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The scattering cross section for difFuse scattering of x rays or neutrons from disordered crystals is

expressed systematically in terms of density-correlation functions by using a cumulant expansion.
This approach allows one to distinguish between contributions owing to pair-, three-, and higher-

order correlations of the defects; the latter ones enter even within the first Born approximation due

to the nonlinear dependence of the scattering amplitude on the lattice displacements. The terms in-

volving even and odd correlation functions, respectively, can be classified according to their inver-

sion symmetry properties. This analysis is applied to x-ray scattering data obtained from niobium-

molybdenum alloys loaded with hydrogen. Furthermore, we propose how to test, on the basis of the
scattering data alone, approximation schemes for the three-point correlation function, such as, e.g.,
the Kirkwood superposition principle.

I. INTRODUCTION

Interstitial defects in crystals occur either as contam-
inations' or they are dissolved like hydrogen atoms in
metals. In both cases the knowledge of the correlation
functions of these defects provides a detailed insight into
the interactions between them as well as into their
thermal behavior. This becomes particularly interesting
when these interstitial defects undergo cooperative phe-
nomena which are induced through effective interactions
mediated by the host lattice. The phase transitions of hy-
drogen atoms dissolved in certain metals are well-known
examples thereof.

X-ray and neutron scattering are standard techniques
for such structural investigations. Since in the case under
study the single scattering cross section is small a fortiori
multiple scattering is negligible and the scattered intensi-
ty is proportional to the Fourier transformed pair corre-
lation function of the a,toms in space and time. In gen-
eral the atoms are displaced from their ideal lattice posi-
tions so that this Fourier transform is a nonlinear func-
tion of the occupation numbers Ir, =0, 1 j of the intersti-
tial sites labeled by a=1, . . . , N~. Therefore the scat-
tered intensity depends in a complicated way on the
whole set of the correlation functions

mentioned above.
The same situation arises in binary alloys. There, in

the particular case that the alloy components have simi-
lar atomic sizes, these displacements are small so that in a
first approximation the scattered intensity depends linear-
ly on 6' ' known as short-range order scattering. But
even for those favorable alloys like CuZn the different
atomic sizes of the alloy components induce long-ranged
displacement fields and introduce important nonlineari-
ties. Therefore a fortiori the general case of binary alloys

requires considerations as for interstitial defects. A
method to analyze the diffuse scattering including the
distortion-induced scattering was developed by Boric and
Sparks and applied extensively by, among others, Cohen
and co-workers. A corresponding analysis based on re-
sults of the present paper is presented in Ref. 9.

It is well known' ' that interstitial defects cause a di-
lation of the host lattice resulting in a shift of the position
of the Bragg peaks. The magnitude of this shift is deter-
mined by the mean concentration G"'—:c. Theguctua
tions of the defect configurations lead to local distortions
around the dilated mean lattice. This causes the so-called
Huang diffuse scattering around the shifted Bragg
peaks. ' Based on truncations Krivoglaz' found that
this diffuse scattering intensity is proportional to the
product of the Fourier transform of G' ' and the absolute
square of the Fourier transform of the displacement field
of a single defect. He also discusses to some extent
within this approximation scheme the inAuence of 6' '.

Instead, in this paper we employ a cumulant expansion
of the structure factor. ' This approach enables us to
discuss in a clear and systematic way how the whole
hierarchy of correlation functions enters the scattering
intensity. It allows one also to judge the validity of
Krivoglaz's original Huang diffuse scattering formula. In
particular one obtains the dependence of the Debye-
Waller factor on the correlation functions of the defects.

In Sec. II we derive the general expression for the cross
section and we discuss in detail the scattering process at
the host lattice. Furthermore we show how the experi-
mentally determined function 6' ' can be used in order to
test theoretical approximation schemes for 6' '. The
scattering at the interstitials themselves and the cross
term are analyzed in Sec. III. In Sec. IV we apply our re-
sults to x-ray scattering data obtained from niobium-
molybdenum alloys loaded with deuterium. Section V
gives a summary and conclusion. In Appendix A we pro-
vide crude approximations for 6' ', G' ', and G' ' in or-
der to be able to obtain in Appendix B estimates for vari-
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ous contributions to the cross section. In Appendix C we
compare the information about G' ' following from the
pressure dependence of G' ' with the one, which can be
extracted from the antisymmetric part of the Huang
diffuse scattering.

and

A =(e /mc ) (EI/EC, )(s,sI) (2.7)

S(K,co) =(2m) ' f dt e' '(p(K, t)p*(K,O) ) (2.6)

II. THE SCATTERING CROSS SECTION

A. Cumulant expansion

for x rays and

A =(EI/K, ) (2.8)

Each configuration of the sample is described by the
set of host-lattice sites IR im =1, . . . , NL } and the set
of interstitial sites IS, ~a = I, . . . , NIf I. Every site of the
host lattice is assumed to be occupied by atoms, whereas
the interstitial sites are either occupied (r, =1) by a de-
fect or they are unoccupied (r, =0). We decompose the
vectors R and S, into their thermal mean values and
their displacements, respectively, and

K=K; —KI

for neutrons, respectively, E= ~Ki and s is the polariza-
tion vector for the electromagnetic waves. K and co cor-
respond to the momentum and energy transfer between
the initial and final state of the scattered waves,

and

R (t)=R +u (t)

S,(t) =S,+v, (t)

(2.1)

(2.2)

CO
—Q); COy

p(K, t) = g f„(K,t) exp[iK R„(t)]

(2.10)

(2.1 1)

with

(U (t)) =0

and

(2.3)

(2.4)

is the scattering amplitude of the electrons and nuclei, re-
spectively. In neutron scattering f is a coherent scatter-
ing length, whereas in x-ray scattering f is the atomic
form amplitude

f(K)=f d R e' p, (R)=f( —K)=f,

t denotes the time dependence of the corresponding quan-
tities. IR } and IS, } form regular lattice structures
which differ from those of the sample without defects
only by a homogeneous dilation of the lattice constant de-
pending on the defect concentration c = (r, ). Therefore

I R } gives rise to Bragg peaks which are shifted com-
pared to the unperturbed crystal, whereas Iu (t)} and

I v, (t) } cause the aforementioned diffuse scattering inten-
sity which we study in the following.

In order to avoid clumsy notation we consider a host
crystal which consists of only a single type of atoms. But
our conclusions can easily be generalized to more compli-
cated situations. The above description of the sample is
applicable both to gases dissolved in metals and to
superionic conductors. There are also no principal
differences to the case of substitutional alloys.

According to van Hove ' the scattering cross sec-
tion for the scattering of x rays or neutrons from con-
densed rnatter is proportional to a dynamic structure fac-
tor S(K,m),

the Fourier transform of the electron density of the regu-
lar lattice atoms or the defects. Since the defects will
modify the electron density of the host atoms, for x rays
f(K) depends also on the defect concentration.

We consider only coherent scattering processes and do
not discuss incoherent or spin-dependent scattering of
neutrons or Compton scattering of x rays.

With our description of the sample as given above one
obtains

[ + ] K[s +v (t)]

(2.13)

Here f„denotes the scattering length or atomic form
amplitude of the atoms which form a completely occu-
pied lattice hosting interstitial defects with scattering
length or atomic form amplitude fd f.

According to Eqs. (2.6) and (2.13) the structure factor
separates into three distinct contributions,

d o. /(dO des) = AS(K, co)

with

(2.5) S(K,co) =S, (K,co)+Sz(K,co)+S,(K,co)

with

(2.14)

m, n

(2.15)

a, b
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and

S3(K,co)=2Re f„fd,t g e ' (2m. )
' f dt e' '(r, (0)e ' )

m, a

(2.17)

g(A, )=(expAX) . (2.1S)

Here A, is a parameter and ( ) means the average taken
with the probability distribution P(X) for X. Following
the conoentional approach described above one writes

g(A. )= g (1,"/n!)&X"& . (2.19)
n=0

In general Eq. (2.19) is not valid because for sufficiently
large n the moments fail to exist if P(X) decays as a
power law for large X. Thus a necessary condition for
Eq. (2.19) is that P(X) decays exponentially for large X.
On the other hand, in the cumulant expansion ' the func-
tion g(A, ) is written as

S, represents the scattering at the host lattice, S2 the
scattering at the defects, and S3 is the cross term with
contributions from both. The next step requires the eval-
uation of the thermal averages ( ) in Eqs. (2.15)—(2.17).
For hydrogen in metals it is known that the dissolved
defects are in thermal equilibrium with the host lattice.
Therefore, in this case the correlation functions are those
following from equilibrium statistical mechanics. It is
important to note that owing to the well-known relation
between a lattice gas and a binary alloy Eqs. (2.15)-(2.17)
also describe the scattering from a two-component alloy
like CuZn. For more details see Refs. 6 and 9.

In order to be able to draw transparent conclusions
about the system under consideration, one aims for ex-
pressing these averages in terms of the correlation func-
tions 6' ' which have been defined in the Introduction.
Then the scattered intensity can be interpreted in terms
of the Fourier transform of the functions G'

Two important systems —irradiated crystals and gases
dissolved in metals —offer the opportunity to perform
scattering experiments with and without defects. By tak-
ing the difference between these two scattered intensities
with appropriate corrections ' one obtains that part of
the diffuse scattering which is caused by the defects
alone. This yields the desired information about the
correlations of the defects.

In the conventional approach ' the displacement
fields u and v, in each cell and for every configuration
contributing to the thermal-averaging procedure are as-
sumed to be small enough so that in the expansion of the
phase factors exp(iK u ) = 1+iK u + . and like-
wise for exp( iK.v, ) all nonlinear terms can be neglected
Then one takes the thermal average of this expansion.
The underlying tacit assumption behind this procedure is
that all those displacement configurations, for which u
and v, are not small, are strongly suppressed by their
corresponding Boltzmann factor. However, in general
this assumption is not justified. For that reason we take a
different approach.

The idea is as follows. Consider a stochastic variable X
and its generating function

g (A, ) =exp[h (A, ) ]
with

(2.20)

(2.21)h(A, )= g (A."/n!)~„.
n=1

Due to the normalization of P(X) one has g(0)=1 and
therefore h (0)=0. The derivatives of h (A, ) at A. =0 define
the cumulants i~'„= (X"), . The first few of them are

~, =&x&, (2.22)

and

~,= (x') —(x &'=(x'& —~, ,

K = (X ) —3(X & &x'&+2(X &'

= (X'& —3~,i~, —a', ,

,=(x'& —4&x') &x) —3(x')'
+»(x') (x&' —6(x)4

(2.23)

(2.24)

g(A, )= exp(A, i~, +A. ~2/2), P(X) Gaussian . (2.26)

For a general distribution P(X), both sums [Eqs. (2.19)
and (2.21)] will consist of an infinite number of terms.
But the cumulant expansion [Eq. (2.21)] converges much
faster because due to Eq. (2.20) the expansion in moments

[Eq. (2.19)]has partially been summed up.
Besides these mathematical merits the cumulant ex-

pansion allows one to judge the range of validity for
neglecting higher-order terms on the basis of physical ar-
guments. In general the higher-order cumulants, i.e., ~„
with n & 3, are small if there are no strong fluctuations in
the system. This is the case as long as one is far away
from any critical points of the system. Hydrogen atoms
dissolved in metals do have a critical point between gas-
and liquidlike phases (a-a' phase transition ) but due to
the long-ranged interactions between the interstitials, this
critical point is a classical one with mean-field-type criti-
cal exponents. Therefore in this case the cumulant ex-
pansion should remain meaningful. It will break down,
however, near a continuous order-disorder transition in a
binary alloy. Note, however, that even in the absence of
strong fluctuations the higher cumulants may be still
significant owing to special properties of the stochastic
variable X [see Eqs. (A7) and (AS)].

In order to be able to apply the cumulant expansion to
Eq. (2.15) we use the expression for two stochastic vari-
ables: '

(X ) 4ICiKi 6K)Ki 3K' —K) (2.25)

Notice that ~„ is determined by (X") and all cumulants

~; with i ~n —1. The main advantage of the cumulant
expansion becomes obvious if we consider for the mo-
ment P(X) to be Gaussian. In this case ic„=0 for n ~ 3
and the sum in Eq. (2.21) reduces to two terms, whereas
the sum in Eq. (2.19) still consists of an infinite number of
terms. The cumulant expansion sums them up to give
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(exp(X, +X ) & =(expX, &(expX ) exp[(X, X &, + —,'(X,X +X,X ),+ —,'(X,X ),+ —,'(X,X +X,X &, + . ],
(2.27)

where in general

&x,x, ),=(x,x, ) —&x, &(x, ),
&x,x,x, ),=&x,x,x, &

—&x, &&x,x, ) —&x, ) &x,x, &
—&x, &&x,x, )+2&x, &&x, &(x, &,

(2.28)

(2.29)

and for (X, ) =0, i = 1, . . . , 4,

&X,x,x,x, &, =(X,X,X,X, ) —&X,X, ) &X,X, &
—(X,X, &&X,X, &

—(X,X, &&X,X, & . (2.30)

For X;=X Eqs. (2.28)—(2.30) reduce to Eqs. (2.22) —(2.25). In general one has (exp+,. X;)= exp(exp(Q, .X;)—1)„
where ( ), means that the exponential function in it is expanded and each product is averaged by the cumulant aver-
age. ' Note that the cumulant expansion in Eq. (2.27) has been rearranged in such a way that, in accordance with Eqs.
(2.28) —(2.30), the third exponential factor on the right-hand side carries contributions only from those correlations,
which arise solely due to the statistical dependence of X, and X2.

