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By considering the conduction-band discontinuity and effective-mass characteristics of GaAs-
Al,Ga;—xAs and Ings;GaosAs-Ings2(Ga;—xAlx)oasAs heterostructures, we show theoretically
that it is possible to obtain a parabolic quantum well by applying crossed magnetic and electric

fields in a single quantum barrier.
harmonic-oscillator energy levels in the well.

Resonant-tunneling effects are then obtained through
We also discuss the resonant-tunneling conditions

and the possible values for K, transversal momentum of the incident electron,

The high quality of growth for different semiconductor
materials has given possibilities for studies and discoveries
of new devices and applications. In this manner the trans-
port and optical properties have been verified and interest-
ing and important effects have been reported. At the
same time theoretical works have also been developed that
sometimes open new fields for experimental investigations.

Following the pioneering work of Tsu and Esaki' we
will show the possibility of obtaining a parabolic quantum
well and consequently resonant-tunneling effects into the
quasibound harmonic-oscillator states in the well. We
will base our calculations on the GaAs-Al,Ga;-,As-
GaAs and quanternary Ings>Gag4sAs-Ings2(Gaj—y-
Al )o.48As-Ing 52Gag 4sAs semiconductor barriers.

A generic parabolic potential can be obtained by the
conjugated action of crossed magnetic (B) and electric
(F) fields. By considering the magnetic field parallel to
the heterolayers (Z direction), it is possible to obtain a
parabolic potential profile of the barrier which acts as a
quantum well for given values of B and F where the
minimum position energy is lower than the Fermi energy
Efr in the emitter. Thus, the harmonic-oscillator states
with lower energies will give the conditions for a resonant
tunneling in the system.

We will consider the energy origin at the top of the bar-
rier. X is the growth direction of the sample. In the
emitter and collector regions (1 and 3 in Fig. 1) the poten-

FIG. 1. Resonant-tunneling scheme in a parabolic quantum-
well potential. X - and X+ are the classical turning points, W,
and W, are the effective barrier widths, and L is the total width
of the barrier.

39

tials are considered constants and equal to — Uy, where

Uy is the barrier height. If these regions are sufficiently

doped we can neglect the field effects as also considered by

Eaves and et al.2 By the choice of the potential vector

A =(0,Bx,0) we will have the Hamiltonian in the barrier

region given by
1

*

H=- [P2+P2+ (P, —eBx)?] —eFx, 1)
where 7 is the momentum operator. The derived
Schrédinger equation in the effective-mass approximation
is given by

2
~ (hz/zm*)%;“zi+[(h2/zm*>1<3+(m*92/2)

x(x —x0)2—eFx]¥=Ev, )

where xo=hK,/eB, O =eB/m*, and m™* is the electron
effective mass in the barrier.

We can take E =E,+(h?/2mo)(K?+K?2) as the total
energy of the electron in the emitter according to the
Davies® statements for the three-dimensional case. The
quantity my is the electron effective mass in the emitter.

Thus, Eq. (2) takes the form

2
—-(h2/2m*)‘; ‘12' +V(x,K,,K.)¥=E, ¥, 3
X
where
V(x,Ky,K,) =Vmint(m*0%/2)(x — X,)2. @

The potential given by Eq. (4) could be understood as
an effective potential in the barrier where Xo=xg
+eF/m* Q% and ¥V, is the minimum energy of the para-
bolic quantum well, given by

Vnin= (h 2K12/2mo)(mo/m* -1)
—h2K?/2mo—eFxo—e’F*2m* Q2. (5)

By substituting Eq. (4) in Eq. (3) and performing the
transformation n =x — Xy, we have

2
- (hz/zm*)j—n"zi+(m*nz/z)n2w=(Ex Vi)W,
®)
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that is the Schrodinger equation for a one-dimensional
harmonic oscillator. The solutions for the quantum ener-
gy levels are well known and we obtain

Ex=Vmnt+3)ha. )

An analytical solution for the wave function in Eq. (6) is
given by a linear combination of the parabolic-cylinder
functions.* The differential equation for these functions is
given by ®"(&) — (£%/4+a)®(£) =0. We easily recover
this equation considering £=(x —X¢)/a with a=(h/
2m* Q)2 and a = (Vpmin— Ex)/h Q in Eq. (6).

