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We use a percolation analysis to study the conductivity of a random resistor network with bond
conductances g; =goexp(ix;), where x; is a random variable. In the limit A — oo, we may write
the network conductivity as o==Ca2—"gcl ~7 where a is the lattice constant, y a critical exponent,
C a constant, and g, the percolation conductance. We derive rigorous bounds to o and we present
evidence that supports the hypothesis that y =0 for all two-dimensional lattices. Numerical re-

sults for a 4 =3 simple-cubic lattice are presented.

Random conductance networks have been widely used
to study a variety of physical phenomena in idealized
disordered media. For instance, some transport properties
of amorphous materials and some spin-wave properties of
disordered ferromagnets can be mapped into a resistor
network problem. !+

A problem often studied consists in computing the con-
ductivity of a network where the conductance assigned to
each link is chosen independently from a specified random
distribution. When the distribution of conductances is
narrow and the correlations are short ranged, the
effective-medium theory (EMT) is a very successful ap-
proach.?? When the distribution of conductances is wide
on a logarithmic scale, however, an alternate approach
based on percolation theory has proved more useful.* ~!!

In the present Rapid Communication we shall refine the
previous percolation analyses to develop a more accurate
estimate of the network conductivity, in the limit of a wide
distribution of conductances. To do this, we will examine
some rigorous bounds to the network conductivity and we
will present the results of some numerical simulations.

Our results can be explained most readily if one consid-
ers conductances on a regular lattice in d dimensions, with
lattice constant a. The conductance on bond i will be
written in the form

gi=goexp(Ax;), 1)

where go is a constant, and x; is a random variable with
probability distribution D(x;). We assume that there are
no correlations between the values of x; on different
bonds, and that the distribution D(x) is the same for all
bonds.

A percolation conductance g, may be defined so that
the fraction of bonds with g; = g, is equal to the threshold
probability p. for bond percolation on the lattice in ques-
tion. In our model we have g. =goexp(Ax.), where

j::D(x)dx =p.. )

We assume that D(x) is smooth in the vicinity of x. and
that D(x.)=0. The limit of a wide distribution is
achieved if we take A— oo. According to the analysis of
Refs. 4 and 5, for example, we may write

lim A ~'In(ca? " %/go) =x. , (3)

A—> oo

39

so that to a first approximation oeg.. In this limit, in
fact, we may construct a more accurate estimate of the
conductivity. We shall demonstrate, below, that there ex-
ist rigorous upper and lower bounds to the conductivity, in
the limit A— oo, which may be written in the form

D(x.)

Y+
8e ———] , (4)

ad—Z
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where C + are constants, which depend on the particular
lattice. The bounding exponents y + are given, in turn, by
the formulas

(5a)
(5b)

where ¢ and s are the exponents for the conductivity at the
percolation threshold of a mixture of unit normal resistors
with insulating or superconducting bonds, respectively.
The exponents are defined by o«(p—p.)' and
o (p. —p) ~*, where p is the fraction of bonds with the
higher conductance. It is believed that these exponents
depend only on the dimensionality of the lattice, and the
numerical values for d =2 and d =3 are known reason-
ably well from previous investigations.® Equation (3) is
implied by (4).

It seems natural to hypothesize that the conductivity for
our model in the limit A— oo has the actual asymptotic
form’

y+=1—s,

y-=t—1,

y

D(x.) ©)

A

8c

o~C——
292

where C is again a constant, which depends on the lattice
in question, while the exponent y depends only on the
dimensionality. If this assumption is correct, then our
rigorous bounds imply

ye<y=<y-_. @)

Using the values of ¢ and s from previous numerical inves-
tigations, these bounds may be written

—03=<y=<0.3 ford=2,
0.2=<y=<1.0 ford=3.

(8a)
(8b)

Rigorous bounds which have previously appeared in the
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literature may be expressed in the form —s<y=<t?
Equations (5) and (7) represent a considerable improve-
ment over these bounds.

As will be discussed below, for a square lattice, if D(x)
is symmetric about x., then the network conductivity is
exactly given by (6) with y =0 and C=1. We have per-
formed numerical simulations on a triangular lattice with
linear sizes up to L =250 lattice constants, with A/D(x,)
in the range between 5 and 25, and we find that
| Vtriangle | =0.02, which is clearly consistent with the con-
jecture y =0 for all lattices in d =2.

In three dimensions, we have simulated a simple-cubic
lattice with linear sizes in the range L =4-20. The esti-
mate of y obtained from these simulations is y==0.6,
which is close to the center of the range delineated by the
bounds of (8b). Very recently, Le Doussal® has shown
that for hierarchical lattices, the exponent y is given by

y=(d-2)v, 9)

where v is the exponent which describes the divergence of
the characteristic length & at the percolation threshold.
Le Doussal has suggested that (9) applies also in Euclide-
an space for d < 6. This is consistent with our results for
d=2. Since the value of v is believed to be ==0.88 in
d =3,° however, Eq. (9) would imply y =0.88 for d =3,
which is close to the upper bound of (8b), and larger than
the apparent results of our numerical simulation.