Thus we obtain [see Eqs. (2.15) and (2.3)]
iK [u (t) —u„(0)]

) &

iK u(t) .
) &

—iK u„(0)
)

X expI ([K u (t)][ K. u„( 0)]), +i([ Ku (t)] [K.u„(0)]),
+ —,'([K.u (t)] [K u„(0)]2),——,'([K.u (t)] [K.u„(0)]),+ . (2.31)

with

([K u (t)][K u„(0)]),=([K.u„(t)][K.u (0)]), , (2.32)

and

([K u (t)] [K u„(0)]),= —([K u„(t)] [K u (0)]), ,

([K u (t)] [K.u„(0)] ),=([K u„(t)] [K u (0)] ), ,

([K u (t)]'[K.u„(0)]),=([K u„(t)]'[K u (0)]), .

(2.33)

(2.34)

(2.35)

The antisymmetry of the expressions in Eq. (2.33) and the symmetry of the expressions in Eq. (2.35) are due to the in-
version symmetry of the lattices IR I and t S, ], respectively, and they refiect the antisymmetry of the displacement
field T"'(R —S, ) of a single interstitial defect [cf. Eq. (2.51)]; for a particular example see also Eqs. (2.61) and (B6).
Analogous symmetry properties hold for higher-order displacement fields like T' ' [cf. Eq. (2.51)]. These considerations
also show that the autocorrelation functions ((K u )i') vanish for odd p. In Eqs. (2.32)—(2.35) surface eft'ects have
been neglected so that the correlation functions are translationally invariant. For the same reason the first two terms on
the right-hand side of Eq. (2.31) are spatially constant,

(
iK u (t)

) (
—iK u„(0)

) )i (K)

This is the well-known, full Debye-Wailer factor, which contains contributions from both the lattice vibrations and the
defect-induced displacements. ' ' lt should be pointed out that in the cumulant expansion this Debye-Wailer factor is
extracted always exactly even if this expansion is finally truncated [see Eq. (2.31)]. This represents a considerable ad-
vantage over the truncated conventional approach [see Eq. (2.19)], where this is not the case. W(K) can be determined
experimentally by measuring the integrated intensity of Bragg peaks which yields information about the autocorrelation
functions:

W(K)= —,'((K u) )+—,', [3((K.u) ) —((K u) )]+ . = IV( —K) . (2.37)

We apply the cumulant expansion also to the contributions S2 and S3 of the cross section [Eqs. (2.16) and (2.17)]. For
S3 one obtains

iK [u,„(t) v(0)] z t —
A, r (0)+iK [u (t) —v (0)] &

~~a =o.
a

(2.38)

In order to bear out explicitly the behavior of this correlation function for ~R —S, ~
~ uo we apply Eq. (2.27) by identi-

fying X, with t[,,~, (0)—iK.v, (0) and X2 with iK u
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(2.39}

The third factor on the right-hand side of Eq. (2.39) tends to 1 for ~R~ —S, ~
~ ao. This corresponds to a suitable rear-

rangement of the cumulant series

exp X; = exp exp X; —1,
l l

Similarly one finds for the contribution entering S2

iK [v~(&)—vb(0)], 2, [A~a (t)+iK v (&)]+[i&w&(0)—iK vb(0)] ~(r. t rb(0)e ' ' } =(8 /M, ,Mb)(e ~ )Z. =nb ——O ~ (2.40}

For the saine purpose as above we apply Eq. (2.27} with X, =A,,r, (t)+iK v, (t. ) and X2 =Abri, (0) iK—vb(0) Th.e re-
sulting cumulants can be expressed again in terms of cumulants containing ~„K.v„~b, or K vb as factors, because the
cumulants (X, X„),are multilinear with respect to their variables X„.. . , X„.

For example in the case of neutron scattering at metal-hydrogen systems or at binary alloys the correlation functions
in Eqs. (2.38) and (2.40) represent important contributions to the total scattering intensity. We present a detailed dis-
cussion of these terms in Sec. III. However, in the case of x-ray scattering at metal-hydrogen systems

~ f deaf/f „~ (&1 so
that the contributions of S2 and S3 to the total structure factor S are very small. Therefore in the following, Sec. II 8,
we focus on S& alone.

B. Distortion-induced scattering

Up to here we have neither made an assumption about the concentration of defects nor about the magnitude of the
displacements induced by them. In order to facilitate a transparent interpretation of the cross section, we now resort to
approximations concerning the contributions from various correlation functions which allow us to study the inhuence
of the hierarchy of the correlation functions on the di8'use scattering intensity.

Since the Fourier transform of a function F(R)= exp[f(R)] cannot be expressed in closed form in terms of the
Fourier transform of f (R), we expand the third, exponential factor on the right-hand side of Eq. (2.31). Thus, we ob-
tain with Eqs. (2.15), (2.31)—(2.35), and (2.36)

S,(K,a)) =NL
~
f„j'e ' ' '[(2m )'/V„), ]

X g 5(K—G„)5(to)+ g K;K~C '(q, co)+i g E;KJKi, CJk(q, to)
n l, J i,j,k

+ g K;E EkKi ,' f dt.o' f—d q' C,')~'(q', to')Cki'(q q', to —to')—
i,j,k, l

+-.'C,"i"(q ~}——,'C,'k'i"(q ~} + (2.41)

=C(q+Cx„,to),

C(R~, t)= f der f d q C(q, co)e

and where

C,' '(R —R„,t ) = (u, (t)u„i(0)}, ,

C jk'(R —R„,t )= ( u;(t)u J(t)u„k(0) ), ,

C~i)"(R R„,t)=(u;(t)u J(t)u„—
i, (0}

X u„ i(0)}, ,

(2.42)

(2.43)

(2.44)

(2.45)

(2.46}

where

fdto= f de, f d'q=[ V„ii/(2m)']f d q .

(2m) /V«ii is the volume of the first Brillouin zone (1 BZ)
of the host lattice. Q„are reciprocal lattice vectors such
that K=G„+q with qE1 BZ and

C(q, to)=(2') ' f "dt e' 'g e' C(R, t)

C,",„;"(R —R„,t) =
& u

Xu„,(0) &, . (2.47}

The first term in the square brackets in Eq. (2.41)
represents the sum of Bragg peaks, whereas the next 6ve
terms are those contributions to the di6'use scattering in-
tensity which are proportional up to the fourth power of
the displacement 6eld u. But one should recall that the
Debye-Wailer factor e already contains contributions
from arbitrarily high powers of u [see Eq. (2.37}].

For a lattice without defects Eq. (2.31) is the starting
point for the calculation of the cross section for scatter-
ing at phonons (see also Refs. 34 and 35). Since in that
case the distribution P( tu I ) of the displacements is al-
most a Gaussian distribution, the higher-order correla-
tions C'"', n ~3, are very small and can be neglected.
However, if the displacements are induced by defects,
P( I u I ) is far from being Cxaussian'" so that the higher-
order correlations are relevant for the scattering cross
section. This becomes obvious already by considering
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Eq. (2.33). For that purpose let us decompose u into a
phonon contribution s and a defect-induced displace-
ment w

u (r) =s (t)+w (r), (2.48)

so that u (t) =s (t) for r, =0, a = 1, . . . , N~. Even in
the presence of anharmonicities P(Is j)=P(I —s~ j)
and consequently

([K.s (t)] [K.s„(0)]},=0.
On the other hand P( I w j )&P( {—w j ) and therewith

([K.w (t)] [K w„(0)]),&0

E
C)
C)
~ 70-

O II

~ 50..
I)

s) ~ (s

v)
C Is

CD~ 30-
i

+0.1

Ii
I)

is
Is

[cf. Eqs. (2.62) and (B6)). This can be understood by not-
ing that there is no defect configuration I r, j which can
induce, with equal probability, a displacement field
w Ir, j being the reversed of the displacement field of a
single defect T' "= —w. Thus

underscores the importance of higher correlation func-
tions for interpreting the scattering cross section of a
sample with interstitial defects.

In the conventional derivation of the distortion-
induced diffuse scattering intensity thermal vibrations are
neglected from the outset. According to Eq. (2.48},how-
ever, Eq. (2.41) still contains contributions from both lat-
tice vibrations and defect-induced displacements. The
separation between them is discussed most easily in terms
of the frequency spectrum. At a fixed reduced wave vec-
tor q= K—V„ the structure factor is expected to exhibit
two peaks at at=+co(q), which stem from the phonon
spectrum of the host lattice, and a quasielastically
broadened line at r0=0 (see Fig. 1), which is due to the
response of the host lattice to the difFusive motion of the
defects. ' As long as these three peaks are well
separated one has [see Eq. (2.48)]

([K.u (t)][K u„(0)]}—= ([K w (t)][K w„(0}])

+([K s (t)][K.s„(0)]),
(2.49)

i.e., the distribution function P( Iu j ) approximately fac-

FIG. 1. Energy-resolved diffuse scattering intensity from a
Nboo

&
single crystal at the wave vector K

=(1.25, 1.25,0}(2m/a). The solid line is a Lorentzian of width
0.082 THz convoluted with the resolution function (Gaussian
width 0.05 THz) [with kind permission from E. Burkel et al.
(Ref. 37)]. The phonon peaks occur at significantly higher fre-
quencies so that in this figure they are out of scale.

torizes into one for the static defect-induced displace-
ments I w j and one for the thermal vibrations Is j.

In the hydrodynamic limit (q~O) the width of the
quasielastic peak vanishes —Dq', whereby D is the
diffusion coe%cient of the interstitials. The peak position
of the acoustic phonons, however, vanishes —uq; u is the
sound velocity. Thus for small q values the three peaks
remain well separated and Eq. (2.49) is valid. For larger
q values (q =v/D) the relaxation and hopping processes
are strongly coupled. ' At room temperature typical
values of D for hydrogen dissolved in metals is
10 ' —10 cm /s. Since v=10 —4X10 cm/s, in these
cases Eq. (2.49) is valid throughout the Brillouin zone.
Only for substantially larger values of D, as they occur at
higher temperatures, the three peaks start to overlap.

IIowever, even if these peaks are well separated and
Eq. (2.49) is valid, the difFuse scattering intensity is not
simply the sum of two contributions, one being due to the
lattice vibrations and the other stemming from static lat-
tice distortions. With Iw j and Is j statistically in-
dependent, one has

iK.[u (t) u„(0)], —, iK [w (t) —w„(0)], , iK [s (t) —s„(0)]}
=e ' ' ' 'exp[([K w (t))[K.w„(0)]},+ .

j expI([K s (t)][K.s„(0)]},+ . j, (2.50)

where

L(K)= —in(e )

and

M(K) = —ln(e }

are the static and thermal Debye-%aller factors, respec-

tively, so that W(K)=L(K)+M(K). By expanding the
last two exponential functions in Eq. (2.50) and inserting
Eq. (2.50) into Eq. (2.15) one finds that each term of the
curly bracket in Eq. (2.41), which contains even correla-
tion functions C'"', consists itself again of two terms.
The first one corresponds to the correlations of the static
displacements, like ( w;(t)w„(0) ), and the second one
corresponds to the correlations of the thermal displace-
ments, like (s;(t)s„J(0)). These latter terms can be
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subtracted by using the scattering data of the same, but
unloaded sample (see Sec. IV). But according to Eq.
(2.50) the square brackets in Eq. (2.41) contain additional
terms consisting of products of static and thermal correla-
tion functions, like

([K w (t)][K w„(0)])([Ks (t)][K.s„(0)]),
etc. The leading term of this sort decays —iR —R„i
and leads to a q

' divergence, which is subdominant to
the contribution C,'„'„,but comparable with (C'„,'„,) . In
the following we consider therefore in this section
without further notice only the correlations of the
defect-induced displacements t w

Nonetheless one should be aware of the fact that Eq.
(2.50) is only approximately -correct, because in a real
crystal the interstitials change the force constants of the
host lattice and therewith its thermal vibrations. To a
certain extent this effect can be taken into account by us-
ing for M the phonon spectrum of the loaded host lattice.

In a rigorous approach the displacement correlation
functions [Eqs. (2.44) —(2.47)] are calculated from a mi-
croscopic Hamiltonian which includes the coupling be-
tween the degrees of freedom of the defects and the host
lattice. "' Only in the limiting case where the jump time
of the defect between different positions is much smaller
than the residence time at a certain position one can in-
troduce occupation numbers I r, ) . Now we specify the
relation between the displacements I w„ I and the occupa-
tion numbers t r, I. In order to proceed we use the expan-
sion'

with I'„", as the displacement 6eld of a single defect and
T'„,b as a contribution to the deviation from their linear
superposition; T'„,', =0.

