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Forward-backward transport theories of ion-solid interactions: Variational approach
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The relationship between the popular so-called backward or Lindhard-type transport equations
for linear energetic cascades and the direct or forward Boltzmann equation description is rigorously
examined for an arbitrary atomic species mix. A variational principle is systematically derived that
characterizes the forward model with generalized boundary conditions (internal reflection at a free
surface) and is extremized to yield self-consistently the adjoint equations and boundary conditions
as components of the corresponding Euler-Lagrange system. The adjoint function is treated purely
as a mathematical artifact, which follows naturally from the variational principle. Dubious physical
arguments to assign adjoint boundary conditions are thereby avoided. A truly backward descrip-
tion is derived from the adjoint formalism, which under the assumption of space and time homo-

geneity, reduces to the familiar Lindhard form. The Lindhard-type equations are seen to be neither
backward nor forward equations but assume a hybrid form. In contrast, the forward and truly
backward (or adjoint) models are exact and of general validity. They are complementary ap-
proaches and thus describe a duality that is mediated by the variational principle.

I. INTRODUCTION

Successful theories of the evolution of energetic linear
cascades in random media have centered on the ubiqui-
tous Boltzmann equation in one form or another and
have found extensive application in the study of ion im-
plantation, radiation damage, sputtering, and in develop-
ing materials characterization and modification tech-
niques. Starting from the pioneering work of Lindhard et
al. ' on integral equations for general physical effects,
subsequently generalized by Winterbon, Sanders, and Sig-
mund to ion implantation, sputtering and radiation dam-
age, and culminating in the recent independent and
unified approach of Williams, the common thread of
linear transport theory is evident.

Yet it appears from the literature that two distinct but
evidently related approaches exist for modeling ion-solid
interaction phenomena: the traditional and popular
backward formulation due to Lindhard, Winterbon, and
Sigmund (hereafter referred to as Lindhard type), and the
more recent (but historically more established) forward
Boltzmann equation approach, due largely to Williams
(although earlier instances of applications of this formal-
ism do exist ").

The forward equation is an integrodifferential equation
for the phase-space distribution function (or flux) of a
moving species of particles that represent the cascade.
From its solution for a given source, all desired physical
quantities can be generated, such as reAection and
sputtering yields, ' implantation profiles, energy deposi-
tion profiles, ' etc., and in this sense constitutes a unified
approach to modeling atomic collisions in solids. Impor-
tant to this paper, complex boundary conditions (at free
surfaces and interfaces) can be readily incorporated into
such a description of the cascade. This so-called forward
approach (the solution at a later time is sought, given

some initial data) has an extensive history of applications,
most notably in neutron transport theory' ' and kinetic
heory of gases Is, &6 so that the powerful solution tech-

niques and approximation models developed in these re-
lated fields carry over naturally to the applications en-
visioned here (see, for example, Refs. 7 and 17).

The typical Lindhard-type backward equation, al-
though also integrodifferential in form, is an unusual
equation in the sense of its operational variables —an
unusual mix of source and field variables. It is neither a
forward nor a backward equation, but, as will be shown
below, a hybrid equation. Furthermore, there is not a
single defining equation, as in the forward approach, but
a different equation for each application is necessary, e.g.,
sputtering, energy deposition, ' etc. A major shortcom-
ing of this formalism is that the equations are valid only
in infinite, homogeneous media and consequently cannot
incorporate realistic boundary conditions. It is worth
noting that the forward approach is not subject to such
limitations. Despite these restrictions, the Lindhard-type
formalism has enjoyed extensive (indeed almost exclusive)
favor in fundamental and analytical work on ion-solid in-
teractions, and considerable work of practical value has
resulted.

Truly backward equations are adjoint equations, i.e.,
describing evolution in reverse time. Williams ' has
noted qualitatively that the Lindhard-type equations do
not satisfy this criterion, in that they are only partially
adjoint. However, Williams restricted his analysis to
infinite media and did not discuss the role of the all-
important boundary conditions, which are rather com-
plex for charged-particle transport. Since the adjoint
equation plays a pivotal role in establishing a link be-
tween the various approaches, it is worth examining this
relationship rigorously, with proper accounting of bound-
ary and initial conditions.
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The object of this study is to develop a general frame-
work for establishing the interrelationships within the
family of forward-adjoint-backward-Lindhard formal-
isms. Following a presentation of the forward system, a
variational characterization (central to our work) is given
from which the adjoint system is seen to arise naturally
and systematically. In this way we avoid the physically
motivated arguments for generating adjoint boundary
conditions that are popular in neutron transport. ' As
the adj oint function is purely a consequence of
mathematics, it is desirable to generate the adjoint system
in a mathematically consistent manner, and the variation-
al method provides a satisfactory approach for doing so.
A reciprocity relation is then used to derive a truly back-
ward description (for a desired physical quantity) as well

I

as appropriate boundary conditions. We then make con-
tact with the Lindhard-type equations by introducing
suitable approximations. Finally, we conclude with a dis-
cussion of further advantages of the variational approach.

