than the maximum of the energy gap contribute to the coefficients L; .. Consequently for all superconducting states
considered we have L; ( T, ) =0. This is not in contradiction with the well-known fact that thermoelectric effects exist in
the normal state, but instead shows that to the zeroth order in T/TF, to which we are working, the value of the normal
state thermoelectric coefficient at T =T„ is negligible. In usual superconductors, the thermoelectric coefficient is equal
to the normal state one at the transition temperature, and is of the order of T/TF. Therefore, there is an enhancement
of the thermoelectric coefficient as calculated here compared to the one for conventional BCS superconductors by a fac-
tor —TF /T, .

The expressions for the thermoelectric coefficient tensor can be rewritten as

EL;= dE—
e o T

a ' Q2

BE 1
' ~ E2

—(Du p;pj)+2aL cz(1)((Du p, p, )(Dp p,, ) —(Dv 2p;p, , )(Dp, p ))

Q2
2aL [c,(1)—a~c~ —((D ) —(Du ) )]

EL;= dE—
e o T

X (&» 'p;p & &Dp, p„&+(Du 'p;p, & &Dp, p, & )

Bn' b, a' &Dpp. & &Du 'pp. &—(Du 'p, p &
—2ac,

BE (1) ' ' E (1)—2ac, ((D ) —(Du 2) )

(axial state),

(polar state),

(99)

(100)

6&N g EL- =— dE—
e o T

o b

&

(Du p;p. ) (d-wave state) .
aE (101)

The nonvanishing components are explicitly given for the axial state by
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6o.~L„= — f dE
0 T

Bn' b

BE &1&
& P (102)

60 ~
L =L = — f dE

e 0 T
Bn'
BE

(Dv p„)(1+aL [c,(1)—a~c~ ((D ) —(Dv ) )]((D ) —(Du ) )j, (103)

Bn'
y= Ly = f dE abLc2(Dv p )((D) (Du ))

e 0
(104)

for the polar state by

60 ~L„=— f dE
e 0 T

B &Du 'p,'&

, (&D &
—(D~'&)

(105)

6a&
L =L dE—

e 0 T BE
(106)

and for the d-wave state by
T

60~ g EL„=— f dE
e 0 T

Bn b

BE (1) (107)

(1) (D" Px) .

(.108)

One remarks that I, is diagonal in the cases of polar
and d-wave states, but has off-diagonal elements L„„and
Lyz in the case of the axial p-wave state. The off-diagonal
elements of L, , Eq. (104), are completely due to the ver-

tex correction contributions. As in the case of the
thermal-conductivity tensor K,", the tensor L;. has off-

diagonal elements only when the phase shift is neither
very small nor equal to 7r/2, the energy gap has a phase
variation on the Fermi surface, and the superconducting
state has an odd parity.

It is quite remarkable that the off-diagonal term L„
for the axial p-wave state is of the same order of magni-
tude as L„. This is a consequence of the fact that a11

contributions to the components of the thermoelectric
coefficient tensor come from quasiparticles with energy
less than 6, while in the case of thermal conductivity, the
off-diagonal components again come from quasiparticles
with energy less than 6, while the diagonal components
have contributions from quasiparticles of all energies.

In Fig. 5, we show the coefficients L„/(o z/e),
L„ /(oz/e), and L„ /(o&le) as functions of T/T, for
phase shifts 5&=x~/2, where x =0.1, 0.3, 0.5, 0.7, 0.8,
and 0.9, for the axial p-wave state. In Fig. 6, we show
L„/( ~joe), and L,„ (/~o/)efor the polar state for the
same phase shifts as above, and in Fig. 7, we show
L„/(oNle), an.d L„„/(oz/e) for the d-wave state. A
common feature of all results is that L,z goes to zero
when T~O, and T~T„reaching a maximum in be-
tween. This maximum increases up to a certain value as
the phase shift decreases from m/2, and then decreases
with further decrease in the phase shift, for all com-
ponents and all superconducting states. This is in accor-
dance with the fact that the thermoelectric coefficients

vanish to zeroth order in T/TF for phase shifts
5~ ((m. /2 and 5~ =m. /2.

