
PHYSICAL REVIEW B VOLUME 39, NUMBER 1 1 JANUARY 1989

Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy
of transition-metal monolayers
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A perturbative theory of magnetocrystalline anisotropy and orbital moment in itinerant fer-
romagnets is presented that clearly outlines the close connection between these two quantities.
The theory is used to study the magnetocrystalline anisotropy in transition-metal monolayers.
The importance of the crystal-field energy and of the filling of the valence band is emphasized.
For the first time the orbital contribution to the magnetization in monolayers is estimated; it is

shown that it may produce an anisotropy in the magnetization of the order of O. lpz per atom.

I. INTRODUCTION

The possible appearance of a large magnetocrystalline
surface anisotropy pointed out by Neel' and its potential
applications in perpendicular magnetic recording have
stimulated great current interest in surface anisotro-
pies. However, although the basis of a theory of the
anisotropy in itinerant ferromagnets were given by
Brooks many years ago and widely applied to bulk ma-
terials, ' there are still very few theoretical papers on
the anisotropy of ultrathin films.

In the 1970s, Bennett and Cooper, ' followed '
by

Takayama, Bohnen, and Fulde' studied the magnetic an-
isotropy of a Ni(001) monolayer in a tight-binding pertur-
bative model. Because of rather crude approximations
and inaccurate knowledge of the band structure, they ob-
tained only a reasonable order of magnitude for the mag-
netocrystalline anisotropy.

Very recently, Gay and Richter published an ab initio,
self-consistent calculation of the anisotropy of Fe(001)
and Ni(001) monolayers' and of a Fe(001) overlayer on
Ag(001). ' These calculations are much more complicat-
ed and require an enormous amount of computer time, be-
cause a very large number of k points (more than 5000)
must be taken to achieve convergence when integrating
over the two-dimensional (2D) Brillouin zone.

Beside the anisotropy energy, the magnetic moment of
ultrathin films is a quantity of fundamental interest and
has been widely investigated both experimentally and
theoretically. However, up to now, the theoretical papers
did not take into account the spin-orbit coupling and
therefore neglected the orbital contribution to the magnet-
ic moment. Although the latter is largely quenched in
transition metals, it is not negligible if one wants to gg~-
pare accurately theory and experiments; moreover, 'es-wc
already know that spin-orbit coupling is able to induce
very large anisotropy energies in ultrathin films (as com-
pared to bulk materials), anisotropic eff'ects can also be
reasonably expected for the orbital magnetic moment.

With respect to the above considerations, our study will
be carried out rather in the spirit of the early papers, ' '
and, consequently, will suffer the same lack of accuracy.
However, the aim is not to achieve realistic calculations
for a given system, but rather to provide orders of magni-

tude, as well as looking for qualitative trends throughout a
wide range of systems. In Sec. II, from a second-order
perturbative treatment of the spin-orbit coupling, general
formulas are derived which give the anisotropy constants
and orbital moment as functions of the unperturbed band
structure. The numerical calculations are thus very fast
and convenient, and indeed we were able to perform them
on a PC microcomputer. The results derived in Sec. II are
used in Secs. III and IV in a tight-binding model to study
spin-orbit effects in ultrathin films. More precisely, the
parameters entering the model are varied in order to study
their inAuence on the anisotropy energy and orbital mo-
ment. It turns out that a surface anisotropy of the order
of 1 ergcm can be expected. This anisotropy is strongly
dependent on the crystal-field parameters and on the
filling of the 3d band. Finally, an anisotropy as large as
0.1p~ is predicted for the magnetic moment.

II. PERTURBATIVE THEORY OF THE MAGNETO-
CRYSTALLINE ANISOTROP Y

AND ORBITAL MOMENT

A. The spin-orbit coupling

The spin-orbit coupling, responsible for the magneto--
crystalline anisotropy and orbital moment of ferromag-
nets, has been discussed by various authors ' who
showed that it can be approximated by a one-electron
term gL S, where (, the spin-orbit constant, is of the or-
der of 0.05 eV. This is small as compared with the 3d
bandwidth (a few eV) and justifies a perturbative treat-
ment.

At this point, some formalism should be introduced.
Throughout this paper the Slater-Koster' tight-binding
formalism will be used, although the results derived in
Sec. II are not restricted to any particular scheme.

1he basis functions are orthonormalized atomic func-
tions (Lowdin functions)

~ j,p, o) where j labels the posi-
tion, p the 3d subband, and a the spin. The 3d subbands
yz, zx, xy, x —y~, 3z —r are labeled 1, 2, 3, 4, 5, re-
spectively. (x, y, z refer to the crystalline axes, Oz being
chosen perpendicular to the film plane; the spin quantiza-
tion is along an axis Og, characterized by the standard
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spherical angular coordinates 8 and p). The standard
Bloch functions

I k, p, cr) are then introduced. The eigen-
function I k, n, o) of eigenvalue e„(k)is

I k, n, o& =pa„„(k)I k, p, cr&.