As long as the motion of the defects is much slower
than the thermal vibrations, retardation effects can be
taken into account by the replacement

T'„",r.(t)~J dt'T'„", (t t')r.-(t'),

etc., with T'„",(t)=0 for t (0. T'„",(t —t')dt' is the tem-
poral average of the displacement of ihe lattice site R„at
time t, if the interstitial site S, was occupied from t until
t'+dt', provided dt' is much larger than the inverse pho-
non frequency. [Recall that, according to Eq. (2.38),
w„(t) describes the (slow) variation of u (t) as induced
by the defects averaged over the (fast) variations due to
the phonons described by s (t).]

Equation (2.51) enables us now to analyze systematical-
ly each contribution of Eq. (2.41) in terms of the basic
correlation functions

Due to Eq. (2.32) CJ '(q, co) is symmetric around the
Bragg peak and represents a sum of terms,

w„(t)= g T'„".[r.(t) —(r. ) ]

+ ,' g T'„",,[r,-(t)r, (t)
a, b

—(r.(t)r, (t) ) ]+

CJ '(q, co)=C;z '"(q„co)+C1 ' '(q, co)+

=C,"(—q, co)

(2.51) with

(2.52)

Q.nd

C '"(q,co)=(2n) g T"I(q, co).Tp"'( —q, —co).6' 'p(q, co)
a,P

(2.53)

C,' '(q, co)=(2m. ) Re g T'";(q,co)f d q' Jdco'TtI „' ( —q', —co', q' —q, co' co)6' —'& r(q', co';q q', co —co')—
~,P, r

Thus, C' ' is determined by the Fourier transform of the displacement 6elds of a single defect,

and by the Fourier transform of the correlation functions,

(r, (t)rb(t')) =6'"(S, S,, t t'), —(r, (t)r„(t')—r, (t"))=6'"(S. S„t t';S, S„t —t"—), ——

respectively,

T"'(q, co)—:T"'(q, co;y )

=(2m) ' I dt e' 'pe T'"(R y, t), —
m

T' '(q co q', co')=(2n. ) f dt f dt'e""'+""g e' " T' '(R~ —y~, t;R„y~,t'), —
m, fl

(2.54)

(2.55)

(2.56)
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and

G~ '&(q, co)=(2m) ' f dt e'"'g e 6' '(R +y —
y&, t), (2.57)

I6' '& (q, co', q', co')=(2m) f dt f dt'e'"' "g e " G' '(R +y —
ytt, t;R„+y y,—t') .

m, n

(2.58)

Here we have written the vector of the interstitial site as S, =R~+y with R being a lattice vector and y,a= 1, . . . , ntt, describing diFerent interstitial sites within a unit cell. In the derivation of Eqs. (2.53) and (2.54) we used
the fact that T' "is antisymmetric,

T'"(q) = —T ( —q), (2.59)
and that c =(r, ) =c

Various metal hydrogen systems exhibit a linear increase of the lattice constant as function of the hydrogen concen-
tration up to relatively high values of c. It is not yet clear why the nonlinear effects are so small, but it indicates that
for modest values of c, C' ' is dominated by the contribution C' '", i.e., by the two-point correlation function. In the
following we shall adopt this point of view. However, one should keep in mind that, in particular for higher concentra-
tions, even C' ' and therewith the symmetric part of the cross section depend on odd correlation functions like 6' '.

Given the ato~ic force constants, as they can be inferred from the measured phonon dispersion curves of the host lat-
tice, T"'(q, co) can be calculated. ' Therefore, if one succeeds in extracting C' ' [and therewith C' ",see above] from
the scattering data (see below), one has direct access to the two-point correlation function G~~ '

& [see Eq. (2.53)]. Due to
the summation over difFerent interstitial sites within one unit cell C' '" cannot be solved explicitly for G' '

p, but withT"' given for all a one should be able to find a rather unainbiguous fit for G' '
&. Moreover, for small values of q both

G' '
p and T'" become independent from the type of interstitial site so that in the statics, i.e.,

C' ' '(q)= fd C' '"(q, co), T"'(q, to)~ T'"(q), and 6' '(q)= fdto 6' '(q, co),

Eq. (2.53) reduces to

C "(q 0)=n T;"'(q)T'"( —q)6' '(q)-q, q /q

where for a defect with cubic symmetry in an elastically isotropic host material

T"'(q~0) =iP[ V„,t(c,z+2c«)] 'q/q

(2.60)

(2.61)

P denotes the diagonal element of the force dipole tensor P;J =P'6;J. , and c» and c~ are elastic constants. Thus for
small q values 6' '(q) follows unambiguously from C'

Let us now turn to the term &x E in Eq. (2.41). Again resorting to Eq. (2.51) one obtains with Eq. (2.59)

C,'.k'(q, co) =(2m ) g T"~k( —q, to)f d—co' f d q' T"I(q', to')TIi'"(q —q', to —co')6' '@ ( —q+q', co+to';q—,co)
a,P, y

= —C,',k'( —q, to) . (2.62)

In Eq. (2.62) we have suppressed higher-order terms involving T' ', which lead to contributions of four-point correla-
tion functions to C' '. Space does not permit a complete discussion of the terms o:K in Eq. (2.41). Instead we shall
evaluate them later within a certain approximation in order to estimate their relevance compared to the terms ~ K and
~K, respectively (see Appendix 8). Nonetheless one finds in general that all three terms ccK are symmetric func-
tions of q with respect to the center of the 1 BZ [see Eqs. (2.32), (2.34), and (2.35)]. Thus, due to the symmetry of the
displacement field of a single defect [Eq. (2.59)], which mediates between the correlations of the interstitials and those of
the displacements of the host lattice as seen by the x rays, the cross section separates into two distinct types of contribu-
tions: symmetric terms, which stem from correlations involving even numbers of occupation variables, and antE'sym-
metric ones connected with correlations functions of products of occupation numbers with an odd number of factors.
(As discussed above, the inclusion of T' ' would modify this statement. ) It will be shown below (see Appendix 8) that
ordinarily the first group of terms is dominated by 6' ' and the second one by O' '. Close to the Bragg peak they can
be inferred from the symmetric and antisymmetric part of the diffuse scattering intensity around 6,

S, ,„(Cx,q, co) = —,'[S(Cr+q, co)+S(G —q, to)]

(2.63)
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Si,~.y (6 q ai)= i[Si(G+q ai) Si(& q ai)1

=i&, lf„(C')~'e ' ' ' g G, G, G„C,",,'(q, co)
i,j,k

-(Cxq)/q, (q ~0} . (2.64)

Closer to the zone boundary one has to be more careful in order to extract C' ' and C' ' from the scattering data.
The first step consists in measuring the intensity of the Bragg peaks in the loaded and unloaded sample. This yields the
Debye-Wailer factor e ' ', whose static part is given by a weighted integral of the two-point correlation function
6' ' [see Eqs. (2.37), (2.48), and (2.50)],

M(A)= —,'(2m. ) g G, G fde f d3q g T"I(q, ai)Tp"'. ( —q, —ai)6'~' p(q, ai) . (2.65)

Higher-order terms in Eq. (2.65) have been suppressed. Thus, in the second step, with the atomic form factor known,

the experimental data allow one to construct the functions

S (a,q, ~)=(2iV, ) '[S,(e+q, ~)lf.,(C+q)I 'e'~'G+q'+S, (a—q, ~)If„(C—q)I 'e'~'G &'] .

With the first two leading terms one obtains

S (&,q, co)= g(6;G +q, q )C,' '(q, co)+i g (q;G Gk+q 6;Gk+qkG;6 +q;q q„)C k'(q, a~)

(2.66)

(2.67)

and

S (G, q, co)=i g (6;6 Gk+q;q Gk+q;qkG +q qkG;)C k'(q, t0)+ g(q;6 +q 6;)C '(q, ai) .
i,j,k

(2.68)

Compared with Eqs. (2.63) and (2.64},S+ takes into account correction terms -q/G, which arise from the momentum

prefactors of the contributions ac C' ' and ~ C' ', respectively, in Eq. (2.41). Although in general C' ' and C' ' cannot

be read off from the scattering data as easily as in the case q —+0 [Eqs. (2.63) and (2.64)], they can be reconstructed f1om

the system of equations (2.67) and (2.68), which can be studied for various different vectors Cx„.
Note that for a given momentum transfer K, S+ and S determine only the longitudinal parts of C ' and C.k'.

However, this is sufficient for constructing 6' ' and 6' ' [Eqs. (2.53) and (2.62)]. Nevertheless all matrix elements of
C ' and C k' can be found by measuring at di8'erent reciprocal lattice vectors G and by exploiting symmetry properties.

In sum we have outlined the method of extracting the displacement correlation functions C' ' and C' ' from the sym-
metric and antisymmetric contributions to the scattering data. Equations (2.52) and (2.53) show that the pair correla-
tion function (r, rb ) of the interstitial defects can be determined completely from C' '. The results can be checked
with the static Debye-Wailer factor [Eq. (2.65}].

Since the scattered intensity is a unique function of a single momentum transfer, one cannot expect to explore with a
scattering experiment the full three-point correlation G' '(q, q'), which depends on two rnomenta. Nonetheless Eq.
(2.62) shows that C' ' yields rather detailed information about (r, rbr, ), namely, for each q' the weighted integral of
6' '(q, q') along the lines q —q' in the domain of definition of G' '. Thus one is left with basically two options. The first
one consists of resorting to theoretical predictions for G' ' and of checking its consistency with C' '. Since the theoreti-
cal calculation of G' ' is a very demanding task of current interest even for simple, real liquids (see, e.g., Refs. 45 and
46), for the present system one might turn to the following second option.

If S„Sb, and S, are well separated, (w, ebs, ) is expected to factorize into the product of pair correlation functions
(Kirkwood superposition approximation )

(rg'rb1 )=(cc~cpcr ) (rgr )(bing T~ ) (1br~ ) (2.69)

Equation (2.69) fails if two or even three sites coincide. However, due to the fact that each site can be occupied only by
one interstitial atom one has r,"=r, for n =1,2, . . . . Thus, just in those cases, in which Eq. (2.69) fails explicitly,
(~,rbr, ) can be expressed exactly in terms of two- and one-point correlation functions. Therefore we suggest the fol-

lowing modified Kirkwood superposition approximation:

(r 'r 1 &=(c civic ) '&'r, r )(r,r, &&r„r, &+[(r,'r, & (c c ) '&r 7 —) ]5

+[(r,rb ) —(c cia) '(r, rb ) ](5, , +5b, )+2(1—c )5, b5b, (2.70)

The approximation in Eq. (2.70) has the merits to be both exact in the case that any two points come close together and
to be expected to hold at large distances. In Fourier space we have



8882 S. DIETRICH AND W. FENZL 39

G"'& (q, q')= fd'q, G' '&(q, )G&' (q, +q)G' ' (q, +q+q')

+5 &
G' ' (q') —(c e )

' fd'q, G' ' (q, )G' ' (q, +q')

+5 ~
G' '&(q) —(c c&) 'f d'q, G&' (q, )G' '&(q, +q)

+5P G' '&(q+q') (—c cp) 'f d q, G&' (q, )G' '&(q, +q+q') +2(1—c )5 (2.71)

For suggestions on how to implement the superposition approximation directly in Fourier space instead of in real space
as in Eq. (2.70), see Refs. 48 and 49; there one has tried to simplify Eq. (2.71) further in order to avoid convolutions.

Suppose now that G' '&(q) has been indeed determined from the experimental data in the way we outlined above.
Then by inserting this function into Eq. (2.71) one obtains an approximate prediction for the full three-point correlation
function G' '& ~(q, q'), which in turn according to Eq. (2.62) can be compared with Cjk'(q). Since C I,'(q) itself fol-
lows from the measured diffuse scattering [Eqs. (2.67) and (2.68)] we conclude that based on experimental data alone the
comparison between the symmetric and antisyrnmetric parts of the scattered intensity around a Bragg peak allows one
to test the range of validity of the (modified) Kirkwood superposition approximation.

We would like to emphasize that this offers one of the very rare opportunities in which one has direct experimental
access to three particle-correlation functions. Their importance goes well beyond the particular lattice-gas system un-
der consideration here. For example, they may play an important role for the freezing and glass transition of ordinary
dense liquids because they signal the onset of orientational order. ' ' Since the calculation of higher-order correlation
functions is very difficult, one is frequently compelled to use approximation schemes like the one in Eqs. (2.70) and
(2.71). Therefore it is very valuable to have a testing ground for their validity as described above.

III. LAUK CONTRIBUTION AND CROSS TERM

Section II has been devoted primarily to a detailed discussion of the scattering process at the distorted host lattice,
i.e., of S,(K, co) [see Eq. (2.14)]. In the case of x-ray scattering at metal-hydrogen systems S, is an excellent approxima-
tion for the total structure factor S. However, if the scattering power of the interstitial defects is no longer small —as it
is the case, e.g., for neutron scattering at metal-hydrogen systems or for x-ray scattering at interstitials like carbon in
iron —the scattering process at the interstitials itself, i.e., S2(K,co), and the cross term S3(K,co), represent important
contributions to the total cross section. In the literature S3 is also called size effect or interference term. Here we dis-
cuss S2 and S3 along the lines of the preceding section.