The striking feature of the predictions of thermoelec-
tric coefficients are that they are typically TF/T, times
larger than usual estimates. This result is a consequence
of the quasiparticle relaxation time being energy-
dependent on an energy scale of order h. We remark in
passing that Kon has earlier predicted an enhancement
of the thermoelectric coefficient in an isotropic BCS su-
perconductor with resonant scatterers. However, in the
case he considered the energy scale was set by the reso-
nant scattering in the normal state, whereas in the prob-
lem we consider the energy scale is set by the energy scale
for the virtual bound state in the anisotropic supercon-
ductor.

IV. ULTRASONIC ATTENUATION

In this section we calculate the attenuation of ul-
trasound in anisotropic superconductors. All experi-
ments on ultrasonic attenuation in heavy fermion super-
conductors that have been performed to date appear to
have been done in the hydrodynamic regime, since the ul-
trasonic attenuation shows an co dependence, where
co is the sound frequency. Following Ref. 15, we study
the response of the metal to a homogeneous strain using
the Boltzrnann equation approach, which is valid under
the conditions stated in Sec. III of this paper. The
Boltzrnann equation for this situation is

Bn"
P

Bt

Bn

Bt -11
(109)

Bn' BE,
BE Bu,,

Bnp
7

o11

(110)

where u; =Bu;/Bx is the strain tensor, u being the dis-
placernent vector and u its time derivative. Neglecting
the modulation of the gap by the strain, ' Eq. (110) takes
the form

where n" is the local equilibrium distribution function of
the quasiparticles. Equation (109) can be rewritten as
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ant g,
aE EP P

where 2);J, given by

Bll
p

coll

(112)
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FIG. 6. Thermoelectric coefFicient as a function of tempera-
ture for the polar p-wave state, and for 5&=x~/2, where
x =0.1, 0.3, 0.5, 0.7, 0.8, and 0.9: (a) the coeScient for a tem-
perature gradient along the symmetry axis and (b) the diagonal
component for a temperature gradient perpendicular to the
symmetry axis.
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is the usual deformation potential which gives the strain
dependence of the normal-state quasiparticle energy.
The linearized transport equation is thus

(113)
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FIG. 5. Thermoelectric coefficient as a function of tempera-
ture for the axial p-wave state, and for 5~=xv/2, where
x =0.1, 0.3, 0.5, 0.7, 0.8, and 0.9: (a} the coefficient for a tem-
perature gradient along the symmetry axis, (b) the diagonal
component for a temperature gradient perpendicular to the
symmetry axis, and (c}the oF-diagonal component for a temper-
ature gradient along the x axis.

Pg.PJ 3 6)J. (114)

Using Eqs. (24), (25), and (36), we can rewrite Eq. (113)
for the axial and polar p-wave states as

In our calculation we have taken the deformation poten-
tial 2);~ to have the same angular dependence as for a nor-
mal Fermi liquid and write 2), =d; A,;, where d;J is a
quantity that is independent of direction on the Fermi
surface, and
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r

+b '+"(1) a+b 4&— g a 1+
Ep ~ 2N 0

+2 Re c
P P

5(Ep E—
p )@p.= r—~ d,jA;~u;~,

P

(115)

and for the d-wave state as

5(Ep Ep. )—@p = r~ —d,J.A, ,Ju J .
P

(116)

The driving term in the two previous equations has even
parity, and since the collision operator preserves parity,
4p must have even parity. Consequently the term con-
taining Re(ch, h~. )/(E E ) in Eq. (115) vanishes, since

ILES
has odd parity. Equation (115)can then be rearranged

in the following form:

P

+p=Q(E)—
a+b

( 1 ) Ij IJ ij

where the quantity Q(E), which depends only on energy,
is de6ned by
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gy of a quasiparticle is conserved in a collision. This is
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collision operator. Consequently Q(E) is an eigenfunc-
tion of the collision operator with a zero eigenvalue.
Since it is independent of the sign of g'z it will not contrib-
ute to the stress tensor and we may neglect it. The
relevant contribution to 4 thus takes the form
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Multiplying this equation by g /Ez, taking the average,
and solving the resulting equation for ( @g/E ) gives'