A relation equivalent to Eq. (9) for d =3 was proposed
in 1973 by Ambegaokar, Cochran, and Kurkijirvi,” in the
context of a continuum model, as a consequence of the as-
sumption of a scaling form for the conductivity in a finite
system (see also Shklovskii and Efros'®). The value of v
was not well known at the time, but on the basis of simula-
tions of this continuum model, with up to 2000 sites
present, Kurkijarvi concluded that the exponents y and v
had a value 0.6 +£0.25 in d=3.!'" This result coincides
with our result for y on the simple-cubic lattice. Wilke
has studied the size dependence of the average percolation
threshold p.(L) on a simple-cubic lattice for sizes up to
L =200 with various boundary conditions.'? If one
defines an effective value of vegy as —d(InL)/dIn|p.
—p.| one finds a large correction to v, with a value
ver==0.6 for L==15. Thus, our numerical results may in
fact be consistent with y =v=0.88 in the limit L =oo,
Further work is clearly necessary on this point.

The model defined by (1) can be generalized slightly if
we consider a probability distribution P(g;) for the bond
conductances g;, which depends on a parameter . Then
the criterion for a wide distribution for large A is that
g:.P(g.) <1, and that gP(g) is slowly varying for a large
range M "'g. <g <M, with M>1. Without loss of
generality, we may define the parameter A such that

A l=g.P(g). 10)

All our previous discussions apply to this model, with the
substitution D{(x.) =1 [for the model of (1), we have
gP(g)=1"'D(x), but it is always possible to rescale x so
that D(x.) =1].

A simple estimate of the conductivity of a random net-
work is the critical-conductor approximation (CCA), in

which all the conductances of the network are replaced by
the critical conductance g..!> This leads to a conductivity
of the form of (6) with y =0 in all d. Although y =0 is
outside the rigorous bounds for d =3, it appears to be
correct for d =2. The value of C predicted by the CCA is
C =1 for a square- or a simple-cubic lattice, and C =+/3
in the triangular case. By contrast, our numerical simula-
tions yield C=0.97 for the triangular lattice (smaller that
the CCA by a factor of 1.8) if we set y =0 in our fit to the
data. Of course the most important dependence on the
width of the distribution [i.e., the exponential factor
exp(Ax.)], is given correctly by the CCA, in any dimen-
sion d = 2.

We now derive our rigorous bounds for the conductivi-
ty, using the following well-known theorems. '

Theorem 1: If the conductance of any bond or set of
bonds in a network is increased, the conductance (or con-
ductivity) of the entire sample must either increase or
remain the same.

Theorem 2: If each resistance in a random network is
replaced by its expectation value, the new resistivity will
be larger than the expectation value of the resistivity of
the original network.

Theorem 3: If each conductance in a random network
is replaced by its expectation value, the new conductivity
will be larger than the expectation value of the conductivi-
ty of the original network.

Upper bound for the conductivity. We study a random
conductance network with a distribution P(g) that is wide
in the sense defined above with g.P(g.) =1/». We consid-
er an infinite system, where we may assume o=(o)
=(o " ! with probability unity. Let us pick a realiza-
tion of the infinite network, and let us also choose a con-
stant K> 1. We will clearly obtain an upper bound for
the conductivity if we replace all the conductances with
value greater than Kg, by infinite conductances (Theorem
1). We can also replace all the remaining conductances
by their expectation value g+ (Theorem 3). Thus, the
new network obtained is the superconducting-normal per-
colation network (SP), whose conductivity is given asymp-
totically for p— p. by

osp~Cspg+(p. —p) *a?™ 4, (11)

where Csp is a constant that depends on the lattice. The
values of g+ and (p—p.) are given asymptotically for
A— oo by

- Kg. Kg. - ch

K(‘
Pc—P =ch P(g)dg=xr""InkK . (13)

Hence, for large A, we have
o< Cspgca? N1 —p.) "'K/(InK)*. 14)

The upper bound may be optimized by choosing K =e*.
The lower bound is derived in a similar manner. This
time, we remove all the conductances with g; < g./K, and
we replace the remaining conductances by a conductance
g - which is the inverse of the mean value of the resistance
of the remaining bonds (Theorem 2). Writing the con-
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ductivity of a random network of normal conductors g -
and insulators near the percolation threshold in the
asymptotic form Ccpz-(p—p.)'a* 9 we obtain the
lower bound

6= Ccpgea’ A "'p.(InK)'/K . a15)

This bound is optimized by the choice K =¢".