II. FORWARD BOLTZMANN EQUATION
FORMULATION

We consider general geometry and an arbitrary mix-
ture of randomly distributed atoms. The desired quantity
is the space, time, energy, and angle-dependent Aux of i-
type particles in a cascade initiated by one k-type particle
(here type refers to species type) and is given by

Pk; (r, E,O, t ). The latter satisfies the linearized
Boltzmann equation which may be written as:

1 +Q.V pk, (r, E,Q., t)= (S;pk; )+ g f ' dE' f dQ'X;(E'~E;O' Q)pk;(r, E', Q', t)
g=1

N Eo
+ Z f ' dE" f dQ"X,*;(E' E;Q" Q)P„,(r, E",Q, t)

J=1
N—g njo, , (E)gk, (r, E,Q, t)+5,„5(r ro)5(E —Eo)5(Q——Qo)5(t to) —.

Here,

a; =(m; —m ) /(m;+m~. )

where m, . is the mass of the ith particle, n represents the
target atomic density of j-type particles, and the transi-
tion probabilities per unit length or differential cross sec-
tions describe the following interactions:

X~;(E'~E;O' Q)=n~o~;(E'~E;O' Q)

is the differential cross section for an i-type particle with
energy E' in direction Q' scattering off a stationary j-type
particle and emerging with the energy E in direction 0,

X*,(E"~E;Q" Q)=n o';(E"~E;O" O)

is the differential cross section for a j-type particle with
energy E" in direction Q" scattering off a stationary i-
type particle, resulting in the i-type particle recoiling
with energy E in direction Q, and

X,, (E)=n, o),(E).
is the total cross section for scattering of i-type particles
with energy E off stationary j-type particles.

The 0. ; s are microscopic differential cross sections for
elastic scattering collisions in the lab system and may be
expressed in terms of corresponding center-of-mass cross
sections (hence potentials) and the usual conservation
laws. Their explicit forms are well known, given by Willi-
ams, and are not relevant to the work described here.
The Fokker-Planck term containing the stopping power
S, represents interactions with the electrons in the
continuous-slowing-down approximation (CSDA), and
the stopping power is assumed summed over all target
species. Finally, the source term represents one k-type

particle launched at ro at time to with energy Eo in direc-
tion Qo, so that if p represents the set of phase space vari-
ables (r, E,Q, t) and likewise po for the source variables,
then the solution of Eq. (I), Pk;(p;p, ), represents the
Green's function from which the solution for an arbitrary
source distribution may be derived. To complete the for-
ward description, initial and boundary conditions must
be specified. At time t =0 we prescribe

P„;(r,E,Q, O)=g, (r, E,Q) . (2)

In view of the difFerential (Fokker-Planck) operator, a
boundary condition on energy is also required. As we are
dealing with stationary target atoms here (not a restric-
tion of this work, though), particles can only lose energy,
and hence Pk; must be zero for energies greater than the
source energy Eo. The latter, however, is arbitrary and
may assume a range of values (e.g. , a Maxwellian distri-
bution). Consequently, a suitably general boundary con-
dition may be stated as

lim Pk;(r, E,Q, t)=0 .
E—+ oo

The spatial boundary condition requires some discussion.
As we are assuming a finite medium, a free surface condi-
tion must clearly be imposed. For charged particles or
atoms the Thompson surface barrier model is common-
ly employed. This states that the energy corresponding
to the perpendicular component of the outgoing particle's
velocity must exceed the surface binding energy U; for
that particle to escape. If n is the outward unit normal at
the surface, then this translates into the condition,

1/2

—n.Q (0, (4)

with n-Q)0 for outward directions. However, if this
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constraint is not satisfied, the particle is assumed to un-
dergo complete internal reAection, but in almost all calcu-
lations ' this efFect is ignored because of the tremendous
complexity that it introduces. For completeness and to

I

y„,(r, E,Q, t)= f dE' f dQ'e(E' v,—)e
0 n 0')0

demonstrate the generalitly of the technique to be dis-
cussed, we retain this efFect in our analysis. Thus, at
some surface point r=r„a general reAecting boundary
condition is assigned, as follows:

1/2

—n. Q' K; (r„E'~E;Q'~ Q )Pk, (r„E',Q', t)

for n Q(0 (representing incoming directions), i.e., out-
going particles not satisfying the surface barrier condi-
tion (also known as the planar potential ' ), given by the
step functions e( ) are refiected back into the medi-
um (n Q (0) according to some law given by the kernel
K, (.. . ). The latter is, in general, unknown, but even with
simple models, such as specular reAection, the solution of
the transport equation, Eq. (1), becomes prohibitively
difficult.