1 (a b)(DU )— —
'~

0.10

Inserting this expression for (@g/E ) into Eq. (119)gives
the deviation function for the polar and axial p-wave
states:
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7$~c
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(a —b )(DV A,;-)x A,, +
&1&—(a' —b')(DU ')
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FIG. 7. Thermoelectric coefficient as a function of tempera-
ture for the d-wave state, and for 5& =xm. /2, where x =0.1, 0.3,
0.5, 0.7, 0.8, and 0.9: (a) the coefficient for a temperature gra-
dient along the symmetry axis and (b) the diagonal component
for a temperature gradient perpendicular to the symmetry axis.

(121)

Equation (116) for the d-wave state can be rewritten as

(1) a+b 4&— g a 1+ +b +
Ep ~ 2N(0), EpEp Ep Ep

+2 Re c
P P
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@p=Q(E)—

P

a+& E

tb —a&( E + ~or

&1) " " "

c+
&1) , (".;)'+'E

(122)

The quantity g (E) can again be dropped from this equation for the same reason as in the p-wave state case. Multiply-
ing Eq. (122) by b, ~/E, taking the average, and solving the resulting equation for (Nb p /Ep ), we obtain

(a-, "~„)
Ep " " (1)—ac((D) —(Du'))

Since N is real it fo11ows that

(123)

(124)

The quantity (4g/E ) is again given by Eq. (120). Using these results with Eq. (122), the deviation function for the d-
wave state takes the form

d ' —b
p rN ij aij (1) P

(a —b )(Du A, ; )

Ep " (1)—(a' —b')(Du ')
(a-",' '

&.„)'
+bRe c

(1&—ac(&D &
—&Du ') )

(125)

The stress produced by a superconducting quasiparticle is minus the derivative of the quasiparticle energy with
respect to the corresponding strain, and it is therefore equal to the negative of the deformation potentia1 in the super-
conductor, Eq. (112). The nonequilibrium contribution to the stress is then given by

Bn,'
(126)

The viscosity tensor g; k& for an anisotropic superconductor is defined by

~~ij Iij, kl ~kl (127)

lijkl 2rNd, ij dkl X
P

for the p-wave states, and

Using Eqs. (121), (125), (126), and (127), and noting that
(126), we obtain the viscosity tensor

Bf/ P
j kl j

(a —b )(Du Akl )

1)—(a —b )(Du )
(128)

only the part of Np odd in jp contributes to the sum in Eq.

9ijkl 2rNd, ij dk! X
P

~kI

+X,,-b'Re c
&1&—ac(&D & &Du '&)— (129)

for the d-wave state.
The viscous contribution to the attenuation of a sound wave with wave vector q and polarization e is given by
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2
g('q ) Qij kl i' kOI

pCE
(130)

where c, is the sound velocity of the mode and p is the mass density. In writing Eq. (130), we have neglected the effects
of gap relaxation on the attenuation of longitudinal sound, as well as the thermal expansion contribution. The former
has been considered by a number of authors, and the latter is usually small in superconductors.

As an application of the above results, we consider the heavy fermion compound UPt3. We shall assume that the
symmetry axis of the superconducting state is parallel to the hexagonal axis of the crystal, an assumption consistent
with the measured anisotropies in the attenuation of transverse sound and of H, ." If we assume that the anisotropy

axis is along the c axis of the crystal, we find five independent components of the viscosity tensor, which may be taken
to be g„„,g» „,g„,„„q „,and il„, , All other components of the viscosity tensor can be determined from these

by symmetry. These coeScients determine the attenuation of longitudinal and transverse sound waves propagating
along the symmetry axis of the crystal or in the basal plane. The component g, , is nonzero only if the phase shift is
neither very small nor equal to rr/2, the superconducting state has even parity, and the energy gap has a nontrivial
phase variation on the Fermi surface.