A. Laue term

By combining Eqs. (2.16) and (2.40) we obtain after a lengthy calculation the following result for the scattering at the
interstitial defects themselves (S,=R +y, S& =R„+yp):

S2(K, co) =X&
~ fd, &~ g e ~ e " ~ IS2 a„,gs(K, co)+S2,„(K,co)+S2 „„(K,co)+S2 rDs(K, co) I . (3.1)

a, P

Provided that the interstitial defects do not form a superlattice structure all 5 functions are contained in S2 ~„
S2 B„(K,co) =C'"(K)C& '(K)[(2m ) /V„&&] g 5(K—G„)5(~), (3.2)

where

(3.3)

Before we continue to discuss the other terms in Eq. (3.1) let us note that for a particular configuration of the distorted
host lattice the positions of the interstitial sites, which are displaced, too, follow from the requirement of minimum po-
tential energy within a unit cell. Thus we are led to decompose these displacements v, (t) of the interstitial sites into
thermal vibrations s, (t) and defect induced displacements [compare Eq. (2.51)]

w, (r)= g f dr'T.",'(r r')[r, (r') (r, )—]+.. . , T—,".'=0, (3.4)
b

so that

v,'"=s,(t)+w, (t) (3.5)

with (v, }= ( w, ) = (s, ) =0 and therewith Q„T~I,'c&=0. s, describes the thermal motion of the unoccupied intersti-
tial sites in the unloaded sample whereas pv, gives the corrections of these displacements due to the distortions induced
by the defects in the loaded sample. Although Eq. (3.5) is the analog of Eq. (2.48), one has to keep in mind that
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[a,b, . . . I refers to interstitial sites whereas Im, n, . . . I corresponds to the sites of the host lattice. Therefore T,"b'

di8'ers from T"&. But both exhibit the same q
' divergence for q ~0 because they become the same function for large

distances. T,"b' fulfills the symmetry relation T"' t)(q) = —T'"
&(

—q). Within the approximation of Eqs. (3.4) and (3.5)

I s,' I and I w, j are statistically independent so that all terms in Eq. (3.1) carry the same Debye-Wailer factor
iKs

)
—Q (K)

(3.6)

Due to the inversion symmetry of T"' all correlation functions of ~, containing odd powers of (K.w, ) vanish. Thus
C'"(K) is real and

C' '(K.)=e [c —
—,'(r, (K w, )'), +(&) X (K)

where
—N (K)

(
iKw

)

(3.7)

(3.8)

is the "static" Debye-Wailer factor, which is the analog of L(K) in Eq. (2.50); Q (K) corresponds to M(K). Accord-
ing to Eq. (3.7) the 5 functions in Eq. (3.2) are not simply proportional to c ct) because the occupation number r, at site
S, is correlated with its displacement w, via the neighboring defects [see Eq. (3.4)]. The first correction term in Eq.
(3.7) is given by a three-point correlation function. Without this correction term one has C'" cc c, which is a one-point
correlation function. Therefore in the following C" ' is called a (pseudo-) one-point correlation function.

Let us now continue to discuss the various terms in Eq. (3.1). The diffuse scattering, i.e., the last three terms in the
curly braces, can be divided into three contributions: those which are symmetric (Sz s„)and antisymmetric (S2 „),
around a Bragg peak G„AO, respectively, and the thermal diffuse scattering Sz TDs, which contains correlation func-
tions of Is, J. One finds for the symmetric part

S2,„(K,co) =e
—[X (K.)+Np(K. )]

G '&(q, co)

+ QKjKk I C~"(K)Cp'"(K)D( 'tI i, (q, co)
j,k

+[e CI)"(K)+e e C'"(K)]D~'& k(q, co)

(3. )

G' '&(q, co) is the Fourier transform of (r, (t)rb(0)), . The terms ccK consist of the product of two (pseudo-) one-
point correlation functions, i.e., C'"C& ', and a two-point correlation function

'pjk(Rm — n~ } (wsj(t)wb, k(0))~ DtI
'

~,kj(

a product of one (pseudo-) one-point correlation function, i.e., C'" or CI) ), and a three-point correlation function

D"'p,„(R R„,t)=—(r, (t)w, j(t)wb „(0)),——,'( r(t) wj((0)wb„(0)),

=Dt3'" k (R„—R, t),
and at last of a four-point correlation function

D' '& k(R R„,t)=(r, (t)—i&(0)), (w, j(t)wb&(0)),
—

—,'(r, (t)rb(0)[w, (t)w, k(t) w, j(t)wb k(—0) wb j(0)w,—k(t)+wb (0)wb k(0)]),
+ (r, (t)wb, (0) ),(r„(0)w, k(t) ),

= D'"'
t) k (R„—R, t ) .

The antisymmetric part has the form

(3.10)

(3.11}

(3.12)

Sz „„(K,co)=i gK I
—[e Cf3' (K)+e ~ C"'(K))D' '

& (q, co)+e e D' '
&

.(q, co)]+O(K )
J

(3.13)

and consists of the product of a (pseudo-) one-point correlation function, i.e., C"' or CI) ', and a two-point correlation
function

D' 'tI (R R„,t)=( r(t w—})b( )0), = —DI) ) j(R„—R, t),
and of a three-point correlation function

(3.14)
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(3.16)

where

D'
p (R —R„,t)=( r, (t) rb(0)[ to, J(t) —

wb J(0)])= D—p' 'J(R„—R, t) . (3.15)

Since D' ' and D' ' ' are antisymmetric functions of R —R„(after they have been summed over a and P) their
Fourier transform is purely imaginary so that S2 „„ is indeed real [Eq. (3.13)].

Note that due to the correlations between the occupation number and the corresponding displacement
C Ac e, so that one has no longer a common static Debge Wa-lier factor. Instead there are four types of terms:

(i) ~athose multiPlied by C'"Cp ', C'"e P, Cp"e, and e P, resPectively [see Eqs. (3.9) and (3.13)]. Furthermore
S2(K, co) and Sz(K, co) (see below) differ in their structure from the one of Si(K,co), whose symmetric and antisym-
metric parts contain only even and odd correlation functions, respectively. In S2 and S3, however, the symmetric part
contains also odd and the antisymmetric part also even correlation functions [see Eqs. (3.9), (3.11), (3.13), and (3.14)].

Before we discuss S2, and Sz „ in more detail, let us finish the description of the various terms in Eq. (3.1).
Sz rDs collects all those contributions, which stem from correlation functions of the thermal vibrations Is, I and which
are not yet absorbed in the thermal Debye-Wailer factors. The most important contributions are given by

S2 iDs(K, co)= g K Kk[C'"(K)Cp" (K)D' 'p".k(q, co)+e D' 'p'.k(q, co)]+O(K ) „

j,k

D ~ 'p'z k(R~ —R„,t ) = (s, J (t)sb k (0) ) =D
p

'~' kJ. (R„—Rm, t ) (3.17)

and

~—'Vik(RI R~~ ) = ~r~(t)rb(0) ~~ ( .,J(t) bk(0) ~~
= p' ~kj(R~ (3.18)

whose Fourier transforms are symmetric around q=O.
According to Eq. (3.18) D' '"' ' is the product of two-point correlation functions. Consider now its first factor 6'i'.

If the occupation numbers are coupled via short-ranged effective interactions, 6' ' decays exponentially for
r = lS, .

—Sb l
~ oo. If, however, these interactions decay like a power law -r ", 6' ' cannot vanish more rapidly than-r, too. In metal-hydrogen systems the interactions exhibit oscillations for r ~ 00, whose envelope decays -r

Consequently, in these cases G' '(q) remains finite for q~O, which is in accordance with the experimental results
presented in Sec. IV. A fortiori the Fourier transform of [6' '( s, sb ), ] remains finite for q ~0. This is also true for the
integral over to of the second term in Eq. (3.16) so that f dcoSz ~Ds(K, co) ccp-(K/q) for q~0. [The terms O(K )

contain contributions —q . ]
Because S2 ~DS vanishes for the unloaded sample, it cannot be subtracted by using the scattering data of the host lat-

tice without defects. However, the i'nelastic scattering data allow one to identify the contributions of TDS due to their
characteristic q and ~ dependence, so that Sz +Ds can indeed be subtracted. The elimination of terms like D' '"' ' is
less obvious. Although they are subdominant near the center of the BZ, their importance further away from q=O
remains to be checked. Likewise this applies also to S& and S3.

After this subtraction procedure the energy integrated structure factor S2(q) is given by S2,„+S2„„.It is in-

teresting to compare these contributions with the corresponding ones in S&. Whereas in S& each term, which contains
correlations of n factors r, is multiplied by n factors T",' of the displacement field, too, in Sz only (n —2) factors T,"b'

enter. As a consequence the symmetric part S&, (G„&O,q) is dominated by the de facto four-point correlation func-
tions ( ~K ) which lead to a q divergence, whereas the lowest contribution 6' "remains finite for q~O [see Eq.
(3.9)]. This q divergence is caused by D' ",which we regard as a de facto four-point correlation function because it
is multiplied by two (pseudo-) one-point correlation functions [Eqs. (3.9) and (3.10)],

D"-'p k(q) = & T.—„(q»p-s k( —q)6,"-'s(q)

-q 6' '(q=O) for q~O . (3.19)

Here G' "(q) enters in a similar way as into S, [compare Eq. (2.53)]. The behavior of the other terms ~K is more
complicated. Within the approximation of Appendix A the first term in Eq. (3.11) vanishes so that due to the second
one

D' 'p k(R —R„,O)=- —,'c (1—c —)(1—2c )[T"'p (R —R„)T"'pj,(R —R„)]
(3.20)

and therewith

lim D."'p,,(q) & ~ .
q —+0

(3.21)

The first term in Eq. (3.12) decays sufficiently fast due to the factor ( r, rb ), (see above), the second one vanishes within
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the approximation of Appendix A so that due to the third term

D~ '
&,„(R„—R~,O}= —c~c&(1—c~)(1 c—&}[T~"+~(R~ —R„)T~")s ), (R~ —R„}]

-[R —R„f-'
and therewith

lim D'."~,„(q)&
q~o

Therefore we conclude that for G„AO and q~O the symmetric part of Sz is dominated by

S2,„(G„AO,q —+0)=C'"(G„)Cp("(G„)g [G„.T"' (q)][G„Tp"'s(q)]6( 's)(q)
y, 5

—2

(3.22)

(3.23)

(3.24)

In particular for larger values of q the importance of those terms which happen to vanish within the crude approxima-
tion of Appendix A remains to be checked.

I.et us now turn to the antisymmetric part of Sz [Eq. (3.13)]. Again within the approximation of Appendix A the
true three-point correlation function D' ' ' vanishes [Eq. (3.15)]. Thus to leading order the antisymmetric part of Sz is
dominated by

S „(G„AO,q 0)= —i[e C& )(K)+e ~ C'"(K)]g [K T&
' „(—q)]6' "(q)

(3.25)

Thus we conclude that for G„AQ and q~O the symmetric part of Sz diverges -q and the antisymmetric part
-q . This is the same behavior as of S, . However, in contrast to S„here both the symmetric and the antisymmetric
part are to leading order determined by the two-point correlation function O' ".Roughly speaking in S2,„6'"is
multiplied by c T, whereas in S2 „„~it is multiplied by cT.

The divergence of S2,„masks the direct observation of 6' "[see the first term in Eq. (3.9)]. If one insists on this
direct observation, one is forced to perform small angle scattering around Ca=0. In this case K=q and all terms in
Eq. (3.1), as well as in S, and S~, become symmetric around q=O. Furthermore all divergences for q~O disappear. If
the thermal difFuse scattering has been subtracted as described above, the first term in Eq. (3.9) has to compete only
with the (now finite) displacement-induced contributions in S„Sz,and Si. To leading order these contributions con-
tain one factor T of the displacement field [see Eq. (3.25)]. If the displacements are small, i.e., if their strength A [Eq.
(B2}]is small, the first term in Eq. (3.9) dominates Si, Sz, and Sz. Under these circumstances the total structure factor
S can be identified directly with the structure factor 6' "of the interstitial defects. ~ The question, whether this pro-
cedure is reliable even for larger values of q, remains to be checked numerically for each system under consideration.
Furthermore one has to keep in mind that for this direct observation of 6' ' it is indispensable to separate the thermal
disuse scattering by inelastic neutron scattering, whereas by using x-ray scattering as described in Sec. II the TDS can
be eliminated by comparing the data with those of the unloaded sample. In addition within certain limits this latter ap-
proach is not limited to small displacement fields.