In summary, and in a convenient compact notation,
the forward system may be expressed as

&;4'k; —Q;(p) =0

where B, is just the .Boltzmann operator and Qk; the
source, given by Eq. (1). The boundary conditions may
be stated as

Pk, K;Pk; =0, r—=r„n Q&0,
lim pk; =0

E~ oo

and the initial condition as

/k' K, t=0.
Our objective is to develop in a systematic manner the
backward formalisms starting with the above system and
to achieve that we must first consider the adjoint descrip-
tion.

mathematical artifact that it is. Relationship to physical
quantities is subsequently shown through a reciprocity
theorem which is another rigorous result.

A central role is played by the variational principle
(VP) in our method. In order to construct a suitable VP,
we consider first an arbitrary linear functional of the m-

type particle Aux

F[gk ]= f dt f dE f dQ f dr f (r, E,Q, t)

Xpk (r, E,Q, t)

(10)

where the inner product notation (a, b) signifying integra-
tion over phase space has been introduced. Note that we
have allowed the upper bound on the energy variable to
be infinity. This does not present any difficulty in the
subsequent analysis as the fIux is zero for energies greater
than the source energy, or it approaches zero as the ener-

gy becomes infinitely large. Typically, f is chosen such
that the functional corresponds to some desired physical
quantity; for instance, if the sputtering yield at time t, of
i-type particles is of interest then we would set

f =5; 5(t —t, )5(r—r, )~n Q~e(E —V )
' 1/2

U
Xe n.Q—

III. VARIATIONAL CHARACTERIZATION
AND THE AD JOINT SYSTEM

A systematic and rigorous derivation of the adjoint
transport equation and associated boundary conditions
can proceed from a variational characterization of the
forward system. The idea is to develop a suitable varia-
tional principle that, when extremized, will yield the
Boltzmann equation and its adjoint as Euler-Lagrange
equations. Boundary conditions for both systems should
emerge self-consistently, if the variational principle in-
corporates them appropriately. Such an approach would
clearly be systematic and thus is to be preferred to the
more ad hoc procedure popular in, for instance, neutron
transport theory. ' There, the adjoint function is first im-
bued with an "importance"' quality which is then used
to assign boundary conditions. It presumably works well
for the simple boundary conditions typically encountered
in the neutron context, but is of doubtful value when con-
structing the adjoint boundary condition corresponding
to, for example, Eq. (5). In the variational approach dis-
cussed below the adjoint function is treated simply as the

where the step functions ensure that only those particles
that can surmount the surface barrier escape from the
medium. By appropriate choice off, the functional can
also describe internal distributions, such as the slowing
down density of particles and energy, which would de-
scribe implantation and damage distributions, respective-
ly. We now construct a variational estimate for this func-
tional and show that the result is a valid VP. It is
difficult to guess or attempt to adapt established VP's '

given the generality of the problem being considered.
However, we may construct a VP systematically by ap-
pealing to the "conjugate variables" technique discussed
in Morse and Feshbach and employed by Pomraning
for inhomogeneous equations. The essence of the method
is to consider the defining equations for the Pk; (all
species) as well as the boundary and initial data as con-
straints on the functional to be estimated, and the conju-
gate variables are introduced as generalized Lagrange
variables (Lagrange functions ) to implement these con-
straints. Standard methods from the calculus of varia-
tions are then used to generate the corresponding Euler-
Lagrange equations which provide the defining equations
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for the Lagrange functions. The adjoint system is includ-
ed in this, from which the backward form can then be de-
rived.