Since the deformation potential coe%cients d," are not known, we can only calculate the viscosity coefficients relative
to normal-state values. These are

Iij, kl T
ij, kl

Iij, kI

where

(131)

9ij,kl 2TNN (0)dij dk! Xij kkl

and the function H is given for the polar and axial states by

T 2
Hijkl I dE

~ij ~kl

and, for the d-wave state, by

T
ij, kl

C

iin' a &Du 'X,, & &Du 'A, ki &

(Du k; ski)+(a b)
( )

—
z bz

(Du 'k,, & (Du 'kk, )
(Du A,jkkl )+(a b)—

(132)

+4b L — ReIc(Du (A,„,+ii», )kkl)(Du (A, , —iA», )A,;j)

X[&1)—ac "(&D &
—(Du &]I (133)

where L is given by Eq. (69) and

dQ
~ij~ki ~ij~kl (134)

Since g«, y, =0 in the norm. al state —a result of the
fact that A, ,A», =0—the function H„,», is ill defined.
Therefore we calculate the ratio g„», /g„, ~, using the
fact that, because of the hexagonal symmetry, we have

dxz dyz Hence, we can write

9XZ,yZ

9XZ, Xz

120 J&d b,
E2

XZ, XZ
C

Bn

BE

Xab2Lc (Du 2g2 )2

The third term in the expression in curly brackets on the
right-hand side of Eq. (133) is different from zero only for
Hx, » and g yz and for all comPonents related to these
by symmetry. This term is finite only for energies smaller

f

than the energy gap and for phase shifts neither very
small nor equal to m/2. It comes exclusively from the in
scattering term in the collision integral of the Boltzmann
equation.

In the expressions (132), (133), and (135), for the func-
tion H and g, „the integrals over the energy variable
can only be done numerically. In the Appendix, we give
the expressions for the various integrals needed in the nu-
merical calculations. To predict the temperature depen-
dence of the viscosity we use the same expression for the
gap as a function of the temperature as in the case of the
thermal conductivity.

In Figs. 8, 9, and 10, we show the four viscosity
coefficients relative to their normal state values 0„„,

7 xz xz 7 xy xy and the ratiO gx, » /gxz „, aS funC-
tions of T/T„ for the same superconducting states and
the same phase shifts we considered in the calculation of
the thermal conductivity. The dependence of various
viscosity coefficients H;;;; (i =x, y, or z), and H» „» on
the phase shift is very similar to the dependence of the di-
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FIG. 8. Components of the ultrasonic attenuation relative to its normal state value at T, for the axial p-wave state, and for
5 =xm/2, wherex =0.1, 0.3, 0.5, 0.7, 0.8, 0.9, and 1.0: (a) H„„,(b) H „„(c)H, „and (d) H ~ ~.

agonal components of the thermal-conductivity tensor.
For the component H, , the situation is different, since
it decreases slowly with decreasing phase shift.

One remarks here that the ratio g, , /g, , is as large
as 10%%uo at low temperatures for phase shifts -0.8m/2,
but negligible fog temperatures close to the superconduct-
ing transition temperature T, . This is a consequence of

e fact that ~„, , is exclusively due to contributions
from energies E & 5, while such energies dominate the
contributions to g„, , only at low temperatures. At tem-
peratures much less than b, ri, ~, /g, , is again small,
because the particle-hole asymmetry is of order g/h.

Calculations of the attenuation of longitudinal ul-
trasound for the axial and polar p-wave states have also
been carried out by Monien et al. ,

' who used Aeld-
theoretic methods and allowed for pair breaking. Our re-
sults agree well with theirs for the case of small pair
breaking.

V. DISCUSSION

In this paper we have considered the effect of arbitrary
normal-state scattering phase shifts on the transport
properties of anisotropic superconductors with either odd
or even parity and having nodes in the energy gap on the
Fermi surface. We have explicitly calculated the relaxa-

tion time, the thermal conductivity, the thermoelectric
coe%cients, and the viscosity coefBcients.