8. Cross term

In the second half of this section we now discuss the structure of the cross term Si(K,co). In analogy to S, and Sz
one obtains from Eqs. (2.17) and (2.39)

f fe —[L(K)+ ( )}ye

X [Sz &„ss(K,co)+S&,„~(K,co)+Sz „„~(K,co)+S& Tr)s(K, co)] . (3.26)

In the absence of a superlattice structure of the interstitials S3 Q gg
contains all 5 functions,

S, B„ss(K,co)=C")(K)[(2m)'/V„))] g 5(K—G„)5(co) . (3.27)

The other terms in the curly bracket of Eq. (3.26) represent the contribution to the difFuse scattering. The symmetric
part of the distortion-induced term is given by (here 8, =R„+y )

Si,„~(K,co)= QE~E&[(2m) C'"(K) gT"'&i(q, co)T"),( —q, co)6&'r'(q, co—)+e E' '„'(q,co)]+O(K"),. (3.28)
j,k P,r
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where

E' '„'(R„—R, t ) = (r, (0)w, (0)w (t) ),——,'(r, (0)w J(r)w k(0) ),
(3.29)

Note that T "&(q,co) is the Fourier transform of T,'b'(t t'},—which must be distinguished from T",'(t —t') whose
Fourier transform is denoted by Tz"(q, co).

For the antisymmetric contribution of Sz(K, co) one obtains

S3„„(K,o))=ie gK +2irTgj'(q, co)G' 'p'(q, co)
j p

+i g K;KJKI, [e E~ ;'Jk(q, co)+C"'E~';~&(q, co)]+O(K ) .
i,j,k

The four-point correlation function E' ' consists of three terms,

E','k(R„—R, t)= —,'(r, (0)w, ;(0)w J(t)[w k(t) —w, 1, (0)]),
—

—,'( r(0) w;(&) w J(t)w~ k(t)), +(r, (0)w~;(&)), (w, j(0)w k(&)), ,

(3.30)

(3.31)

which are antisymmetric with respect to R„—R . Equation (3.30) contains also the product of a (pseudo-) one-point
correlation function and a three-paint correlation function

E",,'.k(R„R,—t ) = —,'( w, ;(0)w, (r)[w k(t) —w, p(0)]), ,

which is also antisymmetric. Consequently 53 py
is real.

Finally the leading contribution of 53 to the thermal diffuse scattering is

(3.32)

S3&Ds(K,co)= gK;KiC'"(K)E' ';J"'"(q,co)+i g K;KJKke E';Jk' '(q, co)+O(K )
i,j,k

with

(3.33)

and

E",,'" "(R„R,t ) = ($. , (0—)$,(t) &, (3.34)

E';,'" '(R„—R, t)=(r, (0)w;(t)), (s„(0)s „(t)), . (3.35)

Equations (3.33) and (3.35) show that the thermal difFuse scattering contains also antisymmetric contributions. As in
the case of S& and Sz one has

JdcoS3 iDs(K co) g for G„&0 and q~0 .

By applying the approximation of Appendix A one finds that for q~O E' '" as well as E' ' and E' * ' are subdom-
inant compared to the leading terms of S3 sym and S3 „„,respectively. Within this approximation the first term in Eq.
(3.29) vanishes so that

E' k'(R„—R,O)=-c (1—c )(1—2c )T",' T",'I, —~R„—R

and therewith

(3.36}

(3.37)

Again within this approximation the first term in Eq. (3.31) vanishes. For the other two one has

E ik(R R 0) ~~c (1 c )(1 6c +6c~)T~ ~ T ~ JT g'k+c (1 c~)T',' ger(1 cr)TJT~'
(3.38}
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The first term in Eq. (3.38) decays —~R„—R
~

and
leads to a finite value for q~0, whereas the second term
gives rise to at most a logarithmic divergence of
E' '(q~O). Finally, E' ' vanishes within this crude ap-
proxirnation.

Thus we can summarize our results for the interference
term by comparing Eq. (3.24) with Eq. (3.28) and Eq.
(3.25) with Eq. (3.30). We find that both in S2 and S3 the
syrnrnetric parts of the diffuse scattering diverge -q
and the antisymmetric parts -q ' for Cx„&0 and q~O.
In addition the leading behavior of all four
contributions S2 sym7 S2 gsym S3 sym& and S3 asy~ are
characterized explicitly by the Fourier transform of
(r (t)rb(0) ), and by one or two factors of the displace-
ment field T'" of a single defect. This has to be contrast-
ed with the term S, discussed in Sec. II. In S& only the .

syrnrnetric part S,"' exhibits a similar structure as its
counterparts in S2 and S3. However, S& „ is deter-
rnined to leading order by a tvue three-point correlation
function.

Obviously the interpretation of the total cross section
is much easier if the total sum S=S&+S2+S3 is dom-
inated by only one of these three terms. There are several
situations in which this simplification is indeed fulfilled.

The first one concerns x-ray scattering at rnetal-
hydrogen systems, which has been discussed in detail in
Sec. II and for which experimental results will be present-
ed in Sec. IV. In this case S& competes with S3, but
S3 ISi ~

~f, ~

' =0.02. S2 is irrelevant because
S !S If, I

=4X10
As a second example consider neutron scattering at the

vanadium-deuterium system VD . This situation is com-
plementary to the above one, because the coherent
scattering length of vanadium is much smaller than that
of deuterium so that S2 is the dominant term. As above
the cross term S3 is the leading correction term with
S3 IS2 ~

~fv /fD ~

=0.06. Si is negligible because
Si/S2 ~ ~fi, /fD~ =3.6X10 . One disadvantage of this
system is the strong incoherent neutron scattering and
absorption of vanadium.

Thus, we conclude this section by noting that despite
its complexity the thorough analysis of the cross section
of x-ray or neutron scattering at disordered crystals al-
lows one to have an extraordinarily close look at the
liquidlike structural properties of the interstitial particles.

IV. CQMPARISON WITH EXPERIMENTAL DATA

In this section we analyze experimental data in order
to extract from them those correlation functions of point
defects which have been discussed in Secs. II and III.
With respect to this aim the existing relevant data in the
literature can be divided into five distinct groups.

The first group contains all those experimental investi-
gations of diffuse scattering which interpret their data
with the help of structure models including a certain type
of disorder. The authors usually did not intend to ana-
lyze the aforementioned correlation functions.

The second group is concerned with the important ap-
plication of the correlation factor in Huang diffuse

scattering from defect clustering in neutron or electron
irradiated crystals or in alkali halogenides contain-
ing color centers. ' ' In these systems the defects vanish
after annealing at high temperatures so that after a subse-
quent cooling it is possible to study the same sample but
now without defects. The difference of the scattered in-
tensities between these two states of the crystal yields
directly the contribution from the defects alone. Howev-
er, in most cases the correlations in these systems corre-
sponds to nonequilibrium configurations, which can be
studied only under restricted conditions, e.g. , at low tem-
peratures. Furthermore, under these circumstances it is
difficult to obtain reproducible results. Therefore the
second group cannot be used to test, e.g. , theoretical pre-
dictions for correlation functions of defects in thermal
equilibrium.

Thus one is led to consider hydrogen in metals, which
can be investigated under conditions of thermal equilibri-
um over a wide range of temperature and concentration.
For the metal-hydrogen systems there are basically two
possibilities to separate the distortion-induced diffuse
scattering from the other contributions.

According to the discussion following Eq. (3.18) the
first possibility consists of performing inelastic neutron
scattering experiments, which allow one to subtract the
characteristic contributions from the thermal diffuse
scattering. However, so far this third group of experi-
ments has determined only the q~O limit of the corre-
lation functions. In addition, this subtraction method is
restricted to rather favorable conditions.

The second possibility for separating the various
diffuse contributions is realized by x-ray scattering exper-
iments at one and the same host crystal by comparing the
scattered intensities from the loaded and unloaded sam-
ple, respectively. This technique can be exploited in two
ways. In the first one, which forms the fourth group of
experiments ' having been initiated by Metzger, Peisl,
and Wanagel by using hydrogen in niobium, ' one studies
only low-defect concentrations (between 1 and 3 at. %%uo
H/Nb). As a consequence the dissolved hydrogen atoms
form a dilute lattice gas so that the correlations between
the defects resemble closely those of a random distribu-
tion as described in Appendix A, (r, rb ), =c 5, b [Eq.
(A6), c ((1]and therewith

6' ' p(q, co)=-c 6(co)5

is constant throughout the Brillouin zone [Eq. (2.5'7)].
Thus according to Eqs. (2.41) and (2.53)

S,(K)-=pc K T'"(q)

which dominates S. Therefore these scattering data allow
one to obtain information about the strength and the
symmetry of the displacement field T'„", in particular for
large distances, i.e., ~R„—S, ~

&& lattice constant. '

These experiments have been extended to high hydro-
gen concentrations ' forming the fifth group in our dis-
cussion. At this high concentration the interstitials are
strongly correlated. Thus by using the reversed approach
of the fourth group discussed above, here one can indeed
determine the desired nontrivial correlation function
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G' '~(q). In contrast to the first four groups, these ex-
periments fulfill all our requirements and therefore we
discuss their results in some detail.

Actually these experiments at high hydrogen concen-
trations have been performed by using a Nb& Mo alloy
as a host lattice instead of pure Nb. (Mo, which is the
neighbor element of Nb in the periodic system with one
electron more, forms a continuous series of solid solu-
tions with Nb, all having the same bcc structure. There
is no indication of a phase transition in these alloys. ) The
use of this alloy allows one to study additionally the
inAuence of randomly distributed Mo atoms on the phase
transition of the dissolved hydrogen compared with that
in an ideal Nb host lattice. These effects of the Mo
atoms, which act like a random field, have been discussed
elsewhere and are not the topic of the present paper.
Here we use these data in order to demonstrate how to
extract from them the correlation functions discussed in
Sec. II. Mainly we analyze the scattering data from
Nbi Mo D„with y =0.01. (Deuterium was chosen in
order to facilitate eventual neutron scattering experi-
ments at the same sample. In the following we do not
distinguish between H and D.) For y =0.01 the hydro-
gen atoms exhibit a phase diagram, which has the same
topology as a pure Nbo system with y =0, which is
shown in Fig. 2. The gaslike (a) and liquidlike (a')
phases of the hydrogen lattice gas are phase separated
below the phase-transition temperature T, (x). At low
temperatures and high concentrations one finds various
solid phases like, e.g. , the f3 phase. Thus this phase dia-
gram resembles closely that of an ordinary liquid. For
more details see Ref. 4.

Here we want to make a remark concerning our nota-
tion. The mean number of dissolved hydrogen divided by
the number of interstitial sites c =(r ) varies between 0
and 1. At high temperatures the interstitial sites —there
are nH of them per host atom —are equivalent so that
c =c is independent of a. The hydrogen concentration
per host atom is denoted as x=g c and can vary be-

tween 0 and nH. For Nb nH =6, but a strong hard-core
repulsion between the hydrogen atoms limits x to a value
of about 1(see Fig. 2).

The phase diagram of Nbo»Moo o&D is not yet
mapped out completely. However, based on precise mea-
surements at certain selected values of x one knows, that
1 at. % Mo leads to a lowered (= —10%) and slightly de-
formed coexistence line T,(x). (Note that already
5 at. %Mo wipe out the a —a'transition. ) Thus apart
from the actual numbers the reader, if necessary, can fol-
low the subsequent discussion by referring to Fig. 2.

Figure 3 displays the raw data of the diffuse scattering
around the G~33o~ Bragg peak from a Nbo»Moo o& single
crystal (circles) and from the same crystal loaded in situ
with x =0.31(crosses). Since the diffuse scattering inten-
sitydependson G=~G~ roughly -G exp( —G ) [see Eq.
(2.41)], it turns out that around the (330) Bragg peak one
obtains the highest intensity. T =400 K is chosen such
that for x =0.31 one is slightly above the maximum of
T, (x), which gives rise to a particularly enhanced diffuse
scattering. The angular deviation 68= 6I —HB„mea-
sures the momentum transfer q parallel to @~330) As one
can see the hydrogen leads to an increase of the diffuse
scattering caused by the additional distortion of the host
lattice.

In order to proceed one takes the difference between
the scattered intensity from the loaded and unloaded
sample. Following Eq. (2.63) we form the symmetric part
of the diffuse scattering intensity in order to obtain the
two-point correlation function without contributions
from odd correlation functions. After dividing out the
Debye-Wailer factor, the atomic form factor and the po-
larization prefactor, Fig. 4 shows the symmetric part of
the diffuse scattering intensity in a double logarithmic
plot. As expected asymptotically for q = ~q~:0 one finds
the slope —2, which signals the familiar q divergence
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FIG. 2. Phase diagram of hydrogen dissolved in a pure Nb
host lattice (Ref. 4). The figure shows the phase boundaries as
function of temperature ( T) and hydrogen concentration (x). a
and a are the gaslike and liquidlike phases, respectively, which
are separated by T, (x). P is one of the solid phases. Note that
in a Nbp. 99Mop pi alloy the Phase diagram of the dissolved hy-
drogen has the same topology but T, (x) is about 10' lower and
slightly distorted (Ref. 65).
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FIQ. 3. Raw data of the diffuse scattering intensity (counts
per 50 s) around the (330) Bragg peak Cx of a Nbp. 99Mop. pl alloy
loaded with deuterium (x =0.31, crosses) and unloaded (x =0,
circles), respectively, at T=400 K. 60 measures the angular
deviation 0—Oz„« in degree from the Bragg peak position OB„~~
in the direction parallel to G(33p).
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FIG. 4. Double logarithmic plot of the symmetric part of the
scattering intensity difference in Fig. 3 without Debye-Wailer
factor, atomic form factor and polarization factor. The momen-
tum transfer q = IqI is given in units of 6„,= Ia(„0)I. The
slope —2 signals the typical q divergence for q —+0 in the
Huang diffuse scattering.

of the Huang scattering [see Eq. (B4)]. Here it should be
noted that one has to apply carefully several correction
factors to this di6'erence, ' especially for the static and
dynamic Debye-Wal}er factors, which were determined
separately. The measured intensities were converted to a
scattering cross section using an independent measure
ment of the scattering intensity of an amorphous sample.
This is indispensable in order to obtain absolute values of
the two-point correlation function (see below).