Thus, we introduce a trial function, pk;, which is a
first-order accurate estimate of pk, , and the Lagrange

I

functions P;,X,;,y;, and /3, . Next we consider the follow-

ing functional, obtained by constraining the original
functional by the forward equations for all species and
the boundary and initial conditions, but all evaluated us-
ing the trail functions

N

G[Ak; 0, ~; X;»;] F[d—k ]—g [(0;»;0k; Qk;)+(~; 0k; &;0k;)r +(X—; Nkvd g;)—O+(/3; 0k;). l (12)

The prime denotes a restricted inner product, which excludes integration over r and is limited to n. Q &0 in the third
term on the rhs, over t in the fourth term and over energy in the fifth term on the rhs, reflecting the boundary and ini-
tial conditions. Thus, X; is a function only of (E,Q, t) defined over n Q (0, y; is a function of (r, E,Q) and /3, . a function
of (r, Q, t), while P, is defined over all phase space. We further regard these functions as first-order accurate estimates
of corresponding exact functions P, , A, , y, , and /3, (i.e., without the tildes). Then, if G [] is to be a valid VP for F [], it
must satisfy the following two conditions. (i) When evaluated using the exact function pk, , G, must yield the desired
functional F [pk ]. (ii) First-order errors in pk, , p, , A, , y, , and /3, must result in second-order errors in the functional
G.

The first condition is clearly satisfied by virtue of the forward system, Eqs. (6)—(9), i.e.,

G [Pk; &P;, A,;,y, , /3, ]=F[Pk~ ] . (13)

The second condition is satisfied by requiring the first variation of G to vanish when evaluated with the exact functions.
This should yield equations for the as yet undefined conjugate variables. Thus, taking the first variation of G, we get

N

&G =(f &4k )
—& [(&4;»;4k;—Qk;)+(4;»;oak;)+(&~; 4k; &;4k;)', —+@ &0k-&;&0k;)',—

+(~1 '
Nkvd g )0+(') ~ski )0+(~/ '

Nkvd ) +(/ ' ~0k )'-]' (14)

We now rearrange and regroup terms such that all
variational terms (involving 5P, etc. ) are free standing
and not operated on. This will then enable us to consider
arbitrary and independent variations. The terms requir-
ing special consideration are the third and fifth terms on
the rhs of Eq. (14), and we manipulate these below. Let

Integrating by parts over t and using Gauss's theorem
to transform the volume integral to a surface integral for
the gradient term, 8, reduces, after some algebra to

I I
N

B, = g
i=1

N

B = X (0'»;&4k;) . +(spk, , n Qy,'),'+(syk„f. 'y,") (20)

We further decompose the Boltzmann operator:

8, =L —T,-,
where

L= —— +Q V'1

U Bi

which is the streaming component, and

(16)

(17)

where the inner product is computed at t = T in the first
term on the rhs, at t =0 in the second term, and at r =r,
in the third term. These are boundary terms that arise
from the integration by parts and the surface integral.
Also, we have introduced the operator

(21)

(The adjoint operator is clearly seen to be emerging here. )
Consider next the interaction component

T; = S, +S, +R,- (18) N

B,= g (Q, , T6$k, ) . (22)
which represents the interactions (continuous, scattering,
and recoil). Considering the components individually, let

N

=y f dt f dE f dQf drat — +Q&
t =1

We transform this term by term. The continuous interac-
tion or stopping power term becomes

N

Bz, = g f dt f dE f dQ f dr/; (Spk).

(23)

X5gk; . (19) Integrating by parts over energy, this simplifies to
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N

B~, = g (5/k;, S;P, )' (—60k;, Sil )o

ay,'+ 5/k;, —S;I & I (24)

Here, the inner product in the first and second terms on
the rhs is computed at E = ~ and E =0, respectively.

The scattering term is modified as follows:

Collecting terms, Eq. (15) may finally be written as
I

N

B = X (5&k»; 0,')+
i =1 T

1

5(kk P +(5/k S.P5)
, 0

Bzz= g f dt f dr f dQ f dEPt g f dE'

X dQ'X; E'~E;O' 0 6 i,; r, E', 0', t

where

Bi =L~ T~=L~ S,. +S +R (31)

N

B~2 —g (5/k;, S; P; ), (26)

where

N

S;P;= g f dE' f dn'X, ;(E~E';O' Q)
j—

1 lJ

To isolate 5/k, in Eq. (25), we first interchange the orders
of integration over (E', Q') and (E,Q), and then switch
the variables E+-+E' and Q~Q'. The final' result may be
written down as

Finally, we consider the fifth term in Eq. (14)
N

D = g (X;,5/k; K;5/k—; )' (32)

N
D = g [(6/k;, X; ) —(6/k;, H; X;) ~], (33)

which is a boundary term (r=r, ) restricted to n Q(0,
i.e., incoming directions. We note from Eq. (5) that K, is
an integral operator, so that we may transform Eq. (32) as
we did the scattering and recoil operators above, i.e., by
interchanging orders of integration and switching vari-
ables. After considerable algebra, the final result is