We have shown that particle-hole symmetry, which is
frequently taken for granted, is violated on energy scales
of order the gap energy, for phase shifts which are nei-
ther small nor equal to m/2, and we have shown explicit-
ly that relaxation times for quasiparticles above and
below the Fermi surface are different. This particle-hole
asymmetry leads to an enhancement of the thermoelec-
tric coeScient by a few orders of magnitude compared
with that for isotropic superconductors. For ordinary su-
perconductors T, /Tz is of order 10, and therefore one
expects the thermoelectric coefticient to be of order
10 0.&/e, while our calculations show that for aniso-
tropic superconductors it could be as large as 0. 1o.&/e.
We remark that even without the particle-hole asym-
metry in the scattering process we have considered, one
would expect thermoelectric effects in heavy fermion su-
perconductors and high T, materials to be larger in units
of oz/e than in ordinary superconductors because
T, /T~ for these materials is higher, typically by a factor
10, than in ordinary superconductors. However, in
these cases the thermoelectric coe%cient in the supercon-
ducting state would be comparable to its normal-state
value at T, .

For superconducting states having an energy gap with
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FICi. 9. Components of the ultrasonic attenuation relative to its normal state value at T, for the polar p-wave state, and for
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a phase variation over the Fermi surface, such as the axi-
al p-wave state and the d-wave state consistent with the
hexagonal and cubic crystal symmetries, a refiection
asymmetry in the quasiparticle-impurity scattering am-
plitude exists in the plane orthogonal to the energy-gap
symmetry axis. In the case of the odd-parity axial state,
this absence of reAection symmetry leads to new com-
ponents of the thermal-conductivity and thermoelectric
coe%cient tensors which vanish in the normal state. In
the case of the even-parity d-wave state, it leads to new
components of the viscosity tensor, which are zero in the
normal state.

The basic origin of this reAection asymmetry is the
breaking of time-reversal invariance due to the existence
of a condensate of pairs with finite angular momentum.
Because the gap matrix is not invariant under time rever-
sal, the Onsager relations must be written in a form
which allows for this. If we neglect the e8'ects of external
magnetic fields and bulk rotation of the superconductor,
the Onsager relations for a transport coe%cient y have
the form

y;, (&)=y,;(&&),
where 7 is the time-reversal operator, and b, is the gap
matrix. This is a natural generalization of the results
given by Landau and Lifshitz. "' We note that in the case
of the viscosity, the indices i and j refer to pairs of Carte-

sian indices. If one uses for 'Th the results given, for ex-
ample, by Veda and Rice, one finds the results
K„(b,)= —K „(b,), L„„(b,)= Ly„(b, ), an—d r)„, , (b, )= —

g~, „,( b, ), which are satisfied explicitly by our expres-
sions.

New components of transport coeKcients occur only if
the parity of the gap is the same as that of the relevant
current entering the transport coe%cient. The heat
current and the electrical current have odd parity, and
therefore the thermal conductivity and therrnoelectrie
coeKcient can have additional components for certain p-
wave states but not for d-wave ones. The conclusion for
the viscosity is the opposite of this, since the momentum
Aux has even parity. Expe'rimentaI observation of new
components of transport coefficients would provide con-
clusive evidence for states with nontrivia1 phase varia-
tions over the Fermi surface, and would also determine
the parity of the gap.

To facilitate comparison with experiment it is help-
ful to give the results of our calculations in the
low-temperature limit. For the polar and d-wave
states one finds for the therma1 conductivity
K„ /T = ', cos 5&K&(T, )/T„—and for the axial state
K„/T =cos 5&K&( T, )/T, . The results for the viscosity
in the polar and d-wave states are g„„=—,

' cos 5zg„„,
2g«« —cos 5&g» «, and pe zy &&

cos 5+Qzy zy & while
for the axial state the results are g„„=—,

' cos 5&g„„,
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g„„„=—,
' cos 5&q „„„.All other components of the

thermal-conductivity and viscosity tensors are smaller
than these by a factor at least of order (T/T, } . The fact
that the results for the polar p-wave and d-wave states
behave essentially identically in the low-temperature limit
is a consequence of the fact that the properties of both
states are dominated by the nodal line at the equator of
the Fermi surface. In fact at all temperatures the thermal
conductivity and viscosity of the two states are qualita-
tively similar, since they have common values in both the
limits T—+T, and T~O.