One also introduces the generalized densities of states

n„,„,(k, s) =pa„*„,(k)

xa„„,(k) B(s—e„(k)),
n„,„,(k, c) =gn„,„,(k, s),

(2a)

(2b)

and the generalized spin-polarization densities

m„,„,(k, s) =n„,„,, (k, ~)-n„,„,, (k, s).

Then the spin-orbit term can be written

H, .=g g (p(, ~(IL sIp2, ~2)
P 1 rP2r &lr &2

x g c„t, , (k)c„,,(k),
k

(2c)

(3)

The orbital moment is (L~), the expectation value of the
L component parallel to the spin quantization direction.
It is very easy to prove that

&pi, oi I Lcl s 2 o2& =2B..,.,&pi, 11L.s I p2, 1& (4)

where c and c are, respectively, annihilation and creation
operators. The matrix elements &p~, cr~ I

L. S I p2, cr2)

(where
I p&, o&) and

I p2, o2) implicitly refer to the same
point) are given in Ref. 15 as functions of the angles 8 and

B. Perturbation treatment

We will perform it within the lowest order, i.e., second
order for the energy correction (because the diagonal ma-
trix elements of H, , are zero) and first order for the
wave-function correction.

The corrections to the energy and wave function for the
ground state are, respectively, given by the well-known
formulas

I(grIH, , Iexc&I
BE = 5

exc Egr Eexc

(exc I H, , I gr) I exc)
B gr- 6

exc Egr Eexc

where I gr), I exc), Es„E,„,are, respectively, the ground
state, excited state, and corresponding energies for the un-
perturbed system. Because the average value of L~ in the
unperturbed ground state is zero, its expectation value is

(excIH. , Igr)
(L~) g (gr I L~ I

exc) +c.c. (7)
exc Egr Eexc

When doing this calculation, we disregard any defor-
mation of the Fermi surface. Kondorskii and Staube' ar-
gued that the neglected contribution is of opposite sign so
our results will probably be overestimated.H„is a one-electron operator diagonal in k; thus, the
only excited states that need to be considered are of the
form

I exc) =c„,, (k)c„,, (k) I gr),

with s„, , (k) (.s, (.s...,(k).
By expanding the eigenstates over the basis states, and

using the symmetry properties of the matrix elements of
L.S, one obtains

with

I

BE= —g' g &p), t IL sI p2 t&&p3 t IL sI p4, t&G(pi, p2 p3 p4),
P I r P2r P3&P4

(9)

rn„,„,(k, e)m„,„,(k, s')
G(p), p2, p3, p4) =g ( ds (,ds'

Similar formulas hold for (L~) by replacing in (9) g by 4(, and G(p~, p2, p3, p4) by

n„,„,( ,k)sm„,,„,( kz') +m„,„,(k, c)n„,„,(k, )s
H(p~ p2 p3 p4)

When the matrix elements of L.S are determined, one obtains

BE =g —,
' ([I(1,2, 1,2)+4I(1,2, 3,4)+4I(3,4, 3,4)]

(10)

+sin 8[I(1,2, 1,2) —41(1,2, 3,4) —4I(3,4, 3,4)+ —,
' [I(1,3, 1,3)+I(1,4, 1,4)]+43[I(1,4, 1,5) —I(2,4, 2, 5)]

+ —,
' [I(2,4, 2,4)+I(2,3,2, 3)]—43[I(1,3,2, 5)+I(1,5,2, 3)]

+ 2 [I(2,5,2, 5)+I(1,5, 1,5)]+[I(1,3,2, 4) —I(1,4, 2, 3)]j)
=&0+&2 sin'~

for (001) and (111)monolayers, and

BE =Ko+K2sin 8+sin 8cos(2&)g —,
' [ —,

' [I(1,4, 1,4) —I(1,3, 1,3)]+43[I(1,4, 1,5)+I(2,4, 2,5)]
+ 2 [I(2,3,2, 3) —I(2,4, 2,4)]+43[I(1,3,2, 5) —I(1,5, 2, 3)]
+ 2 [I(1,5, 1,5) —I(2,5, 2, 5)] —[I(1,3,2,4)+I(1,4, 2, 3)]j

=Ko+K2sin 8+K2sin 8cos(2$).

(12)
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for (110) monolayers, with

I(p), p2, p3, p4) =Re[G(p(, pz, p3, p4)+G(p2, p), p4, p3) —G(p), p2, p4, p3) —G(p2, p&, p3, p4)) . (i4)

For (Lc), we have similar results by replacing g by 4g in

(12) and (13), and the G's by H's tn (14).