XP;(r, E', Q', t) . (27)

The recoil operator is transformed in a similar manner,
except that the summation over species i and j must also
be interchanged, followed by the exchange i+ j. The
final result, after some algebra, is given by

H; A,; =B(E—U;)B
1/2

1 —n 0

where r+ refers to outgoing directions, i.e., n.Q) 0, and
we have introduced the operator

N N

B23 = & (0,' &;60k;)= & (64k; &; 4; »

where

(28)
X f dE' f dn'K, (r, ;E~E',Q~Q')

0 n.Q' (0
XX,(E', Q', t) . (34)

N (1 —a. . )E
&,'p,'= g f " dE" f dn" r,*, (E E";n n")

0

Xp (r, E",n", t) . (29)

Rearranging the other terms in the expression for the first
variation, Eq. (14), is trivial, and the final result is given
by

N

(60k; f;» B; 0") (64k;»—;0;—Q—;)—
i =1 U U

—(6X;,pk; H; pk; )' — (6/k—, , n np, H—
, X; )'+ —(5/k, —, n. Qp t+ X, )'

0

—(5y;, (hk;
—g; )o

—(5P;,Pk; )' —(5/k, , P, +S,P, )'„+(6/k, ,S,P, )o (35)

In obtaining Eq. (35), two further changes were intro-
duced. First, the functional F [ ] was written in a slightly
different form

F=(f 0k )= & (f 6 4'k)'
so that

N
6F = g (f;5, , 5/k; )

and, secondly, the following decomposition was used:

(5yk, , n Qy', ),=(6yk, , n Qy', ) +{5yk„n ny', )

which allows a more convenient grouping of terms in Eq.
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(35). Recall r and r refer, respectively, to outgoing
(n Q) 0) and incoming (n Q(0) directions at the free
surface (r=r, ).

Equation (35) is now in the form suitable for extremiz-
ing. Taking independent and arbitrary variations about
the exact functions and demanding that the first variation
5G be zero, Eq. (35) yields the Euler-Lagrange equations
that are equivalent to the variational formulation. These
may be stated compactly as follows. For Pk;,

40k; =Q~;

Pk, H, g—k, =0, r=r„n Q (0,
ki. =0 E~

pk, =g, , t =0.
For P;,

(36)

(37)

(38)

(39)

f
n QP; H; A.;=0,—

(t', =0, E=o,
/

yt=o, t =T .

r=r„n 0)0

(40)

(41)

(43)

For A, ,

I,;+n QP, =0, r=r„n Q(0 .

For y, ,

1
y, ——$, =0, t =0.

(44)

(45)

For P, ,

P;+S;P;=0, E~~ .

The boundary condition on P, , Eq. (41), depends on
A,;, which is defined for n Q (0 by Eq. (44) in terms of Pt.
Recalling that the operator H; is restricted to n.Q(0,
Eqs. (41) and (44) may be combined to give a closed form
boundary condition for P;

IV. BACKWARD AND LINDHARD EQUATION
FORMULATIONS

Although the adjoint equation was seen to describe
evolution in reverse time, the adjoint Aux. itself is not the
desired quantity since it has no physical meaning as such.
However, it can be related to physical quantities, and it is
desirable to develop equations directly for the effects of
interest. These should then constitute the complete back-
ward equations from which the Lindhard-type equations
will follow.

To this end, we first describe a reciprocity relation be-
tween the forward and adjoint cruxes. ' Setting

f; =&(p —p» (48)

ancl

Qk; =~k;&(p —po) (49)

tion of the adjoint equation to the particular effect being
considered and immediately indicates a kinship with the
Lindhard-type backward equations, which are also appli-
cation specific. However, the similarity ends here for
now. In the next section the conditions under which Eq.
(40) reduces precisely to the equation familiar in radiation
damage work will be established.

To conclude this section, we emphasize that our ap-
proach in developing the adjoint description has sys-
tematically relied on the rigorous concepts of calculus of
variations and that physical intuition about the adjoint
function was not employed at any stage. Even the varia-
tional principle was derived using established and
rigorous concepts ' and is sufficiently general to be
used in related problems described by the transport equa-
tion. We note in closing that setting P, =P;+6/;, etc. , in
Eq. (35) for the first variation and using the defining
equations and boundary conditions to eliminate various
terms from Eq. (35), it is readily shown that 5G is
second-order accurate with respect to variations in all the
trial functions, i.e., 5G -(5P;,5/k; ) etc. Hence, our VP
is a valid VP for the problem under consideration.

n.Qpt+H; (n.QQ; ) =0,
r=r„n.Q) 0 .

