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Variational calculations for the Sutherland model
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A system of fermions or bosons interacting in one dimension via a two-body potential of the
form V(r) g/r is known to have a ground state of Jastrow type. The boson system is explored
in this paper within the hypernetted-chain scheme to study the various ground-state properties,
and the results are compared with the exact results available for this system. The results are ex-
pected to have important bearing on spin correlations in the Gutzwiller state.

Recently, there has been an upsurge of interest in the
Gutzwiller type of wave functions to describe strongly
correlated electron systems. ' The accurate Monte Car-
lo calculations' of the various ground-state properties
of interacting fermions on a one-dimensional lattice have
also been supplemented by analytic results, in particular,
on spin correlation functions. The latter work has re-
cently motivated Shastry and Haldane to explore the
Gutzwiller wave function as a spin wave function. Shas-
try and Haldane observed the following interesting re-
sults: The s —,

' one-dimensional (1D) isotropic Heisen-
berg antiferromagnet with an exchange coupling falling
oA as the inverse square of the distance between sites has
a singlet ground state of Jastrow form. This state was also
found to be identical to the Gutzwiller wave function for
the Hubbard chain and also to the ID version of the
resonating-valence-bond (RVB) state of Anderson.
The Shastry-Haldane work was based on what we call the
Sutherland model in the present work.

Sutherland investigated the ground state for a system
of bosons (or fermions) interacting in 1D via a two-body
potential of the form V(r) g/r . The interesting result
of that investigation was that the ground-state wave func-
tion was found to be of Jastrow form. He also noticed
that the square of the wave function is identical with the
probability distribution function from the theory of ran-
dom matrices. ' This identification then allowed for the
exact determination of the pair-correlation functions,
one-particle density matrices, and the momentum distri-
bution functions for a few values of the parameter g (in
fact, only for g ——,', 0, and 4). The Shastry-Haldane
work is a discretized form of the continuum 1D Bose mod-
el of Sutherland. Their result corresponds to the case of
g-4. Other interesting facts about the g/r potential
have been discussed at length by Sutherland in Ref. 8.

While the simple model of Sutherland is quite remark-
able because in this case the ground state is exactly known
and it provides the exact results for the various ground-
state properties mentioned above, calculation of these
quantities for values of g other than the ones stated above,
or for higher dimensions, and extension to multicom-
ponent systems is, however, not possible. On the other
hand, for the Jastrow wave functions, a natural and quite
reliable calculational scheme is the hypernetted-chain

G(r) -1 —(s(r) I', s(r) —= """,
xr

and is plotted in Fig. 1. For g &0, we have solved the
HNC equations following Ref. 11. The method is brieAy
described as follows: The ground-state wave function is
written in the Jastrow form as

e-exp —,
' gu(r;, ) (2)

where u(r) is assumed to be a real function of r and van-
ishes for larger r. The expectation value of the Hamiltoni-
an (in this case, the Sutherland Hamiltonian) is then ex-
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g=0
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FIG. 1. Pair-correlation functions for various values of the
parameter g obtained within the HNC scheme. The dashed
curve marked exact is the exact result for g 4 from Ref. 8.

(HNC) scheme, where such a generalization, if required,
could be achieved. In this paper, we have applied the
HNC procedure in the continuum limit to obtain the
ground-state properties mentioned above for various
values of g. The primary aim of the present work is to as-
sess the reliability of the approximate scheme compared
with the exact result. A discrete version of the present
work, which should be comparable with the Shastry-
Haldane work, is currently under investigation and will be
published later.