Let us now turn to the experimental data. Sulpice

et a/. have measured the thermal conductivity of a UPt3
polycrystal at temperatures above about 30 mK (approxi-
mately 0.06T, ), but unfortunately no data is available on
single crystals as far as we are aware. If we assume that
the quantity measured in the experiments is just an aver-
age thermal conductivity E =

—,
' g; K;;, the theoretical re-

sults for all superconducting states considered in this pa-
per resemble the experimental ones for phase shifts
greater than about 0.7m/2. For smaller values of the
phase shift, the theoretical values of the low-temperature
thermal conductivity exceed the measured one. The lack
of data on single crystals makes it diScult to discriminate
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among the various possible states.
The ultrasonic attenuation of UPt3 single crystals has

been measured by several groups. Since the attenua-
tion of 1ongitudinal waves may have contributions from
physical processes not considered here, such as gap relax-
ation ' and order-parameter collective modes, ' we
will not attempt to make a careful comparison of our re-
sults with measurements of the attenuation of longitudi-
nal waves, but instead will focus on the attenuation of
transverse sound, which was measured by Shivaram
et al. for temperatures between 35 mK and T, . For
sound propagating in the basal plane along the b axis,
they found the attenuation to be proportional to T for
waves polarized along the a axis but to vary roughly as a
power law of the temperature, with an exponent between
2 and 3, for waves polarized along the c axis. Qualitative-
ly the measured attenuation resembles most closely the
theoretical calculations for the polar and d-wave states,
with the nodal line lying in the plane perpendicular to the
c axis, and for phase shifts close to m/2. This fact was
first pointed out by Schmitt-Rink et al. '

There are, however, a number of points that must be
borne in mind in making the comparison with experi-
ment. The first is that experimentally the attenuation is
determined only up to a temperature-dependent additive
constant, since the importance of end losses and similar
effects is not known quantitatively. The plots of the ex-
perimental data given in Ref. 7 have been drawn so that .

the attenuation tends to zero at T=O, but the data do
not rule out the possibility that the intrinsic attenuation
is nonzero at T=O. A second experimental remark is
that the width of the superconducting transition is -50
mK or T, /10, which makes difficult the deduction from
experiment of what the initial drop in the attenuation just
below T, would be in a material with a sharp transition.

There are also uncertainties on the theoretical side.
The first of these is that our basic model, with a spherical
Fermi surface and s-wave scattering, is an
oversimplification of the real band structure and scatter-
ing processes in UPt3. However, allowing for band-
structure effects and for higher partial waves, is not
dificult, in princip1e, and can be done straightforwardly
at the expense of more algebra and numerical work. A
second simplification is that we have neglected the effects
of pair breaking. These are important whenever charac-
teristic excitation energies of importance become small
compared with A/~, where ~ is the excitation lifetime.
We may estimate ~ at T, by using the measurements of
Shivaram et al. to deduce a shear viscosity. If we as-
sume that the deformation potential is comparable to the
value for a Fermi liquid, of order pFvI;, take the Fermi
velocity to be -6X 10 cm/s, which is closer to the value
found for all pieces of the Fermi surface in the de
Haas —van Alphen experiments of'Taillefer et al. , and
take for y, the coefficient of the term in the specific heat
linear in T, the value 420 mJ/K mol, we find for the
sample of Shivaram et al. r& -3.3 X 10 " s, which cor-
responds to a mean free path of approximately 2000 A.
This value is similar to the values deduced by the authors
of Ref. 41 for their sample. From our estimate of the col-
lision time above we find the characteristic scattering rate

at T„ I"(T, ) =iri/2rz is 110 mK. This estimate of the
scattering rate is uncertain because of our assumption
that the deformation potential is equal to its value for a
Fermi liquid, which may not be the case for heavy-
fermion materials where band-structure effects can be im-
portant. We may obtain an independent estimate by not-
ing that the transition temperature T, of the sample used
in the experiments of Ref. 7 is certainly less than 50 mK
below the value found in the purest samples. According
to the calculations of Walker and of Hirschfeld, Wolfe,
and Einzel the depression of the transition temperature
is given by

Thus a depression of T, by 10% would correspond to
I =~T, (I )/20=70 mK, which is certainly an overesti-
mate of r for the sample. Given the uncertainties in the
two methods of determining I, this value is in good
agreement with the one obtained from the ultrasonic at-
tenuation.