In our model the most interesting properties of the sys-
tem are in the barrier region. By considering only this re-
gion we can define what are the necessary conditions to
obtain a parabolic quantum well by application of crossed
magnetic and electric fields. The effective potential bar-
rier ¥V (x,K,,K;) and the minimum position X of the par-
abolic quantum well depend explicitly on the K, value,
electric field F, and the magnetic field B.

By assuming the existence of a parabolic quantum well
in the barrier region, for a determined set of B, F, and X,
value, then Eq. (7), which is an energy solution of the
effective-mass Schrodinger equation, gives us the permis-
sible energy states in the well. The effective barriers W
and W, (see Fig. 1) are large enough. The overlap be-
tween the wave functions inside and outside the barrier is
small. Thus, the quasibound permissible states are well
calculated by Eq. (7); in particular, the states with indices
of n=<1 (the cases where W and W, are bigger), which
are the principal contributors to the resonant tunneling
process because of their low energies. Therefore, our
problem is to find a permissible and reasonable range of
K, by utilizing the parameters F and B within the experi-
mental range to obtain a resonant-tunneling effect in this
system. Thus, we can state the following:

(i) Xo , the minimum potential position will have to be
between the interfaces of the barrier. The potential value
at this point will have to be deep enough to accommodate
at least one permissible state with an energy smaller than
the Fermi energy Er.

(ii) The resonant condition will have to be satisfied;
- therefore, the energy —Up+ E,. of the incident electron
will have to be the same as the quasibound harmonic oscil-

—Uy, x<=L/2, j=0,
S;j= WV (xj-1,K,,K:)+V(x;,K,,K;)1/2, xo=<x;=<
—Uo—eFL, x>L/2, j=N+1,

where L is the barrier width, xo= —L/2, and xy =L/2.

By verifying the boundary conditions of the wave func-
tions ¢;(x) and their derivates (1/m;*)¢; at each j inter-
face we can find a matrix relation connecting the emitter
and collector wave-function coefficients,

Ao AN+
By

> an

By +1

N
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lator level in the parabolic quantum well given by Eq. (7).

(iii) The magnitude of K|, in the barrier region can only
take the values that are in the allowed transversal momen-
tum range in the emitter, ie., |K,|=<[(mo/h?)(EF
—Ex)1"2. (For simplicity we have considered K, =K, ).

To consider the third condition and a constant potential
in a sufficiently doped emitter (conforming to Ref. 2) is
nothing more than an approximation of the problem. The
effect of the magnetic field will . be much more reduced in
the emitter than in the barrier region. An electron in a
Landau orbit in the emitter will change its transversal
momentum and consequently its centered X§ position
constantly by scattering process. So, we could consider
the existence of a K, range obeying the third condition,
corresponding to several incident transversal momentum
of the emitter. In addition, the work done by Brey, Pla-
tero, and Tejedor5 where the authors utilize a transfer
Hamiltonian approach, demonstrates very clearly the con-
servation of transversal momentum in the transition pro-
cess between right- and left-hand sides of the barrier in a
high transverse applied magnetic field. This fact rein-
forces our approximations.

If one considers our three conditions valid, a good ap-
proximate method can be developed, considering the
effective barrier V(x,K,,K,;) as a sequential step func-
tion,® which offers possibilities to obtain a numerical ex-
pression for the transmission coefficient in this problem.
A comparison with the analytic result of Eq. (7) can be
done.

By considering the sequential step approach, the wave
functions at each step potential region can be written

¢j(x)=Aje°’x+B,-e —a/x’ (8)

where j=0,1,2,...,(IN+1) is the index of each potential
step and N is the total number of steps in the barrier re-
gion, and

il@m}/h*)(Exe —S)1'2, Ex>S;,
c;= (9)

[@m}/h?)(S;—Ex)1'?, E.<S;.

