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Exact solutions for hydrogenic donor states in a spherically rectangular quantum well

Jia-Lin Zhu
Center of Theoretical Physics, Chinese Center of Advanced Science and Technology (World Laboratory), Beijing, China
and Department of Physics, Tsinghua University, Beijing, China
(Received 12 December 1988)

Using different series forms in different regions of the radial equation, we have obtained exact
solutions of donor states in a spherically rectangular quantum well by a numerical method. The
calculated results show that there are stronger confinement and larger binding energy for a hydro-
genic donor in the well of GaAs-Ga;-xAlxAs than in quantum-well wires and two-dimensional

quantum-well structures.

Stimulated by interest in the physics and technological
applications of two-dimensional quantum-well semicon-
ductor structures and superlattices, researchers are now
beginning to fabricate and investigate GaAs-Ga; —xAl,As
quantum-well wires (QWW’s),"? ribbons, and disks.>
Understanding the impurity states in the structures is an
important problem in semiconductor physics. The impuri-
ty levels and exciton states in quasi-two-dimensional
quantum wells and superlattices have been well calculat-
ed.*"1® Several calculations'®”?? have also been per-
formed for the hydrogenic impurity levels of QWW’s.

All of the calculations mentioned above have shown
that the confinement and binding energy of an impurity
electron in a quantum well depend on the barrier ¥ and
the well size and shape, i.e., the well width for two-
dimensional quantum-well structures (TDQW?’s) and the
cross section and its shape for QWW’s. The maximum of
the binding energy also depends on ¥ and the well shape.
For V(=40R* (R* is the effective Rydberg and equal to
m*e*/2he?, where m* and e are the electronic effective
mass and the dielectric constant, respectively, of the semi-
conductor), the maxima of donor ground states in
TDQW’s (Ref. 23) and QWW’s (Ref. 19) with circular
cross section are respectively equal to 2.51R* and
5.22R*, and for ¥, =80R*, 2.73R* and 6.84R*. What
about the confinement, binding energy, and its maximum
for impurity states in spherically rectangular quantum
wells (SRQW’s)? In this Rapid Communication, we re-
port for the first time the exact solutions of hydrogenic
donor states in SRQW’s and provide an answer to the
question.

Because the transverse and longitudinal variables do
not separate, the impurity states in TDQW’s and QWW’s
cannot be solved exactly and approximation methods
should be used. Therefore, it is interesting not only from a
physical point of view but also from a mathematical point
of view to find out the exact solutions of hydrogenic donor
states in SRQW’s.

Let us for definiteness consider a donor impurity atom
at the center of a SRQW of radius Ro. The potential due
to the discontinuity of the band edges at the GaAs-
Ga, — Al As interface r =R is as follows:

Vo if r=Ryg,

0 if r<Ro, m

V(r)={

where r is the electron-donor distance. The barrier height
Vo is obtained from a fixed ratio of the band-gap discon-
tinuity. According to the hydrogenic-effective-mass
theory, the Hamiltonian for the donor is

H=-v =221 y(). @)
r
It is written in a dimensionless form so that all energies
are measured in units of the effective Rydberg R* and all
distances are measured in units of effective Bohr radius

a*. wis equal to one.

In order to solve the Schrodinger-like equation

Hy(r,6,0) =Ey(r,0,0) , 3)

the wave functions of an electron with well-defined values
of the orbital quantum number / and the magnetic one m
in the spherically symmetric potential, which is the quan-
tum well and Coulomb potential, are written in the form

v(r,0,0) =y(r)Y,,(6,0), 4)

where Y},,(6,¢) and y(r) are the spherical-harmonic and
radial wave functions, respectively. Substituting (4) into
(3), we find an equation for the function y(r):

rzd;":(z’) +27 d"c’i(r’) +{EW)—V(r)1r?

=10+ D) +2wrly(r)=0. (5)

Using the method of series expansion, we can solve Eq.
(5) exactly. It should be noted that zero and infinity are a
regular and an irregular singular point of Eq. (5), respec-
tively. In the region 0 <r, we have a series solution,
which has a finite value at » =0, as follows:

w(r) =,/ ioa,,r" s 6)
where
a=—ao/(+1), @)

and

a,=—DRwa,-\+EWDa,-21/n(n+21+1)
n=234...; (8)
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ap is a constant. In the region Ry <r, we can obtain a
normal solution.?* It approaches zero at r=co and is
found in the form

N
y(ir)=e Ko ¥ brn, )
n=0

where

K=Vo—EW), 10)

and
p=—1+w/K, an
bpr1i=—(@—n—Dp—n+I+1)b,2K(n+1)
n=0,1,2,...; (12)

by is a constant. The series appear suitable for numerical
computations for large r.2* However, they are not suit-
able for Rg if R¢ is small. In order to get an exact value at
small Ry, we find a solution of uniformly convergent Tay-
lor series in the region Ro <r =< R,, where R, is a proper
point for using (9). It is as follows:

V)= F e =R+ E dyGr =R, (13)

where R, is in the region considered and ¢y and d, are
constants. The other values of ¢, and d, can be deter-
mined by the recurrence relations.