III. ANISOTROPY OF TRANSITION-METAL
MONOLAYERS

A. Description of the band model

HHF
k a

PI,P2 e 13d,4SJ

s„,,„,, (k)cJ, , (k)c„,, (k)

+ U, s(nd )n„(k)
pe 3dl

(is)

The band structure is calculated within the Slater-
Koster tight-binding scheme, '

up to the second-nearest
neighbors, using the hopping parameters given by Har-
rison. We consider the 3d and 4s bands and take hy-
bridization into account. The spin polarization is calcu-
lated in a simplified Hartree-Fock approximation. The
Hartree-Fock Hamiltonian is

t

due to our neglecting the deformations of the Fermi sur-
face, that makes our results overestimated. A very impor-
tant point is that the calculated anisotropy strongly de-
pends on the crystal-field parameter h. This parameter is
determined by the interelectronic interactions and correla-
tions, and is not well known in ultrathin films. Its strong
influence on the anisotropy indicates that much care
should be taken to that point if one wants to make realistic
calculations. For the following, we chose h, =0.5 eV by
comparison with the Ni(111) band structure calculated
self-consistently by Wimmer. '

In Table II we report the calculated anisotropy EC2 of
fcc (001) and (111) monolayers for various numbers N,
of valence electrons (3d+4s). The strong variations of
the anisotropy with N, can be explained qualitatively:
The second-order perturbation involves the inverse of the
energy difference between levels located, respectively,
above and below the Fermi level [Eqs. (9)-(11)];the an-
isotropy is, therefore, strongly dependent on the neighbor-
hood of the Fermi level and may change drastically as we
move the latter by filling the valence band.

The effective interaction parameter U,g has been chosen
equal to 1 eV in order to yield proper values for the spin
polarization.

Important parameters that will be discussed below are
the atomic potentials, i.e., the gravity centers of the 3d
subbands. Because of the strongly reduced symmetry, the
crystal-field shifts are much larger than in bulk materials.
We assume that, as a first approximation, we can charac-
terize the crystal-field effect by only one parameter, i.e.,
the energy difference 6 between orbitals pointing out of
plane (yz, zx, 3z —r ), and orbitals lying in plane (xy,
x —y ). For the spin-orbit constant, we chose g 0.05
eV.

B. Results and discussion

The calculated anisotropy energies K2 of Co and Ni fcc
(001) monolayers for different values of the crystal-field
parameter are reported in Table I.

One can see immediately that the calculated anisotro-
pies (a few ergs cm ) are larger than what is generally
observed in experiments (0.2-1 ergcm ). This may be

IV. ORBITAL MOMENT OF TRANSITION-METAL
MONOLAYERS

As appears from formulas (9)-(11), there is a very
strong connection between the anisotropy energy and the
orbital moment. As the 6's and 0's can be expected to be
of the same order of magnitude, with an anisotropy energy
of 10 eV and a spin-orbit constant g of 0.05 eV, one can
already estimate the anisotropic part of the magnetization
to be roughly 0.1p~. The same qualitative rule also holds
for bulk materials, since for Ni and Fe (Ref. 22) one has
(E1oo E 1 i 1)j (Mioo M»1) =0.02-0.12 eV = g.

Table III shows the calculated in-plane and out-of-
plane orbitai moments of fcc (001) and (111)monolayers,
for various numbers N, of valence electrons. Their signs
and orders of magnitude are close to those of bulk materi-
als (because of an important isotropic contribution, which
is not strongly affected by the symmetry). Since these
calculations are essentially parallel to those of magneto-
crystalline anisotropy, and since the latter yielded orders
of magnitude consistent with the ab initio calculations by

~ (eV)
K2(10 eV atom ')

Co(001) Ni(001)

—0.5
0
0.5
1

—0.47
—1.34
—1.98
—2. 12

0.12
—0.16
—0.86
—1.14

TABLE I. Anisotropy energy K2 of Co and Ni fcc (001)
monolayers for diff'erent values of the crystal-field parameter h.

K2(10 ' eV atom ')
fcc (001) fcc (111)

g (Fe)
8.5
9 (Co)
9.5

10 (Ni)

0.00
—1.38
—1.98
—2.11
—0.86

—0.61
—1.12
—2.47
—1.13
—0.43

TABLE II. Anisotropy energy Kz of fcc (001) and (111)
monolayers vs the number N, of 3d+4s electrons.
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fcc (001)
ML (pB) ML (ptt)

fcc (111)
Mr(prt. ) Mc (prr)

8 (Fe)
8.5
9 (Co)
9.5

10 (Ni)

0.16
0.26
0.33
0.30
0.15

0.13
0.12
0.13
0.09
0,07

0.19
0.22
0.32
0.18
0.09

0.10
0.09
0.08
0.08
0.05

TABLE III. In-plane and out-of-plane orbital magnetic mo-
ment of fcc (001) and (111) monolayers vs the number N„, of
3d +4s electrons.

To our knowledge, this large magnetization anisotropy
has never been predicted, nor experimentally observed.
This deserves to be confirmed by other calculations in-
cluding the spin-orbit coupling. On the experimental
point of view, the magnetization anisotropy is in the range
of 2x10 cgs emu for 1 cm and seems likely to be
detected by using modern magnetometry techniques (su-
perconducting quantum interference device, alternating
force magnetometer).
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