In the emitter and collector region (j =0 and j=N+1)
the effective mass must be changed for my.

xn, j=1,...,N, (10)
f
where M is the iteration matrix given by
. a +0j)e (o541 —0y)x; a _oj)e —(oy41+0))x;

2la _ej)e(aj*"+aj)x,- (1+9j)e(aj—aj+1)xj

and 6;= (mf Gj+1 )/(m}"+1cj).
By associating Ao=1, Bo=R, Ay+1=T, and By + =0,
where R and T are respectively the reflection and
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transmission amplitudes, we obtain

1 Li Li2
R L2 Lo
with L=[T"=¢M;. The transmission coefficient is then

given by
T*T(Exe,Ky,F,B) =(on+1/00) | 1/L11 | 2. (14)

T

The viability of our numerical method is then verified
when we recover the energy values of the quasibound
states given by Eq. (7). The energy values are now calcu-
lated by the peak positions in the transmission coefficients
which are shown in Figs. 2(b) and 3(b), respectively, for
Al,Ga|-,As-GaAs and Ings>(Ga;—-,Al,)o43As-Ingso-
Gao43As single quantum barriers. The parameters uti-
lized by us”*® and results are specified in the captions.

These two semiconductor systems, by their characteris-
tics of conduction-band discontinuities and effective
masses, enable us to obtain resonant tunneling conditions.
If we consider a reasonable Fermi energy in the emitter,
equal to 40 meV, there will be a level from which we will
get a transmitted resonant current.

The minimum position of the parabolic well potential is
given by Xo=hK,/eB+Fm™*/eB?. We can see that it de-
pends fundamentally on F, B, and K,. A good relation-
ship between F and B fields guarantees that X is between
the barrier interfaces. This condition is obtained for a
limited range of F (or voltage) when we consider B fixed.
Thus, for F values in this limited range, resonant tunnel-
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FIG. 2. (a) Effective potential V(x,K,,K;) for a GaAs-

Al,Ga;-xAs-GaAs semiconductor quantum barrier; (b)
transmission coefficient giving the resonant harmonic-oscillator
energy levels at Fo=—20.2 meV, E;=9.2 meV, E,=39.9 meV.
The following parameters are used: aluminum concentration
x =0.05, Up=35.0 meV, mo=0.067m., m* =0.071m, (m,. is
the free-electron mass), B=18 T, F=2.2%x10° V/m, L =500 A,
Vmin=—34.8 meV, and K, =1.726x10¥ m ~.
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ing occurs with an increase of the tunneling current. The
results shown in Figs. 2(a) and 3(a) are for just one of
these cases where we have a parabolic well in the barrier
region. Outside of this range, by increasing F, the
minimum position Xo can move to the extremity of the
barrier and consequent quench of the parabolic well in
this region. The effective barrier will be very large (~500
A) and practically impenetrable. There will be a decrease
in the tunneling current characterizing a differential nega-
tive resistance region. Note that the three basic condi-
tions depend on K, and they will have to be satisfied
simultaneously. Thus, by fixing the parameters B, F, L,
Uo, and Ep, the variation of the possible K, values turns
out to be limited. The relationship between F and B turns
out to be the principal factor which controls the position
Xo. This justifies our above statements for the formation
of a differential negative resistance.

We could also notice that a more accurate solution of
this problem in the case of the Ings,(Gaj—,Aly)gssAs-
Ing 52Gag 4sAs system would involve the effect of effec-
tive-mass nonparabolicity.

In conclusion we have shown the possibility of obtaining
a parabolic quantum well by applying a high magnetic
field perpendicular to the electric field on GaAs-
Al,Ga;—,As-GaAs and Ings5»GagsgAs-Ingsr(Gaj—x-
Aly)o.48As-Ing s;Gag 4sAs semiconductor single barriers.

The analytical energy levels in the parabolic quantum
well, given by Eq. (7), are in a very good agreement with
the results obtained by our transmission-coefficient ap-
proach.
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FIG. 3. (a) Effective potential V(x,K,,K;) for a
Ino.s2Gao.4sAs-Ing s2(Gaj —xAlx)o.4sAs-Ings2GaossAs quaternary
semiconductor quantum barrier; (b) transmission coefficient giv-
ing the resonant harmonic-oscillator energy levels at
Eo=—11.5 meV, E,=10.4 meV, E>2=32.3 meV. The follow-
ing parameters are used: x=0.05, Up=26.5 meV,
mo=0.042m., m* =0.069m., B=13 T, F=0.5x10% V/m,
L =500 A, Vmin=—22.4 meV, and K, = —1.428x108 m .
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Though we do not consider the magnetic field in the
emitter region and the exact way of counting the allowed
K, in a transmission process, our treatment leads us to
think that this phenomenon can occur and gives us a good
idea of the physical parameters to be used to observe this
resonant-tunneling effect experimentally.
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