(47)
(recall the p's represent the set of phase-space variables),
the forward and adjoint equations become

The remaining Lagrange or conjugate functions y; and p;
are determined from Eqs. (45) and (46), respectively, once
the complete solution for P, is obtained.

Equation (40) is the adjoint Boltzmann equation, p; be-
ing the adjoint particle Aux for the ith species, and Eqs.
(42), (43), and (47) are the corresponding adjoint initial
and boundary conditions. Note the "backward" nature
of this system, i.e., the adjoint equation is solved from a
"final" condition at t = T [given by Eq. (43)] to an initial
time, speeding up from E =0 [see Eq. (42)] to a higher
energy, and the boundary condition at' the free surface is
imposed on outgoing directions. This constitutes a true
or complete backward system. Note, also, that the func-
tion f;, defined in the functional representing the physi-
cally desired property given in Eq. (10), has emerged as
the adjoint source in Eq. (40). This specializes the solu-

ancl

& 4k =ok o(p —po) (50)

(51)

where we have allowed the adjoint Aux to depend explic-
itly on the source species index. We now carry out the
following operation:

&;4k;)—X (4k;

where we have replaced po by p for notational conveni-

and manipulate using the defining equations and bound-
ary and initial data to obtain eventually

(52)
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B;(p»)4; (pi;p)=&;&(p —p;) . (53)

An interesting observation in Eq. (53) is that the adjoint
operator acts on p which represents the source variables,
while the field variables p1 appear only as parameters in
the equations —recall that P; (p&,p) is the fiux of m-type
particles in p1 due to one i-type source particle in p. This
means that Eq. (53) (being linear) can be operated on with
respect to the field variables p1 without changing the

I

ence. The above result states that the forward and ad-
joint fiuxes (to be more precise, the Green's functions) are
identical but with interchanged source and field variables,
as well as the species indices. This reciprocity is quite
general, independent of the specific boundary conditions
and the interaction physics. The advantage of this is that
the adjoint flux may be replaced by the forward flux in
the adjoint equation, which then becomes

B; R, (p&,p) =5;b,&(p)h (p), (55)

where 6]p = 1 for p in 6 V1 and zero otherwise. Equation
(55) is the complete backward equation for the desired
effect R, and at this stage is an exact equation valid for
arbitrary random media. Explicitly, the equation reads

equation, except possibly the source term. Herein lies the
key to the problem of constructing equations directly for
the physical effects. For the latter can invariably be ex-
pressed as functionals of the forward flux,

R, (p„p)= f~ dp P; (p&,p)h(p ), (54)

where AV1 is the volume of phase space over which the
response is desired and p, lies in V, —AV, . We will give
an example below of the forms that R, and h (p, ) might
typically assume. Operating on Eq. (53) according to the
integral in Eq. (54), we obtain an equation for R,

1 BR, + E—Q V R; = —S,
™+ $ f dE' f dQ'X, ;(E~E',Q' Q)R; (r, E', Q', t)

IJ

(1 —u, )E
+ g f dE" f dQ" 2,*"(E~E";QQ")R (r, E",Q", t)

0

+5,b, , (r, E,Q, t)h (r, E,Q, t) . (56)

—n Q f dE' f dQ'IC, (r„'E~E',Q~Q')R; (r„E',Q', t)=0,
0 n 0'(0

The operator is still the adjoint operator, but, depending on the form of the source term, the equation will describe
different phenomena. The boundary condition for R; can be obtained in a similar manner by replacing the adjoint flux
with the forward fiux (according to the reciprocity relation) in the adjoint boundary condition Eq. (47) and operating on
the latter according to Eq. (54). We obtain finally

1/2
U;

n Q)0 . (57)

The other conditions may be similarly adapted from the corresponding adjoint data. As an example, let us consider the
sputtering yield of m-type particles at some interior point r& at time t, due to an i-type source particle in (r, E, Q, t).
This may be expressed in terms of the forward flux as follows:

F; (r„t, ;r,E, Q, t)= f dE, dQ, ln Q, lg, (r, , E, , Q, , t„r,E, Q, t) . (58)
U) ~ fli)+U /E

Comparing with Eq. (54), it is clear that R, will
represent the sputtering yield if we set

h(p, )=ln Q, le(E, —U, )e n. Q, —
1/2

1

(59)

so that in Eq. (55), b, , (p) is just

5(t t, )5(r —r, ) . —

B,"Y, =5,6(t —t, )6(r—r, )ln Ql

Xe(E —U;)e n Q (60)

Thus, the backward equation for the yield may be written
as

Of course, the actual sputtering yield is the surface value
at r=r, . The boundary condition is identical to Eq. (57),
with R, replaced by Y, . By appropriate choice of
h (p &

) in Eq. (54), similar backward equations may be ob-
tained for any effect of interest. In all cases, the operator
remains the same, but it is the source term that distin-
guishes the phenomena.