According to our estimates in Appendix 8 the sym-
metric part of the di8'use scattering is dominated by the
two-point correlation function. Thus, according to the
discussion above we have now extracted from our data
[compare Eq. (2.67), C' ' has been neglected, see below]
the following expression [see Eq. (2.53)]:

FIG. 5. Ratio r between the correct lattice expression for
[IG(330) T( (t(q) I'+ Iq'T).'(')(q) I'] and its continuum approxima-
tion [IG(33p) T,",'„,(q)I + Iq.T,',"„,(q) I ] as a function of q/G»0.
Already for q values at half of the zone boundary the continuum
theory overestimates the displacement field seriously.

T(i)(q) T(i)(q)

Thus we obtain

g(G;G„+q;q, )C; '(q)

(4.2)

= [IG T' "(q)I'+ Iq T"'(q) I']g(q) (4 3)

from the continuum theory [compare Eq. (Bl)]. Accord-
ing to Fig. 5 T,",„',(q) remains reliable up to —,

' at the max-
irnurn wave vector at the zone boundary, which is at
q/G»o=0. 5. However, already for q values at half of
the Brillouin-zone boundary the continuum theory leads
to a serious overestimate of the displacement field.

In niobium the force dipole tensor happens to exhibit
cubic symmetry ' although by symmetry arguments alone
the various interstitial sites have only tetragonal symme-
try. As a consequence the displacement field happens to
be independent from the type e of the interstitial site
even for large values of q = IqI:

g(G;G. +q;q )C, '(q)
r

=g I [G.T")(q)][G Tp '( —q)]
with

g(q)=QG' '~(q) .
a,P

(4.4)

+[q T"'(q)][q T&')( —q)] I
6' '&(q) . (4.1)

In order to obtain the Fourier transform of the two-point
correlation G' ', one has to determine the Fourier trans-
form of the displacement field T"'(q) of a single defect
[see Eq. (2.51)];higher-order terms like T' ' are neglected
here. This was calculated by means of the lattice Green's
function and a force distribution, which is compatible
with the trace of the force dipole tensor. ' ' Instead of
showing T'"(q) directly, it is instructive to plot in Fig. 5
the ratio of

[ I «»».TI (((q) I'+
I q T)(.',)((q) I']

as calculated properly within the lattice theory, and

[IG(330) T o t(q)l +Iq.T.'.".(q)l']

Thus after dividing the experimental data by
[IG.T'"(q)I +Iq.T'"(q)I ] we finally obtain the Fourier
transform of the two-point correlation function averaged
over all interstitial sites within a unit cell.

In Fig. 6 g(q) is shown along the (hhO) direction for
Nbp 99Mop Oi Do 3 i ~ One clearly observes the nontrivial
correlation efFects g (q)%const. The circles correspond to
T =404 K, which is still in the one-phase region but only
slightly above the coexistence curve (see Fig. 2 and recall
the corresponding discussion of the eft'ect of the Mo
atoms on the phase diagram). The crosses are the data
points for T =454 K. This is further away from the
coexistence curve and thus the correlation function is re-
duced. The diff'erence g (q, T =404 K)—g (q, T =454 K))0 is very small at half of the zone boundary but it in-
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FIG. 6. Fourier transform g(q)=g &6"'&(q) of the two-

point correlation function, averaged over the interstitial sites a
within a unit cell, along the (hhO) direction in reciprocal space
for a Nbp 99Mop»DQ» alloy. The circles corresPond to T =404
K, which is slightly above the phase boundary T, (x =0.31) of
this sample. The crosses (T=454 K) correspond to a state
deeper in the one-phase region.

creases for q ~0. This is in accordance with a system ap-
proaching its segregation phase transition. However, in
contrast to an ordinary liquid, g (q=0) does not diverge
for T~T, . As a peculiarity of this lattice gas, g(q)
would diverge at the spinodal temperature which-is in the
two phase region but which is masked by the fact that at
T, the host lattice becomes incoherent.

It is rather instructive to compare the above results
with those of NbQ 99MOQ Q]DQ Q6 in Fig. 7 along the same
direction in reciprocal space. Again the circles (T =340
K) correspond to a situation close to the coexistence line,

which for this hydrogen concentration is at lower tem-
peratures (see Fig. 2 and its discussion), and the crosses
(T =470 K) refer to a state which for x =0.06 is well
above the solubility limit. Although the general behavior
is similar to that in Fig. 6 there are two important
differences. First, g(q) in Fig. 7 is much smaller than in
Fig. 6. This is mainly due to the reduced hydrogen con-
centration. According to the crude estimate given in Ap-
pendix A one expects that g (q) —=x (1—x /x, „)which is
independent both from temperature and q. With
x,„=0.6 (disregarding the solid phases, see Fig. 2) one
would have g (q, x =0.31)=0. 15 and g (q, x =0.06)
=0.054. This is rather close to the experimental values
of g(q/G, &o

=,0.25), which are indeed only weakly tein-
perature dependent. However, due to the cooperative be-
havior of the interstitials, g (q) exhibits the pronounced
temperature dependence for small values of q as discussed
above. Second, even for comparable temperatures
(T =454 K in Fig. 6 and T =470 K in Fig. 7) g(q) does
not scale simply as x (1—x /x, „). For x =0.06,

[g ( q /G
~ ~o

=0.05 ) g ( q /G
~ to

=0.25 ) ]kg= =0.5,
g [q/G~&p =0.25]

whereas for x =0.31, kg=1. 5. Therefore even if one
takes the trivial concentration dependence of g(q) into
account (on which Ag does no longer depend), for small
concentrations g(q) becomes much more plain with
respect to its q dependence as compared with higher hy-
drogen concentrations. The reason for this nontrivial
concentration dependence is that the state (x =0.31,
T=454 K) is closer to the phase boundary than the one
with (x =0.06, T =470 K). For very small values of x,
g (q) becomes not only very small but also essentially flat,
which corresponds to the situation in the fourth group of
experiments discussed at the beginning of this section.

This technique can also be exploited in order to follow
the inhuence of the Mo atoms on the two-point correla-
tion function. Figure 8 illustrates this effect for the alloy

+ + + o

0.05-

0.1 l

0.1 q/Gizmo

FIG. 7. Fourier transform g(q) of the averaged two-point
correlation function along the (hh0) direction in reciprocal
sPace for a Nbp 99Mop Q, Dp p6 alloy. Again the circles (T=340
K) correspond to a state slightly above the phase transition at
T, (x =0.06) and the crosses (T=470 K) correspond to a state
deeper in the one-phase region. Compared with Fig. 6, here

g (q) is smaller and exhibits a weaker q dependence throughout
the Brillouin zone.

FIG. 8. Fourier transform g(q) of the averaged two-point
correlation function along the (hhO) direction in reciprocal
space for a Nbp»Mop Q3Dp 3Q alloy. The circles and crosses cor-
respond to T =325 and 452 K, respectively. The increased Mo
concentration leads to a different phase separation curve T, (x)
[325 K is again slightly above T, (x =0.30)] and to a different
two-point correlation function compared with Figs. 6 and 7.
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NbQ 97MoQ Q3DQ 3Q By comparing Figs. 6 and 8 one sees
that the disorder introduced by the Mo atoms, which are
distributed randomly in the Nb matrix, has changed the
correlations of the interstitials. The crossover from
small- to large-q behavior has become much smoother. A
discussion of these effects in terms of a random field can
be found in Ref. 64. Here we only want to underscore
the possibility of inferring detailed structural information
from the distortion-induced diffuse scattering.

In these experiments the antisymmetric part of the
Huang diffuse scattering [see Eq. (2.64)] turned out to be
an order of magnitude smaller than its corresponding
symmetric part. This agrees with our estimates in Ap-
pendix B. Therefore the statistical errors of the experi-
mental data presented above did not allow us to extract
the three-point correlation function. However, this goal
may be within reach in. future experiments performed at
synchrotron sources.

incoh

birch

S2 S3

g (1)
BI Qgg

g (1)
diff

g (2)
Bragg

S (2)
diff

g (3)
Bragg

g (3)
diff

FIG. 9. The total structure factor S splits into the incoherent
and coherent part. The latter consists of the scattering at the
host lattice (S& ) the Laue contribution (S2) and the cross term
(S3). All three separate into their diff'use parts and into Bragg
peaks, whose intensities are determined by both thermal and
static Debye-% aller factors.

V. SUMMARY AND CONCLUSION

In this paper we have analyzed the diffuse scattering of
x rays or neutrons at crystals with point defects. We
have persued three aims: (i) to express the structure fac-
tor systematically in terms of correlation functions of the
defect occupation numbers; (ii) to explore the possibility
of extracting these correlation functions from scattering
data; (iii) to present a successful experimental determina-
tion of the two-point correlation function.

The spatial and temporal Auctuations of the defects
around their mean concentration lead to local distortions
of the host lattice which in turn gives rise to the diffuse
scattering of x rays and neutrons. Within the first Born
approximation, which is suScient in the present case, the
scattered intensity is proportional to the Fourier trans-
form of the pair correlation in space and time. Thus the
position of the displaced scattering centers enter the cross
section as arguments of the exponential function. These
displacements of the scattering centers depend on the oc-
cupation numbers of all interstitial sites, since the dis-
placement field of a defect is long ranged. Therefore the
cross section is proportional to the thermal average of a
highly nonlinear functional of all interstitial occupation
numbers. As a consequence even within the first Born
approximation it depends on the whole hierarchy of
correlation functions (see below).

On the other hand, the cooperative behavior of these
interstitial defects may lead to phase transitions, which
are of great importance both for practical applications
and for basic research. The aforementioned set of corre-
lation functions represents a detailed characterization of
these phase transitions. Therefore it is particularly in-
teresting to find a way which allows one to extract at
least some of these correlation functions from scattering
experiments. In addition they can serve as stringent
checks of theoretical predictions for the many-body
effects in these systems.

Figure 9 displays the contributions to the dynamic
structure factor S. It splits into its coherent part S, h

and into its incoherent part S;„„h. The latter one, which

in the case of x-ray scattering contains, e.g. , Compton
scattering, is not of interest in the present study and will
not be discussed in the following. S„h consists of three
contributions, S&, S2, and S3. They correspond to the
scattering at the host lattice; S&, and at the interstitials
themselves, S2. S3 represents the cross term between
two scattering amplitudes. S2 and S3 are also known as
Laue contribution and size-effect term, respectively.

In general all three terms render comparable contribu-
tions to the total structure factor S. In such cases it is
very dificult to extract precise information about specific
correlation functions from the experimental data. Thus
x-ray scattering at the important metal-hydrogen systems
represents a very favorable situation, because in this case
S& and S3 are negligible compared with S, . On the other
hand, neutron scattering at VD represents the comple-
mentary situation, in which S& and S3 are negligible corn-
pared with S2.

Each of the three terms S, , i =1,2, 3, contains both
Bragg peaks, S;B„,and diffuse scattering contributions
S;d;z. The strength of the Bragg peaks of the mean-
dilated lattice is given inter alia by Debye-Wailer factors,
which, are determined by autocorrelat&on functions of the
displacement field. Therefore they contain contributions
due to both the thermal vibrations and the defect-induced
displacements. To lowest order the latter one is given by
the integrated two-point correlation function of the occu-
pation numbers of the interstitials weighted by the square
of the displacement field of a single defect.

The diffuse scattering intensity yields access to correla-
tions of displacements at diferent sites. There are three
reasons why S; d;z depends, even within the first Born ap-
proximation, on n-point correlation functions with n 3.
The first reason is that the probability distribution for the
defect-induced displacements is non-Gaussian. There-
fore, according to the cumulant expansion, the average
over the exponential dependence on the displacement
field as described at the beginning of this section leads to
the exponential dependence of S;d;z on the sum of n-point
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correlation functions whereby all n ~2 enter. Second,
the expansion of this latter exponential in terms of
powers of the momentum transfer generates products of
higher-order correlation functions of the displacements.
As a third reason in general these displacements depend
nonlinearly on the occupation numbers.

