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%"e examine the resonant-tunneling lifetime of two systems: a double-barrier and a 5-doped bar-
rier structure. Simple analytical expressions for the lifetime, which account for the e6'ective-mass
changes between the difFerent regions, are obtained. Results suggest that the 5-doped barrier struc-
ture would be faster and would carry a larger peak current density than an identical double-barrier
structure.

Interest in resonant-tunneling systems has increased
considerably in recent years due to the experimental re-
sults of Sollner et al. ' on double-barrier structures. They
demonstrated the high-speed response attainable by these
devices (frequencies ) 10' Hz). In order to estimate the
frequency limit of such high-speed devices, it is important
to know the lifetime of the resonant state.

The structures considered in this study are shown in
Fig. I. Several authors have presented analytical ex-
pressions for the lifetime of a double-barrier resonant-
tunneling (DBRT) structure [Fig. 1(a)]; however, they all
assumed equal effective masses for the barrier and the
well regions. Others ' have correctly considered the
effective-mass difference and obtained the lifetime of the
0BRT structure by numerically solving the time-
dependent Schrodinger equation. The second structure
considered is inspired from Beltram and Capasso, " who
investigated the effect of deep levels within the barrier re-
gion of semiconductor superlattices. The structure
shown in Fig. 1(b) consists of a single barrier containing a
sheet of impurities at a distance zo from the first inter-
face. As shown by Hjalmarson, ' deep levels could result
from the deposition of an atomic layer of highly concen-
trated shallow impurities. The technique for the deposi-
tion of dopants in a single atomic plane (5 doping) was es-
tablished by Wood et al. ,

' and is reviewed by Ploog
et ar. "

In this paper we obtain simple analytical expressions
for the lifetime of the resonant-tunneling states for both
structures while properly accounting for the effective-
mass pro61e of these structures.

We first calculate the global transmission coef5cient of
the symmetric DBRT structure [Fig. 1(a)]. For simplici-
ty, we assume no externally applied field in the following
calculation. The lifetime of the resonant-tunneling state
is obtained from the linewidth of the transmission max-
imum.

Ricco and Azbel have published a discussion of the
physics of resonant tunneling, while assuming a single
effective mass for the entire structure. However, Bas-
tard' has shown that effective-mass jumps modify the
boundary conditions which are imposed on the wave
functions of the efFective-mass Hamiltonian. Therefore
we repeat Ricco and Azbel's calculation of the transmis-
sion coefFicient using the efFective-mass Hamiltonian and
Bastard's boundary conditions. %'e obtain, for the sym-
metric DBRT structure,
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FICx. 1. Conduction-band potential-energy profiles for (a)
symmetric double-barrier resonant-tunneling structure and (b)
6-doped barrier structure. In each figure, Vo is the barrier
height, d is the barrier width on either side of the well region,
and Eo is the energy of a bound state for an isolated well
(d ~~ ). For (a), m is the well width while, in (b), zo is the posi-
tion of the 6-function potential with respect to the first inter-
face.
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where

k=[(2m*, /A )E]'i, K=[(2m2 /A' )(Vo E)]—'i

and

(2)

X=mzk/m, "K .

Here, m,' and m 2 are, respectively, the effective masses of the well and barrier regions. E is the energy of the incident
electron while Vo, d, and w are defined in Fig. 1(a). For m i

=m 2
=m, the transmission coefficient obtained is identical

to the previously published results. *

To simplify (1), we assume Kd ))1 so that the hyperbolic functions may be replaced by —,'e . Substitution in (1)
gives
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For off-resonance energies, the first term dominates the
transmission coeKcient so that T ~ e " ". However, the
leading term will cancel and the transmission coefficient
will approach a maximum when
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It is interesting to note that this condition determines the
energy levels of an isolated quantum well of width w and
of depth V0. '

According to Ricco and Azbel, a symmetric DBRT
structure with identical barriers will produce a resonance
with a transmission coefficient of unity. However, it is
easily verified that, for energies which satisfy (5), T-1
but is not unity. Therefore, in order to find the energy of
the resonance, E„and the half width at half maximum
(HWHM) I, we will expand the expression of T about an
energy Eo which satisfies (5). Replacing E by Eo+b,E
where hE «E0 and keeping only the leading terms in
b,E, (4) reduces the transmission coefficient to an expres-
sion of the form [A(hE) +B hE+C] '. Setting this
expression equal to 1 and —, will yield quadratic equations
whose roots give, respectively, the resonance energy E,
and the HWHM for the DBRT structures, I DB. We find

Here, k0, K0, and X0 are the values of k, E, and X when
E=E0. The resonant-tunneling lifetime ~ of a parallel-
plane barrier heterostructure of any form is related to the
H%'HM by

21

The lifetime obtained by combining (6) and (8) is a gen-
eralization of the expressions previously published by
Payne and Araki who assumed no effective-mass
difference between the barrier and well regions.