Let us first consider the pair-correlation functions. The
case of g 0 corresponds to free fermions (one spin state)
or bosons with an infinite hard core.- The pair-correlation
function is then simply (in the following, the particle den-
sity is taken to be d 1)
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pressed in terms of the radial distribution function G(r)
as (h'/m -1)

trices, in fact, depend on the statistics of the particles. In
the case of g =0, one obtains for the free fermions,

+ 'N -dr V(r)G(r) .
Br Br

(3)

The HNC scheme then relates u(r) with G(r) (ignoring
the elementary or bridge diagrams) in the following
manner:

1
sin(+dr )

0, Ik I )zd. (7)

fO

u(r) =lnG(r) —G(r)+1+ 1 — e'"', (4)2x" S(k)

where S(k) is the static structure function. Substituting
Eq. (4) in Eq. (3), one obtains the energy expression in

terms of G (r) only. The optimal pair-correlation function
is then obtained by minimizing the energy with respect to
arbitrary variations of G(r), and solving the Euler-
Lagrange equation numerically. " This procedure has
been extended also to incorporate diA'erent species of par-
ticles. ' The results for G(r) from the above-mentioned
procedure are plotted in Fig. 1 for g=1, 2, 4, and 10.
With increasing g, we obtain more structures in G(r) with
an overshoot developing for g ~ 2, indicating that the sys-
tem is gradually transformed into an ordered (short-
range) state. For g 4, the exact result obtained by Suth-
erland,

$2r 1 ds(2r)G(r) -1 —[s(r)] ' — s(z)dz , (s)ijp 2 dr

is also plotted in Fig. 1. The comparison between the
HNC and the exact result is quite good for small interpar-
ticle separation. However, Sutherland noted that for in-
creasing values of g (the interaction, thus, becoming more
repulsive), the system is more nearly ordered on a lattice.
This is not well reproduced by the uniform density calcu-
lation of HNC. The discrete version of the present HNC
scheme should be more appropriate to compare at this
value of g. For large values of g (e.g., for g 10), the
HNC result also indicates the ordering (short range) of
the system, where a large overshoot in the correlation
function and the subsequent structures start to appear.

The one-particle density matrix is defined as

n(r —r')
&

dr~. . . drjv ~@*(r~, . . . , r~ ~,r')

x P(ri, . . . , r~ —i,r),
(6)

where Ã is the normalization integral. The density ma-
trix is normalized such that n(0) =d where d is the parti-
cle density. The momentum distribution function n(k),
which is the average number of particles with momentum
k, is just the Fourier transform of n(r). It is normalized
in the manner fn(k) dk =d.

In contrast to the pair-correlation functions discussed
above, the momentum distributions and the density ma-

For particles obeying Bose statistics, Sutherland found
that there is no Bose condensation into a single momen-
tum state. Also, the momentum distribution diverges as
I/O I k I at the origin.

For g=4, the exact results for n(r) and n(k) were de-
rived for bosons by Sutherland as

( )
Si(2+dr) S.( )

"siny
d

2xr ' "p y

In(2trd/ I k I ), I k
I
~ 2nd,

n(k) = ' 4&

0, Ik I ~2'.
The momentum distribution function, therefore, exhibits a
weak (logarithmic) singularity at zero momentum.

It is interesting to note that the density matrix in Eq.
(8) is identical to the spin correlations for the spin-singlet
Gutzwiller-RVB state for the Heisenberg model

(,S,) Si(7m)
( )„

4nn

As Shastry pointed out, this equality is a consequence of
the singlet nature of the ground state ((SoS„')=(SOS„')),
which implies that the spin correlation function is one-half
of the one-body density matrix. The equivalence also sug-
gests that for the correlation functions, the discrete nature
of the particle position is not important.

The HNC procedure for evaluation of the density ma-
trix and the momentum distribution function that we have
followed in the present work is given in detail in Ref. 13.
This method has the interesting quality of having the
correct normalization, as compared to the methods
developed earlier, ' and is known to be reasonably accu-
rate for liquid He. The accuracy can be improved by in-
troducing the elementary diagrams. In this approach, the
density matrix is calculated from the radial distribution
functions of a binary mixture. ' The method was first
proposed by Reatto and co-workers, ' who noticed that
the one-particle density matrix is proportional to one of
the three radial distribution functions of a binary mixture
comprising of two particles jl, I'j in the bath of (N —1)
particles f2, . . . , NI.