Figures 10—12 illustrate the dependence of S;d;s(q) on
this hierarchy of correlation functions and thus summa-
rizes our results concerning the first aim (i) (see above).
As any arbitrary function, S, d;Qq) can be separated into
a symmetric part S;,„(q) and into an antisymmetric part
S;„„(q).However, the special property of these func-
tions S;d;s(q) is that, due to the antisymmetry of the dis-
placement field of a single defect, there is a correspon-
dence between the order of the correlation functions
entering these expressions and their symmetry: S] sy
and S2 y

are given by correlation functions of even or-
der, whereas S»»m and S2+sy~ are determined by odd
correlation functions. In the cross term the situation is
reversed: The symmetric part S3, is given by odd
correlation functions and the antisymmetric part follows
from even correlation functions.

In Figs. 10—12 the third level from above (S,. d;s.
represents the top level) indicates those displacement
correlation functions on which SI-sym and S;»ym, resPec-
tively, depend. In the level below one sees how these
correlation functions are composed of those correspond-
ing to thermal vibrations and defect-induced displace-
ments, respectively. Inter alia, the former ones make up

the thermal diC'use scattering as present in the perfect lat-
tice. [Here the thermal vibrations are taken to be statisti-
cally independent from the defect-induced displacements.
Experimental data support this approximation (see Fig.
I).] In the next level below we have placed all those
correlation functions of the occupation numbers, which
follow from the aforementioned correlation functions due
to linear terms in the dependence of the displacements on
the occupation numbers. In the next level and in those
indicated by dots we placed all those correlation func-
tions which are generated additionally by the bilinear and
higher-order terms, respectively, in this dependence.

In view of this classification scheme we are now in the
position to persue our second aim (ii) (see above), i.e., to
analyze the possibility of extracting various correlation
functions from the experimental data. Here we focus on
the aforementioned cases in which the total structure fac-
tor is dominated either by S, or by Sz. (The more gen-
eral case, as it occurs in binary alloys, will be discussed
later. )

First consider the directly accessible Bragg peak inten-
sity. By taking the ratio between the scattering intensi-
ties stemming from the crystal with and without defects,
respectively, one gets rid of the thermal Debye-Wailer
factor and obtains the defect-induced static Debye-Wailer
factor. As described above, this measures the integrated
and weighted two-point correlation function ( r ) of the
defects as long as higher terms remain negligible. (Here
and in the following (X ) is the short notation for an
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FIG. 10. Hierarchy of correlation functions determining the diffuse scattering at the host lattice. The even (2,4, . . .) correlation
functions are symmetric, whereas the odd ones (3,5, . . . ) are antisymmetric around the Bragg peak. u =a +s denotes the total dis-
placement field composed of thermal vibrations s and defect-induced distortions u. Here, w and s are assumed to be statistical in-
dependent. (X )" denotes the product of n m-point correlation functions of the variable X. Correlation functions involving only
X =s represent the so-called thermal diffuse scattering TDS. Products of correlation functions of s with those of m might also be at-
tributed to TI3S. Those terms of m, which are linear in the occupation numbers ~, give ri== o t ': .--..-st line of correlation functions of
w, whereas those in the second line are due to the second-order terms of w [&I; the dots indicate even higher-order terms [see Eq.
(2.51)]. As discussed in Secs. II and V those correlation functions in the box are experimentally accessible; the other ones are sub-
dominant (see Appendix 8). A product of k factors w, l factors u, and m factors s is' regarded as a (k + l +m)-point correlation func-
tion.
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(3,. . . ). For reasons of tranparency we omitted 5. In 2(r ) enters without displacement fields. But only in small angle scattering
does it represent the leading contribution. Otherwise it is dominated by ( r ) ( w 2) and ( r ) (s ) (see Sec. III) appearing in 4.

m-point correlation function of the variable X.)
In the next step let us consider S&,~, which can be

constructed directly from the experimental data by tak-
ing [S(q)+S(—q)]/2. According to Fig. 10 this elimi-
nates all odd correlation functions. In order to obtain the
momentum dependence of the two-point correlation
function, i.e., (2), two steps are required. First, by tak-
ing carefully the difference between the scattering intensi-

ties of the crystal with and without defects one obtains
the Fourier transform of the sum of all those even corre-
lation functions, which are not due to the thermal diffuse
scattering (TDS} (compare the fourth level in Fig. 10}.
Second, by calculating approximately the various four-
point correlation functions of the displacements one 6nds
that ordinarily their contribution is small compared with
that of the two-point correlation function ( w ). Conse-
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FIG. 12. Hierarchy of correlation functions determining the cross term S3. %e use the same notation as in Figs. 10 and 11. Note,

however, that in contrast to Sl d;& and S2 d;&, here the symmetric part is determined by odd correlation functions (3,. . . ) and the an-

tisymmetric part by even ones (2,4, . . . ). Again we omit 5.
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quently the procedure described above yields the two-
point correlation function of the occupation numbers,
i.e., (r ), after applying theoretical results for the dis-
placement field of a single defect. As an alternative one
can determine this displacement field experimentally by
using scattering data from a sample with a very low hy-
drogen concentration. In this case (r, r& ),=c with high
accuracy which in turn allows one to determine the dis-
placement field of a single defect. This result can be ap-
plied for higher values of c, for which ( r, rb ), is not
known.

The fact that ( io ) yields directly (r ) is only correct
as long as the nonlinear terms in the relationship between
the displacements and the occupation numbers are negli-
gible, which should be fulfilled for not too high defect
concentrations. This seems to be supported by the exper-
imental observation that the lattice constant of the host
lattice varies linearly with the defect concentration.

According to Fig. 10 the antisymmetric part
Si „~ =[Si(q)—Si( —q)]/2 does not contain any
thermal diffuse scattering. This reAects the symmetric
probability distribution of the thermal vibrations due to
their statistica1 independence from the defect-induced
displacements. In analogy to the structure of S&, , here
the sma11ness of the five-point correlation functions leads
us to the conclusion that S», is determined by the
three-point correlation function (r ) and the displace-
ment field of a single defect, whereby the latter one may
be taken from theoretical calculations. Since there is
only a single scattering momentum q and because the
Fourier transform ( r ) depends on two momenta, the ex-
perimental data can uniquely determine only a partial
trace of (7 ). But this still represents a very detailed in-
formation going beyond that one of (r ), which would
follow from studying the pressure dependence of (r ).
There are two possibilities how this information can be
exploited. In the first one these experimental data can be
checked against theoretical predictions for the three-
point correlation functions as obtained, e.g., from
Monte-Carlo calcu1ations. This is a rather sensitive test,
because one is still left with one full q dependence. The
second possibility resorts to experimental data alone. By
taking the results for (r ) as obtained from S, ,„~ one
can check how good'(r ) is approximated by the Kirk-
wood approximation, which expresses (r ) in terms of
(r ). The original Kirkwood approximation, which
plays an important role in the theory of dense liquids and
for the solid-liquid phase transition of ordinary liquids, is
supposed to be reliable for large distances between all
correlated sites but it breaks down at small distances.
Since the interstitials represent a lattice gas without dou-
ble occupancy (i.e., r, =r, ), its three-point correlation
function exactly reduces to a two-point correlation func-
tion as soon as any two of its three sites coincide. Thus
in the present case one can apply a modified ICirkioood
approximation, which retains the merits of the original
one but which in addition becomes an exact relation at
short distances. This kind of analysis is in contrast to the
scattering at ordinary liquids, which is isotropic and
which therefore does not allow one to separate even from
odd correlation functions on the basis of symmetry argu-

ments as we can do here. Thus for those systems the
Kirkwood approximation can be tested only by using nu-
merical calculations. Here, however, one can test it on
the basis of one and the same scattering data. Therefore
the antisymmetric part of x-ray scattering intensities at
metal-hydrogen systems ofFers a unique experimental test
of approximation schemes in statistical mechanics.

The experimental data presented in Sec. IV realize the
first part of this envisaged analysis. Following the above
procedure the x-ray scattering data from Nb, „Mo D
systems yield the Fourier transform of the two-point
correlation function for various values of y &(1, x, and
temperature along a certain direction in the Brillouin
zone. As discussed in Sec. IV these results for ( r)
reAect nicely the gas-liquidlike phase transition of the dis-
solved interstitials and opens the door for quantitative
tests of model calculations. In accordance with our esti-
mates the antisymmetric part of the difFuse scattering in-
tensity is about an order of magnitude smaller than the
symmetric part. Unfortunately, with respect to this an-
tisymmetric part, the resulting statistical errors of the
presently available experimental data are rather large and
therefore do not allow us to present a sound analysis of
the three-point correlation function ( r ) as outlined
above. This is left to future possible experiments at syn-
chrotron sources.

Let us now turn to those systems and scattering pro-
cesses, which yield S2 instead of S, . The notable
difFerence is that ( r ) enters into S2 both directly and in-
directly via the displacement correlations (see Fig. 11).
However, with exception of the forward direction, the
latter contribution dominates due to its q divergence,
whereas (r ) remains finite for q —+0. Even in the for-
ward direction, where the contributions from the dis-
placements do not diverge for q~0, it is difFicult to
determine (r ), because the thermal diffuse scattering
can no longer be separated by comparing the crystal with
and without defects: S2 vanishes ~ ( r ) for ( r ) ~0.
Thus one must resort to inelastic measurements in order
to isolate the therma1 diffuse contribution on the basis of
its characteristic frequency and momentum dependence.
This represents a rather subtle problem, whose solution
seems to be more complicated than the analysis of those
systems with scattering intensities determined by S, .

Naturally the cross term S3 (see Fig. 12) cannot be
determined'separately. If S2 'is negligible compared with
Si, S3 represents the first correction term for Si but it
remains subdominant. The same is true if S, is small
compared with Sz. However, with exception of these
special cases, S3 is in general of the same importance as
Si and S2.
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APPENDIX A finds for the first four correlation functions

At high temperatures the interstitials are only weakly
correlated, i.e., approximately t r, j forms a set of statisti-
cally independent variables. Consequently, the correla-
tion functions factorize in this limit. However, even at
relatively high temperatures this is not completely true,
since up to the melting point of the host lattice the inter-
stitial sites can be occupied only by a single particle.
Thus, in the simplest nontrivial approximation, one treats
[r, J as independent variables but keeps the condition
w,"=v., for n =1,2, . . . . With some combinatorics one and

&r. )=c, (r, =)=cp, &r, )=c, ,

( T~'rb ) —c~cp+c~(1 c~)5a b

( ra Tb7'& ) c&cpc& +c~( 1 —c )c 5, b

+cp(l cp)c 5b +c (1—c )cp5

+c (1—c }(1—2c )5, b5b, ,

(Al)

(A2)

(A3)

(r, r&r, ~d ) =c"+c (1—c)(5, b+5, , +5, d+5z, +5b d+5 d )

+c'(1—c)(1 2c)(—5. ,5„+5.„5„+5„5,„+5, „5., )

+c (1—c) (5, b5, d+5, d5b, +5, ,5& d )+c (1—c)(1—6c +6c )5, b5b, 5, d .

and

&r. ),=c

(r, r& ),=c~(l —c )5, b,
(r, ebs, ),=c (1—c )(1—2c )5, b5&, ,

(A5)

(A6)

(A7)

(r, rbr, rd ),=c (1—c )(1—6c +6c )5, b5b, 5, d .

In Eq. (A4) we have assumed for reasons of simplicity
that (r) =c for all types of interstitial sites. Equations
(Al) —(A4) represent grand canonical correlation func-
tions. It will turn out (see Appendix 8) that within this
approximation only the last terms of Eq. (A2) and (A3)
and the last two terms of Eq. (A4) lead to nonvanishing
contributions to the displacement correlation functions
entering the cross section. Note that these contributions
are symmetric functions of c around c =

—,
' displaying the

particle-hole symmetry ~,~1—~, of the underlying mi-
croscopic Hamiltonian of the interstitial defects. In reali-
ty the repulsive part of the interaction energy between
two interstitial defects is not restricted to a single site so
that the maximum concentration c,„ is less than 1. Ap-
proximately this effect could be incorporated into Eqs.
(Al) —(A4) in replacing 1 —c by 1 —(c/c,„). Within this
approximation the cumulants are

(ii) The asymptotic form of the displacement field T'"
[Eq. (2.61)] is used throughout the Brillouin zone, which
is taken to be a sphere of radius

( 6 2
)
1/3 V

—i /3
max ceI1

In real space

T"'(r)=P[4m(c, z+2C44)] 'r/r (81)
(iii) We replace lattice sums by integrals. In some cases

this leads to artificial divergencies due to the extrapola-
tion of the asymptotic behavior of T'". at large distances
down to small values of r, where T'" should be substitut-
ed by its proper lattice form. We avoid these divergences
by using the lattice constant as a lower cutoff such that
T'"(r}=0for r (a.

Approximations (ii) and (iii) can be dropped by using
the lattice version of T'". We avoid the corresponding
numerical calculation, which can be performed for
specific host lattices (see Sec. IV and Fig. 5), because we
are interested in estimates for the relative strengths of
various terms and because we want to adhere to rather
general expressions.