Let us now consider the 6-doped barrier structure of
Fig. 1(b). The formalism is similar to the double-barrier
case except one must specify the potential used to de-
scribe the impurity layer. Beltram and Capasso" have
verified that only the symmetry and weight (i.e., the in-
tegral) of the potential chosen are important. Therefore
we shall use a 6-function potential, as suggested by Bel-
tram and Capasso. To obtain the global transmission
coeKcient, we follow the same procedure detailed above
while using the appropriate boundary conditions at the 5
potential. ' We obtain
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which is given for an arbitrary position zo of the 5 poten-
tial. Ko is the value of K for E =Eo where Eo is the ener-

gy level of the bound state of an isolated 5 potential well.
Eo can be written in terms of the weight of the 5 poten-
tial and can be considered as a parameter. Our result
agrees with the transmission coefficient obtained by
Knauer et aI. ' who considered metal-insulator-metal
(MIM) tunnel junctions and ignored the effective-mass
changes between the various regions. In order to be able
to compare the results with the DBRT structure previ-
ously treated, we consider a symmetric structure where
the 6 potential lies in the middle of a barrier of thickness
2d (i.e., zo=d). We can solve (9) by using the same pro-
cedure detailed for the DBRT structure to obtain

and
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This quantity is strictly greater than one since Eo must be
less than Vo. Therefore 6-doped barrier structures are
faster than equivalent DBRT structures.

where ko, Ko, and Xo are evaluated for E=Eo. The
resonant-tunneling lifetime for the 5-doped barrier is also
expressed as in (8) where I is given by (10).

As an example, let us consider a GaAs/Gao 7Alo 3As
structure which gives Vo=0. 33 eV, m2 =0.092mo, and
m

&
=0.067mo. ' In order to compare both structures,

we chose w =43.5 A which yielded Eo =0.10 eV for the
DBRT structure, and used this same value of Eo for the
6-doped barrier structure. Figure 2 shows the HWHM
and the resonant-tunneling lifetime as a function of bar-
rier width d. The symbols shown are values of the
HWHM obtained numerically from the expressions of
the total transmission coefficients [see (1) and (9)]. The
agreement between the analytical expressions (lines) and
the numerical results (symbols) is excellent when d ) 25
A. However, for thin barriers (d (25 A), the approxima-
tion Kd && 1 used to calculate I becomes less valid.

From Fig. 2, one can also notice that ~& is almost one
order of magnitude smaller than v.oz. This is easily
verified by taking the ratio of the two lifetimes which
gives

Furthermore, (12) also implies that I s is greater than
I DB. Also, the current density through a resonant-
tunneling system can be written as

2EJ=q f T(E)n(E)dE,
m&

where n(E) is the net distribution of incoming particles.
Therefore the broader peak in the transmission coe%cient
of the 5-doped barrier would lead to a larger current den-
sity than the DBRT structure. A more complete analysis
of the current density of these structures will be pub-
lished later.

We have obtained analytical expressions for the energy
position, the HWHM, and consequently the resonant-
tunneling lifetime for DBRT and 5-doped barrier struc-
tures. These analytical expressions agree very well with
the numerical results. A comparison between the two
structures suggests that a 5-doped barrier would be faster
and would permit a larger peak current density than an
identical double-barrier structure.
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FIG. 2. Logarithm of the half-width at half maximum
(HWHM) of the transmission peak, I, and the resonant-
tunneling lifetime ~ as a function of barrier width d. The solid
(6-doped structure) and dashed (DBRT structure) lines are the
approximate values given by (10) and (6), respectively. The cir-
cles and squares are the numerical results obtained from the to-
tal transmission coe%eient [i.e., (9) and (1)j.
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