Pair breaking is important in two temperature
ranges —close to T„where the gap can be less than or of
the order of the pair-breaking rate, and at low tempera-
tures, where the energy of thermal excitations becomes
comparable to I . A crude estimate for the polar state in
the unitarity limit shows that pair-breaking effects play
an important role only for temperatures such that
T/T, & 1/10 and 1 —T/T, & 1/100. This estimate
agrees very well with what is found in detailed calcula-
tions of Walker, who studied the ultrasonic attenuation
in p-wave superconducting states including explicitly the
effects of pair breaking. We therefore conclude that the
neglect of pair breaking is a very good first approxima-
tion for the conditions under which detailed experiments
have been performed on UPt3.

Another effect we have neglected is inelastic scattering
processes. Their importance is clearly indicated by the
temperature dependence of the attenuation in the normal
state. Fits by Hess" to the experimental data of
Shivaram et al. on the attenuation of transverse sound
in UPt3 using a Fermi liquid picture in which both
electron-electron and electron-impurity scattering pro-
cesses contribute to the normal-state attenuation reveals
that, for the sample used in Ref. 7, the contribution due
to inelastic processes is 40% of the total attenuation at
the transition temperature. Below the transition temper-
ature the rate of inelastic processes will be reduced for
two reasons: First, without pairing correlations, the in-
elastic scattering rate would be reduced as a consequence
of the smaller number of thermal excitations to scatter
from and the reduced phase space, and second, the super-
conducting correlations reduce even further the density
of states. For a superconducting state with a nodal line,
we expect the scattering rate to decrease roughly as
(T/T, ) compared to its value at T„making the dropoff
of the attenuation below T, less rapid than it would be in
the absence of inelastic processes. Another assumption
we have made is that all impurities have the same phase
shift. With a distribution of phase shifts one would ex-
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and (Du A, ;, ). The integrals involving p, and A, ;J. may be
expressed in terms of the basic integrals

0.8
I2„=(DB' p ") (n =0, 1, or 2), (A 1)

:=0.6
Z

I

0.4

where p is a shorthand notation for p, .
The integrals needed in the thermal-conductivity and

thermoelectric coefficients calculations are

0.2

(Du p„)= (Du p ) =
—,'(I I ),— (A2)

&Du'i,'&=I, . (A3)
0.0 0.2 0.4 0.6 0.8 1.0

T/Tc

FIG. 11. Plots of q„,,~, and qxy~y showing the e6'ect of
diferent values of 4C/C on the viscosity coefBcients for a
normal-state phase shift of m /2.

pect features in the temperature dependence of the trans-
port coefficients to be smoothed out.

In predicting the temperature dependence of the vari-
ous transport coefficients the temperature dependence of
the gap is an important ingredient. For this we used an
expression introduced by Wolfe and Koch in the con-
text of superAuid He. Some strong-coupling corrections
to the energy gap were allowed for by using in this ex-
pression the experimental value of the specific-heat jump
AC/C at the transition temperature. For the value of the
energy gap at T =0, b,(0), we adopted the weak-coupling
value specific to each superconducting state. The value
adopted for hC/C has most effect on the behavior of
transport coefficients for T close to T„while the value of
b,(0) affects low-temperature properties. However, we
note that any components of K/T and q that are finite at
T=O are unaffected by the value of b(0). For the
specific heat jurnp we used the idealized value given by
Sulpice et al. b,C/C=0. 86. It is difficult to determine
AC/C experimentally, and the authors of Ref. 4 give 3
values, 0.5, 0.66, and 0.86. The uncertainty in the value
of b, C/C makes difficult the comparison of our results
with experiment since the shapes of the curves of the
transport coefficients as functions of temperature depend
on the value of b.C/C. To illustrate this effect we show
in Fig. 11 calculations of the coefficients g, , and g
in the case of the polar state for the two extreme values of
b, C/C.

and

&Du 'X,, & =b,',"I,+b,',."I, ,

&Du'X' &=c'"I +c!"I+c'"I.ij
—

ij 0 ij 2 Cij 4 &

(A4)

(A5)

where the coefficients b; and c; are shown in Table I.
The integrals involving the D function may be written as

(A6)

(A7)

where

7

r V
(A8)

and r =a/b. The quantities needed have the following
forms.