We are now in a position to establish contact with the
Lindhard-type equations, which we expect, in principle,
to be identical to the ones derived above [or Eq. (55) in
general]. This, however, is not the case, as is readily ob-
served when comparing Eq. (60) for the sputtering yield
with the corresponding equation given by Sigmund. The
difference resides in the operational variables in the
respective operators. In the operator 8, given above
[i.e., the adjoint transport operator Eq. (56)], it is the
source variables exc'lusively that are the independent
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III). This means that rather accurate estimates of in-

tegra1 quantities such as reAection and sputtering yields,
total recoil implantation yields, etc. , may be realized
from only an approximate knowledge of the distribution
functions. This technique is, of course, well known in
neutron transport theory' ' and the kinetic theory of
gases, ' but appears not to have been exploited in the
context of ion-solid interactions.

The general case, described by Eq. (12), is undoubtedly
complicated. Trial functions would be required for 5 XX
functions (N is the number of species) and optimization
carried out with respect to free parameters in these func-
tions. However, considerable simplification would ensue
if, for example, application were restricted to few species
(one or two), if internal reliection were neglected (invari-
ably the case in the literature) and if trial functions were
chosen to satisfy the exact boundary and initial condi-
tions. Many terms in Eq. (12) would then vanish identi-
cally, but the complication remains of having to deter-
mine trial functions for the adjoint Aux. Numerous tech-
niques exist for developing approximations for the for-
ward Aux' ' ' ' and many are physically motivated,
but it is difficult to extend these concepts readily and in a
meaningful way to generate approximate solutions to the
adjoint equations. However, as we have demonstrated a
relationship between the adjoint and backward descrip-
tions, there is scope here for using available solutions to
the Lindhard-type equations, corresponding to the func-
tional of interest, as trial functions for the adjoint Aux.

Clearly, much work needs to be done to develop this ap-
proach to maturity, but the effort is undoubtedly
worthwhile.

(61)

[cf. Eq. (31)] where T, is just the adjoint interaction
operator and L* is given by

variables —the field, or final, variables appear only as pa-
rameters, a fact was taken advantage of above in generat-
ing the complete backward formalism. However, in the
Lindhard-type equations, the operational variables are a
rather curious mix of source and field variables, which,
from a physical point of view, is perhaps a more appeal-
ing format than the pure source variable description. As
is well known, ' though, this reduction exacts a price,
namely a restriction to space and time homogeneous ap-
plications. Thus, in the Lindhard description, the com-
plex surface boundary conditions, given for example by
Eq. (57), cannot be incorporated, nor can heterogeneities
such as multilayered targets be described. It is instruc-
tive to consider how the approximate Lindhard formal-
ism emerges conclusively from the exact backward
description above. We follow Williams and note that
under the assumption of homogeneity, the solution of the
backward equation satisfies space-time translational in-
variance, i.e., the solution depends on the space and time
variables only through the combination ~r —r, ~

and t, t. —
In this case it is permissible to replace V, and

agent

in the
adjoint or backward operator by —V, and —8/Bt„re-
spectively, i.e., introduce field variables in space and time
but retain source variables in energy and direction (or an-
gle). Thus, the equation for the sputtering yield is still
Eq. (60) but with the operator 8; replaced by

a
+QV

U Bt& V. CONCLUSIONS

in contrast to L [see Eq. (21)]. With this transformation,
and except for notational differences, the resulting equa-
tion for the sputtering yield is identical to that obtained
by Sigrnund.

We see, thus, that the general form of the Lindhard-
type equations is neither fully forward nor fully back-
ward, but a hybrid. The structure appears to follow the
laboratory situation more closely by inquiring about spa-
tial distributions (i.e., field quantities) as functions of cer-
tain control (i.e., source) variables, but does so only ap-
proximately. In order to relax the homogeneity assump-
tion, one must abandon the hybrid approach and resort
to either the complete backward or forward description.
In this case the forward form is perhaps to be preferred
because of its history, but this is purely a matter of
preference as the two approaches are entirely equivalent.