Using the matching conditions that w and Vy/m* are
continuous at the interface » =R, and R,, we obtain the
equation of the eigenenergies E(/). It can be solved nu-
merically. Once the nth eigenenergy E (/) is known, the
ag, bo, co, and d [hence y,(r)] are known with use of the
normalized condition of w,(r). Thus, y,(r) depends on
the value of /, the quantum well, the Coulomb potential,
and the energy E,(/). We should point out that we have
neglected the difference of the electronic effective masses
between GaAs and Ga;-,Al,As in the Hamiltonian and
the matching conditions. If the effective-mass difference
is considered and the correct matching conditions are
used, similar formulas to Eq. (10) are obtained with
different values of K. Then, the binding energies become
larger for GaAs-Ga; —,Al,As quantum wells.?

If there is no Coulomb potential in the Hamiltonian of
Eq. (2), i.e.,, w=0, using the same formulas, we can ob-
tain wave functions w,(r,w =0), and quantum levels
E,(I,w=0) of an electron in the quantum well. In fact,
Eq. (6) and Eq. (9) become the /th-order spherical Bessel
function and Hankel function of the first kind if w=0.
Therefore the same results are obtained if the wave func-
tions and quantum levels are calculated with use of the
Bessel and Hankel functions. Once E;(0) and
E,(0,w=0) are obtained, the binding energy of the
ground-state of the donor in the quantum well is given by

- Ep=E(0,w=0)—E (0). (14)

We have performed a numerical calculation for the
GaAs-Ga; - Al,As SRQW of the Ry between 0 and
2.5a* with different V. In Fig. 1, we show quantum lev-
els of ground states in the SRQW of Vy=40R™* with and
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FIG. 1. Ground-state energy level E of an electron in a
SRQW vs the well radius Ro. The top and middle curves repre-
sent the levels of the wells of Vo=c0 and 40R™, respectively.
The dashed curve represents the ground state of a donor in the
SRQW of Vo=40R*. All energies are expressed in terms of the
effective Rydberg (R*) and all distances are expressed in terms
of the effective Bohr radius (a*). Same units are used in all of
the following figures.

without the Coulomb potential as a function of Ry. The
first quantum level of V=0 without the Coulomb poten-
tial is also shown in the figure to compare with that of
Vo=40R™. It is readily seen that the energy of Vo=c0 is
increased quicker than one of Vy=40R™* as R, is de-
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FIG. 2. Binding energy Ep of a donor ground state in the
SRQW of Vo=40R* vs the well radius Ro.
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FIG. 3. Wave functions of ground states in the SRQW of
Vo=40R* with Ro=0.3a*, 0.4a™*, and 1.0a* vs position along
the radial axis. The wave functions are in arbitrary units.

0 | )

creased. There are no bound states for the finite quantum
well if Ry <0.31a*. However, the bound states do exist
for the donor in the SRQW with an arbitrary R, as shown
in Fig. 1. The binding energy of the ground state is shown
in Fig. 2 as a function of the Ro. It is seen that the bind-
ing energy goes through a maximum as the well size is re-
duced from 2.5a*. Then, it is decreased as the well size is
reduced continuously. The maximum of the binding ener-
gy is equal to 8.13R*. The value is much larger than
those in TDQW’s and QWW’s with the same V. It can
be understood if it is noted that the effect of the Coulomb
interaction is enhanced by the electron confinement. The
wave functions have been well calculated for electrons in
both TDQW’s and QWW’s. In Fig. 3, we have plotted
the wave functions of an electron in the SRQW of
Vo=40R* with different Ry in the absence of the
Coulomb potential (w=0). As seen in the figure, the
electron in a SRQW is confined strongly compared with
electrons in TDQW’s and QWW’s with the same V.
When V) is increased, the enhancement of the maximum
binding energy, shown in Fig. 4, is greater in SRQW’s
(quasi-zero-dimensional) than in QWW’s (Q1D) and
TDQW’s (Q2D). This is because of the enhancement of
the electron confinement in three dimensions in SRQW’s.
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FIG. 4. Maximum binding energy EF** of a donor ground
state in a quantum well vs the well dimensionality and barrier
height Vo. For the Q1D case, the dashed lines represent the
maximum binding energies (Ref. 19) and the solid lines repre-

sent the mean values of the maxima of the TDQW’s and the
SRQW’s.
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In Figs. 2 and 3, it is readily seen that the binding energy
is larger as the confinement is stronger. In Fig. 4, the
mean values of the maxima of the TDQW’s and the
SRQW'’s have also been shown by solid lines. It is in-
teresting to note that the mean values are very close to
(slightly larger than) the maxima for the QWW’s.

In conclusion, we have used the method of series expan-
sion to solve the radial Eq. (5). The exact solutions of
donor states in the SRQW have been obtained numerical-
ly. Then, the numerical results reveal that the
confinement and binding energy of hydrogenic donor
states in quantum wells of GaAs-Ga, — Al As are strong-
ly dependent on the dimensionality of the wells, and that
there are larger confinement and binding energies of
donor states in the SRQW’s than in the QWW’s and
TDQW:’s. Finally, we should point out that, based on the
exact solutions obtained, the quantum levels and wave
functions of donors located out of the center of SRQW’s
can be obtained by use of a variation method, and that the
exact solutions are also useful for the calculation of exci-
ton states in SRQW?’s. They are in progress.
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