Axial state

F« lxl &1

lg(x)l = —x + —ln2— x 1+x
2 2 1 —x

2

(A9)

(1)=—ln
x 1+x
2 1 —x

For the components of the viscosity that we evaluate, we
need the integrals ( Du A, ; ) and ( Du A, ;,. ), which may
be expressed as
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b(2) c(0)

(6) x 11 1+Z
2( 1 x)r— (A 1 1)

(A12)

C(4)

APPENDIX

Here we give results for the angular integrals required
in the calculation of the transport coe%cients. These are
&1), g(E), &D), (D-. &, &D-"&, (D-"i,'&, &D-"~„&,

zz

XX

Xg

1

3
1

6

1
I

2

0

1

9
11
72

—2
3
5
12

1

2
1

4

3
8

1

2
1

8
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&G-2&= —xi 1+x +x'1 z+1
2 1 x 2Z Z 1

(A13)
Polar state

2

(G 2 2) X

2
x 2 2 x 1 1+x

r x — +—1n
2 2 2 1 —x

'2
1+(1—x )'/

lg(x)l'= —x + x 1n
2 x

(A22)

+—x rZln1 2 2 Z+1 (A14) &1)=—lxl,
2

(A23)

2

(G 2 4) X

2
rx ——x+—2 2 3 2

4 4

mlxl 1

2 1/22r (r —1)

2

+——(1—x ) rZ —rx — +—2 2 2 2 2 2

2 8 2 2

&Gv&=. . .tan
(r2 1 )I/2

1

x (r 1)'— (A25)

where

1+x 1 2 4 3 Z+1
Xln +—xrZln

1 —x 2 Z —1

(A15)

(GV'&= —lxl, ", —1
(

2 i)1/2

&Gv2p2&= —IXI' r' ———r(r' —i)'"
2 2

Rnd

(A27)

Z= + 1—1

r 2

For lxl ) 1

1/2
1

X
r 2

2

(A16) (Gu p ) =—lxl ——+—r —r +r(r —1)—2 4 ~ 5 2' 4 2 3/2
2 8 2

(A28)

lg(x)l = —1n
x x+1
2 x —1

(A17) For lxl) 1

(» =—in
x x+1
2 x —1

(A18)
lg(x)l'= x sin

X
(A29)

1 1 (x —l)i x+1
ln

2 4 x x —1
(A19)

& 1 & =x sin 11
X

&v'&= —1—1 1

2 x2

' 1/2

+ S1Il
x. 11
2 x

(A30)

(A31)

(v p ) =—+ —(x —1)— 1n
1 1 2 1 (x —1) x+1
4 8 16 x x —1

Rncl

(A20)

&u p&= —— +—1 x 1

2 4 2

1/2
1 + Sin

X 8 x

(A32)

(u p )=—+ (x —1) ——x
6 16 3

1 (x —1)
1

x+1
ln+

32 x
' x-1 (A21)

&v p)= —— — +—4 1 x x 1

2 8 12 3

5

+ sin
x . 11
16 x

' 1/2
1

X

(A33)

d-wave state

F« lxl (1

lg(x}l =
2

'2
1

'
dp

0 p (
4 2+X 2/4)1/2

2
dp

(
2 4 2/4)1/2

2 '

(A34}

(1& lxl » 1 dp
p (

4 2+ 2/4)1/2
(A35)
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(p —p +x /4)' p p—+x (r 1)—/4 (A36)

o p2 p4+x2(r2 1 )/4 (A37)

ancl

where

f~'+ y'2;. 0 p

(
4 2+ 2/4)1/2

p p—+x (r 1)—/4
(A38)

and n =0, 1,2.
Far ixi)1

lg( }I'=
0 (

4 2+ 2/4)1/2

(1) ixi & dP
(

4 2+ 2/4) 1/z

2

(A39)

(A40)

[1 ( 1 x 2)1/2]1/21
I

p = —[1+(1—x )' ]'1

v'2

and

( U 2+2n ) — I d+ +2n( 4 2+x 2/4) l/2
ix/ o

(A41)
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