Thus with Eqs. (2.44) —(2.48), (2.51), and (Bl) and with
the dimensionless abbreviation

A =P [4m V d)(c,2+2C44)] (82)

APPENDIX 8

(A8) we obtain the following expressions:

C '(R)=c(1—c)n V„„A (8/BR;)

X Jd r(rz/r )~r —R~

In this appendix we present approximate expressions
for the static displacement correlation functions C'"'.
They exhibit the general structure of the various terms
entering the cross section in Eq. (2.41) and they allow one
to estimate their relative importance quantitatively. We
make the following approximations.

(i) The correlation functions G'"' of the occupation
numbers are taken as in Eqs. (Al) —(A4) disregarding the
difference between the n H different interstitial sites within
a unit cell.

=2~C(1 —c)nHV„„A (5, g, E )/R— . .(83)

C '(q)=(4~) c(1—c)nHA (e;ej)/q (84)
E=R/R and e=q/q denote unit vectors. The integral in
Eq. (83) can be evaluated straightforwardly by expanding
~r —R~ ' into spherical harmonics.

For the higher-order correlation functions we focus on
the behavior of large R,and small q, respectively, where
Eqs. (2.61) and (Bl) hold. Thus we obtain [see Eq. (2.62)]
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C~z~k'(q)=n Hc(1 —c)(1—2c)Tk"( —q) f d q' T;"'(q')T'"(q —q')

~—i(32m/3)(6m )'~ c(1—c)(1—2c)nH 3 'V„„5,,ek/q,

and by Fourier transformation

C,'.k'(R) —= —
—,'(6m )' c(1—c)(1—2c)nH 2 V,gi5,"Ek /R

The next term in Eq. (2.41) is basically the Fourier transform of the square of the two-point correlation function,

C,'j4„;"(R)=C,',"(R)C„',"(R)

HV»~ 5 j5kl 5ijEk I 5klE Ej+E JEk'EI

and thus a tedious calculation gives

C'k& '(q) = fd q' C '(q')C' '(q —q')

—=~'c'(1 —c)'nHV„»~'[(5 j5kl+5k5jI+5jl 5jk}

—(5ke e&+5 Ie ek+5 ke;e~+5. Ie;ek)+3(5; eke~+5k~e;ej+e;e ekel)](1/q) .

The expression for the first true four-point correlation function reads

C~p&"(R) =c(1—c)(6c —6c + 1)nH V„»A Ij'k'I(R)

with

(85)

(87)

(88)

(89)

(811)

I,''kI(R)= f d r[(r+R), (r+R}jrkr&]/( ~r+R~ r ) . (810)
The integrand in Eq. (810) is peaked at r=0 and r = —R so that

I kr(R)=—f d r(R;R rkr, )/(R r )+ fd r[(r+R);(r+R) ( —R)k( —R)I]/(~r+R~ R ) .
The integrals in Eq. (811) are regularized at r=O and r= —R as described above [see (iii)]. I"'(R) can also be ex-
pressed in terms of partial derivatives with respect to R; and R. of integrals involving (r—R~ and ~r —R~, respec-
tively. These functions can be completely factorized by an expansion in terms of Gegenbauer polynomia, which can
then be integrated term by term. This approach shows that Eq. (811)captures the correct behavior of I"'(R) for large
R. Therefore we end up with

C k'I"(R)=—(4n/3)c(1 —c)(6c 6c+1)—nH V,,»a '3 (5, EkEI+5k~E;E")(1/R )

and correspondingly in Fourier space

(812)

C'jk'&"(q) —= (n. /12)c (1 c)(6c —6c + 1)n—H( V«»/a) A I (32/3m )5j5kl —[25; 5 j+kI5; jee&k+5 &ek;ej](q )Ia. (813)

Whereas the contribution -q refiects correctly the asymptotic behavior of C' "(R) for large R, C' '"(q=O) will be
modified by the higher-order terms which have been neglected in Eq. (812).

Finally the last contribution due to four-point correlation functions is

C,'k'p(R) =c(1—c)(6c —6c+1)nH V„»& (8/Ml)I k'(R)

with

(814)

I,'2k'(R)= f d r(r;r rk)/(r ~r —R~) . . (815)

Again by factorizing ~r —R~
' in terms of spherical harmonics I' ' can be calculated exactly. After a lengthy calcula-

tion one obtains

I~~ (Rjk)=[2m/(15 )la(5jEk+5 kEj +51kE'; ) (1/R')+(4m/7)[E;EjEk —,'(5;jEk+5;kEJ. +5jkE; )]—[ln(R/a)]/R

+(4m/7)[ ,'E;E Ek —
—,",(5; Ek+5—;kE+5 kE; )](1/R ) . .

To leading order one Ands, therefore,

(816)

C; k'I '(R)=—(2m/15)c (1 c)(6c 6c +—1)nH V„—»a 3 [5&(5kI 3EkE~)+5k(5j~ 3E—jE&)+5 k(5 I 3E—
E&}]1/R—

(817}

and in Fourier space

C~j&'I '(q) =(8m /15)c(1 c)(6c 6c +1)—n( H«V—»/)aA [5;je,ek+5;keje&+5jke;eI —
—,'(5,j5&k+5;k5jI+5jk5;I )] . (818)
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As before, the nonanalytic contributions in Eq. (818), i.e.,
-eIek, etc. , reflect correctly the asymptotic behavior of
C' ' '(R) for large R, whereas the contribution in the
square brackets will be modified by higher-order terms
omitted in Eq. (817). Note that C' "(R) decays more
rapidly (-R ) than C' ' '(R)-R, so that one could
expect a logarithmic divergence of C' '(q~O). Howev-
er, the angular dependence of C' ' '(R) is such, that
C' ' '(q) remains finite for q~O. Both C' "(q) and
C' ' '(q) are nonanalytic at q=O. Their slope and their
value at q=O, respectively, depend on the choice of the
path approaching the center of the Brillouin zone.

Since the true four-point correlation functions C' '"
and C ' ' remain finite at q=O, one finds that for small q
the contribution ~K in the cross section [Eq. (2.41)] is
dominated by the square of the two-point correlation
function C' ' '(q)-q '. Although its angular depen-
dence is rather diff'erent C' '(q) shows the same type of
divergence -q

Collecting the various terms the diffuse part of the
cross section within our approximation and close to the
Bragg peak now reads [the terms correspond to their
counterparts in Eq. (2.41)]

X IH2+H3+H4 0+H4, 1+H4, 2+

(819)

with

Hq(Cs, q) =16m c(1—c)nH( AG) (cos a)q

H3(Cx, q) = —", (6'')'~'c(1 —c)(1—2c)

XnH V,g&(AG) (cosa)q

H40(Cx, q)= —,'~ c (1—c) nHV„a(AG)

X(l+cos a+cos a)q

H~, (Cx, q)=(m /24)c(1 —c)(6c —6c+1)nHV„,
~

(820)

(821)

(822)

X( AG) [(16/3n. )
—(1+cos a)q], (823)

H4 2(G, q) =(Srr /15)c (1—c)(6c —6c+ 1)nH

X V„»(AG) ( —,
' —cos a) . (824)

Here we have introduced reduced units V„&&=V„&&/a,
G =Ga, and q =qa; cx denotes the angle between Cx and q,
cos a=Ex q/(Gq).

Due to the dipolar character of the displacement field
H2 and H3 vanish in leading order if 6 and q are orthog-
onal, but H4; do not vanish. In particular one is left in
this case with a q

' divergence stemming from the
square of the two-point correlation function [see Eq.
(822)].

The relative strength of the terms in Eqs. (820)—(824)
depends mainly on the dimensionless parameter AG and
the q dependence. In order to get a quantitative estimate
let us consider the particular system NbH„. Thus we
have V«&& =1/2, nH =6, and a =3.3 A. With P =—', eV,

c&2 = 1.35 X 10' dyn/cm, and c44 =0.29 X 10' dyn/cm,
we have 3 =1.22X10 . For the (110) refiex G=8.89
whereas G =26. 66 for the (330) refiex. Thus
~G[»o] =0. 108 and A G(330) 0.325, respectively.
Therefore we obtain for the (110) Bragg refiex (q —+ —q
implies cosa~ —cosa)

H2=11[100]c(1 c)—(cos a)q

H3 =0.62I 17Ic (1—c)(1—2c)(cosa)q

(825)

(826)

Xc(1—c)(6c —6c + 1),
Hq 2

=3.6X 10 I2.9 X 10

Xc(1—c)(6c —6c+1)(1—3cos a) . (829)

The prefactors in curly brackets correspond to the (330)
refiex. The estimates in Eqs. (825)—(829) confirm our
statement in the main text that the symmetric part of the
diffuse scattering intensity, i.e., H2+Q, H4, +. .. . , is
dominated by the contribution from the two-point corre-
lation function, i.e., by H2. At least for smaH values of q
and a&90' this is always true because H2 exhibits the
strongest divergence. Moreover, if AG (1 as in the
above examples, even the prefactors favor Hz. However,
this is no longer true for reAexes of very high order for
which AG may become larger than 1. In these cases and
for larger values of q the contributions of the higher-
order correlation functions can no longer be neglected.

Although we did not calculate explicitly the various
five-point correlation functions, which represent the first
correction terms to H3 in the antisymmetric part of the
section, we expect them to remain finite at q=O. Since
H3 and H5 diff'er by a factor ( AG), basically the same
arguments as above for H2 and H4 apply here, too.

Near a=90' (and 270') these remarks are no longer
valid, since there H2 and H3 vanish to leading order and
H4O starts to play an important role. Since for +~90'
H2 vanishes more rapidly than H3 the asymmetry of the
cross section is relatively enhanced in these orthogonal
directions.

The concentration dependence of the H„deserves a
few remarks. Within our crude approximation the H„
vanish for c =0 and c = 1 and they are symmetric around
c =

—,'. With the exception of H4O all contributions are
-c for c ~0. Since H4 0 stems from the square of the
two-point correlation function one has H4 o —c for
c —+0. Thus for a small hydrogen concentration H4 o is
substantially decreased with respect to the other contri-
butions. This further justifies the statement that the sym-
metric part of the cross section is dominated by H2. Fi-
nally note that the contributions of the higher-order
correlation functions may vanish at certain hydrogen
concentrations: Within our approximation H3=0 for
c =

—,
' and H~

&
=H4 2

=0 for c =(1/2) —1/v'12 and
c =(1/2)+1/&12=0. 79, respectively.

Thus putting aside special situations we can conclude
that for Bragg peaks of low order the symmetric part of

Hz o= 0. 36[ 29I c (1 —c) (1+cos a+cos a)q ', (827)

H4, =1.4X10 [1.2X10
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the diffuse scattering is dominated by the two-point
correlation function and the antisymmetric part by the
three-point correlation function.

AppENDIx c

$ & rg rbrd &a
—VcallkB T QCr &r.rb&, .

(C5)

In this appendix we discuss a thermodynamic relation-
ship between the three-point and the two-point correla-
tion functions.

The host lattice provides an effective Hamiltonian
HIrI for the interstitial atoms. Their thermodynamic
behavior follows from the grand canonical partition func-
tion [P=(k~T) ']

Here we have used V =XI V„]], X& = n,&XL, and

&N&=NLRB c . Thus the pressure dependence of the
two-point correlation function yields an integral of the
three-point correlation function. In Fourier space we
have for the cumulants c

r(O, q)= V„,',kttT gc

Z(T, Vp)=g exp PH I
—rtt+Pp gr„

d
(C 1)

(C6)

The thermal average of a functional A IrI is given as

& A & =Z ' QA IrI exp PH Ir—I+Ppgr„

From Eqs. (Cl) and (C2) one obtains
T

& A &=P(&NA &
—&N&& A &),

T, V

(C3)

8g&r, rbrd &, =k~T
d T, V

Since the pressure p is given by

p(T, V, i )= aJtaV—
&r, rb&, . (C4)

where

J(T, Vp) = —k~T lnZ= —pV

is the grand canonical free energy, one can express Eq.
(C4) as

where N =gzrd is the number of interstitial particles.
Choosing A =r, rb one finds immediately from Eqs. (C3)
and (2.29)

The pressure derivative of G' '(q) determines
G' '(q'=O, q). The antisymmetric part of the diffuse
Huang scattering yields information which goes beyond
that. According to Eq. (2.62) C' '(q) probes G' '(q', q)
even for q'&0. Thus Eqs. (2.62) and (C6) represent in-
dependent checks for the three-point correlation function
whereby Eq. (2.62) is the more sensitive one. In a
modified form Eq. (C6) has been used by Egelstaff and co-
workers in order to check various approximation
schemes for the three-point correlation function of sim-
ple, ordinary liquids.

In Eq. (C 1) the Hamiltonian has the form of
H =H;„,+g, V, r, , where V, is the binding energy at
the interstitial site s, . Putting H;„,=0 one finds

Z = Q {1+exp[ —P( V, —p)]I
a=1

so that

c =
t 1+ exp[P( V —p] I

The results in Appendix A follow from

~ ~ ~
~

n

~. )=( k, rrz 'azr(av. , x . x—av.„).
i =1
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