Further advantages of the variational approach

The role of the variational principle derived earlier ex-
tends beyond providing a pivotal link between the for-
ward, adjoint, and hybrid systems. An important proper-
ty of a valid VP, shown above, is that a variational esti-
mate of a functional of interest is accurate to second or-
der with respect to errors in the trial functions (see Sec.

A variational technique has been used to establish, for
the first time, a rigorous link between the forward and
backward Boltzmann equation models of ion-solid in-
teraction phenomena. It was shown that a truly back-
ward formalism is synonymous with the adjoint descrip-
tion if exact geometry and boundary conditions are to be
incorporated. Only under the assumption of space and
time homogeneity, does the system reduce to the
Lindhard-type equations that are so popular in the field.
The variational characterization itself demonstrates the
duality of the forward and adjoint approaches.

It was also shown that the VP cari be used directly to
accurately estimate integral quantities (e.g. , surface and
volume-averaged quantities) using trial functions that
need not be known with accuracy. It was proposed that
existing solutions of the Lindhard-type equations be con-
sidered as trial functions for the adjoint function neces-
sary in this technique.

A result of general applicability in linear transport
theory that emerges from this work is that it is not neces-
sary to depend on physical interpretations of the adjoint
function in order to assign adjoint boundary conditions,
should such a formulation arise in any application. This
is particularly so in the neutron context, ' where the "im-
portance" function is frequently introduced. We have
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shown that since the adjoint formalism is problem depen-
dent, one can always express the desired eftect as a, func-
tional of the forward Aux and then use the calculus of
variations to systematically generate the adjoint equa-

tions and aSliated boundary conditions. Certainly, in sit-
uations with complex boundary eAects, the physical
reasoning commonly employed is likely to prove highly
convoluted.

J. Lindhard, V. Nielsen, and M. Scharff, K. Dan. Vidensk.
Selsk. Mat. Fys. Medd. 36(10), 1 (1968).

J. Lindhard, M. Scharff, and H. E. Schoitt, K. Dan. Vidensk.
Selsk. Mat. Fys. Medd. 33(14), 1 (1963).

J. Lindhard, V. Neilsen, M. Scharff; and P. V. Thomsen, K.
Dan. Vidensk. Selsk. Mat. Fys. Medd. 33(10), 1 (1963).

4K. B. Winterbon, P. Sigmund, and J. B. Sanders, K. Dan.
Vidensk. Selsk. Fys. Medd. 37(14), 1 {1970).

~P. Sigmund, Phys. Rev. 184, 383 (1968).
K. B.Winterbon and J. B. Sanders, Radiat. Eff. 39, (1978).

7M. M. R. Williams, Frog. Nucl. Energy 3, 1 (1979).
M. M. R. Williams, J. Phys. A 9, 771 (1976).
D. E. Harrison, Jr., Phys. Rev. 102, 1473 (1956).
D. E. Harrison, Jr., Phys. Rev. 105, 1202 (1957).

' E. M. Baroody, J. Appl. Phys. 35, 2074 (1964).
' M. M. R. Williams, Philos. Mag. A 43, 1221 (1981).

A. K. Prinja and M. M. R. Williams, Radiat. Eff. 46, 235
(1980).

~4B. Davison, Neutron Transport Theory (Oxford University
Press, London, 1957).

I5M. M. R. Williams, Mathematica/ Methods in Particle Trans-

port Theory (Butterworth, London, 1971).
'6J. Ferziger and H. G. Kaper, Mathematical Theory of Trans

port Processes in Gases (North-Holland, Amsterdam, 1971).
' H. M. Urbassek and M. Vicanek, Phys. Rev. B 37, 7256

(1988).
' D. K. Brice, Radiat. Eff. 6, 77 (1970).

J. Lewins, Importance, The Adjoint Function (Pergamon, Ox-
ford, 1965).
M. W. Thompson, Philos. Mag. 18, 377 (1968).

2'M. Becket, The Principles and Applications of Variational
Methods (MIT Press, Cambridge, 1964).

2zP. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953).
G. C. Pomaraning, Nucl. Sci. Eng. 29, 220 (1967).

~4C. Lanczos, Linear Differential Operators (Van Nostrand, New
York, 1962).
K. B.Winterbon, Appl. Phys. Lett. 31, 649 (1977).
G. Bell and S. Glasstone, Nuclear Reactor Theory (Van Nos-
trand, New York, 1970).
K. M. Case and P. F. Zweifel, Linear Transport Theory
(Addision-Wesley, Reading, 1967).