For a two-component system, the ground-state wave
function can be written in the Jastrow form ' as

NI N2

w(r~ ~, . . . , r~ ~, ,r2 ~, . . . , rq~, ) =exp —,
' g u~~(I r~, ; —r~ ~ I )+ g uqq(I rq; —r2t I ) g u~2(I r~; —rq~ I )i(j i(j i 1,hf 1

j 1,A'2
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where u (r)) are the correlation functions b t
three article a'

s e ween the

written as '
p ic e pairs, the pair-distribution funct'nc ions can be

Np(N, —b',p) f+ dr(;. ;p&

P Pp f+ &ri. . . dr~

(10)

where dr
ted and

enotes dri. . . dr~ with dr d d;. an r; ornit-
nd p is the partial density of the s

consider the choice
e species a. If we

u..(r) =u(r),

upp(r) =0,
u,p(r) = —,

' u(r),

the densit m
'

y matrix is then written in term f 6so ~~ as

( )
Gpp(r)

Gpp(0)

The rnomenturn distribution function is then obtained by
performing a Fourier transform on n(r). The nn n r . e numerical

ensity-matrix decays as I/r for large r. The partial air
correlations are obtained b y solving the two-component

equations in the zero-concentration limit' (the
contributions from the cleme ementary diagrams are ignored
m the present calculation).

In Fi . 2 w'g. , e have presented the one-particle densit
matrix n(r) as obtained via the HNC a r

an = . The normalization condition is triviall
satisfied because of E . ~~q. ~&12~. The overall agreement with

is rivia y

the exact result fEq. (8)) is quite ood. Th d'

between thehe two results can be greatly reduced by intro-
ducing the elementary diagrams. I h

e, t e contribution from the element dmen ary iagrams to

n(r) was
tions in t e r

as ound to be quite significant. ' S' '1imi ar calcula-
ions in t e present model would be very interesting and

will be published later. It should be n t d h

o t e exact and HNC results agree cl 1 hosey in t e

The numerical result for the momentum d t
'

function n(k is sh

um istri ution
) is shown in Fig. 3 for g=4 within the HNC

scheme. The exact result in Eq. (8) is also 1

or comparison. gain, the overall agreement is quite

g . The vanishing of the exact result at k=2m is not
reproduced by the HNC result; it is how ever, very small

for n(r) at sm
e discrepancy is, of course, related t th t

small distance. The agreement between the
two results for n(k) is ex expecte" to improve if we consider
t e contributions from elementary diagrams. A fi

e normahzation condition is fn(k)dk=0
close to ununity. The reason for the slight deviation from

n = .98,

unity is purely numerical error.
In clo

'

inten
closing, we wish to emphasize that h'a, in t is paper, we

in ended to introduce the hypernetted-chain scheme, a

state an
well-established procedure for c 1 1 t' h

s ate an also the low-lying excitations)ions, in a system
re a ew exact results are available. The pair-

correlation function obtained at g =4 in thg — in t is approximate

result av i
sc erne is found to compare reasonably well w th he wi t eexact

available. The results are presented f
values of

n e or various

g merely to demonstrate the flexibility of the ap-
proach while being reasonably accurate. For the correla-
tions in the spin-singlet Gutzwiller-RVB
an quantity is the one-body density matrix wh h

'
h, w ic int e

p scheme is in very good agreement with th
result for -4. T

en wit t e exact
g . "e momentum distribution function also

shows the correct behavior, except in the re ion
ct result for n(k) goes to zero. In this re-

approximation are impor-
an . imi ar reasoning explains the discrepancy in the

density matrix. Work of similar type for d'r a iscrete mo el
wi e reported in a separate publication. Finally, the a-
proximation scheme discussed th'in is paper can also be ex-
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tended to Fermi systems. Noticing that the ground state
of an interacting Fermi system in 1D is of Jastrow type,
we expect that the Fermi-HNC scheme in Ref. 12 should
be particularly appropriate. These studies will be reported
in future publications.

I wish to acknowledge very useful discussion with Wolf-
gang von der Linden on the equivalence between spin
correlations [Eq. (9)] and the one-particle density matrix
in a boson system. Discussion with Pekka Pietilainen in
Oulu, Finland, has been very useful.
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