Let us now investigate the exponent y for lattices in two
dimensions. For the square lattice one can prove'!'> that
o=g. is exact, provided that D(x) is symmetric with
respect to x.. The proof uses the self-duality of the square
network. In general, one defines the dual of a planar two-
terminal network by applying the usual definition of the
node mesh duality to the network where the two terminals
are connected by an external conductance.!'!> Each bond
in the dual network corresponds to a bond in the original
network and is assigned a conductance g* such that
gig*=nh 2 where A is a constant. Under these conditions it
can be shown that GG* =h2, where G and G* are the
conductances of the original network and of its dual be-
tween their respective terminals. The duality transforma-
tion takes the variable x; into — x;+cst. If we choose A
equal to g., and D(x) is symmetric about x., then the
transformation leaves D(x) unchanged, so that
G=G*=g.. Thus, c=g., and y =0 for the square lat-
tice.

Using the fact that the triangle lattice is dual to the
honeycomb lattice, and arguing that the exponent y can-
not depend on the details of the distribution D(x), one
can show that the values of y must be related by
Vtriangle = — Vhoneycomb- However the duality argument
does not determine the value of y in either case, and we
turn instead to a numerical solution.

In all the simulations we have taken D(x) to be uni-
form on the interval 0 < x <1. However, the results of
the numerical simulations should apply in the much more
general case of a distribution D(x) smooth at x, with
D(x.)=0. For the triangular lattice, we take the exact re-
sult for p. =1—2sin(x/18).'® We use the bond propaga-
tion algorithm of Frank and Lobb!” and compute the con-
ductance of lattices of linear size 50 (with 900 realiza-
tions) to 250 (with 9 realizations). The choice of A must
obey two constraints: First, A must be big enough so that
the distribution is wide and that the percolation argu-
ments go through. This implies roughly that p—p.
«In(K)/A <1 where K is some constant of order 10 or
more. Second, we must also have A small enough so that
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FIG. 1. Effective y as a function of inverse size L ~! for the
triangular lattice.

the correlation length &, &< (p —p.) ~ Ve (A/InK)" is small
compared to L the size of the system, where v is the corre-
lation length exponent for classical percolation. This
leaves us with a narrow window for the values of A; we
chose to simulate A =10, 15, 20, 25. For each size L and
each value of A, we compute the average of the conductivi-
ty. We use three different definitions of the average: The
arithmetic, the geometric, and the harmonic mean. For
each average of the conductivity ¢(L,A), we get a value
y(L) (shown in Fig. 1) by fitting Inla(L,A)]=2Ax,
—ylnA+b. The numerical results are well fitted by
o(A) =0.5600exp(Ax.), where op is the value for A =0.
This is accurate within 3% as long as A= 10 and &, is
small compared to L. In any case, we are able to put nu-
merical bounds on | yriangte | =< 0.02.

In three dimensions we have simulated a cubic lattice
with the same distribution as in the triangular lattice and
pe =0.25.12 In this case we used the transfer matrix algo-
rithm'® to solve for cubes of linear size L. We went from
L =4 and 2000 realizations to L =20 and 25 realizations.
For each average we have extracted y in two different
ways. First, we can fit a straight line (lno)=Aix,
—yInA+b for each size and thus define y (L) (cf. Fig. 2).
This is done by minimizing the y2 and the weights are
given by the root-mean-square fluctuation of {Ino). The
error bars coming out of this fit are fairly large, which is
an indication that L and A are not quite big enough to
have reached the asymptotic regime. This analysis is con-
sistent with a value of y==0.6 = 0.1, which is in agreement
with the rigorous bounds (8b). Second, we have tried to
fit the results by assuming that the average conductivity in
the region of interest has a scaling form, with additional
finite-size corrections o« L ~":

(Inlo/(goa? ™)) =rx. —ylnr+f(r)+h(r)/L, (16)

where r=L/¢ and £=[A/D(x.)]* with v=0.88. We as-
sume that for the range of interest we can write
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FIG. 2. Effective y as a function of inverse size L ~' for the
cubic lattice, the error bars are plotted for the geometric mean
only.




RAPID COMMUNICATIONS

880 STEPHANE TYC AND B. I. HALPERIN 39

f(r)=a+br and h(r) =c+dr. We then perform a five-
parameter fit and it yields y =0.57 £0.1, y =0.60 £ 0.1,
y=0.62%0.1, for In({g)), (Ing), and In({1/g) ~!). The
four other parameters vary typically by factors of two be-
tween the different averages.
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Note added in proof. It has been brought to our atten-
tion that the rigorous bounds given by Eq. (5) have been
previously derived by Charlaix, Guyon, and Roux. '’
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