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A scheme of molecular-dynamics simulation using the empirical tight-binding force model is pro-
posed. The scheme allows the interatomic interactions involved in the molecular dynamics to be
determined by first-principles total-energy and electronic-structure calculations without resorting to
fitting experimental data. For a first application of the scheme we show that a very simple nearest-
neighbor two-center empirical tight-binding force model is able to stabilize the diamond structure
of Si within a reasonable temperature range. We also show that the scheme makes possible the
quantitative calculation of the temperature dependence of various anharmonic effects such as lattice
thermal expansion, temperature-dependent phonon linewidths, and phonon frequency shifts.

I. INTRODUCTION

Molecular-dynamics simulation has been attracting a
lot of interest due to its powerful capability in the studies
of systems as a function of temperature, in the investiga-
tion of Kinetics in various processes, as well as in locating
the ground state of complex systems with many degrees
of freedom. However, the application of the method to
real systems is limited by our knowledge of the interac-
tion potentials or forces among the atoms. Modeling the
interatomic forces for molecular-dynamics simulation of
real systems therefore provides an important goal and a
significant challenge to theory. Such is the case, for ex-
ample, for the molecular-dynamics simulation of
tetrahedral silicon.

It is known that no conventional pair potential can sta-
bilize the tetrahedral structure because pair potentials fail
to represent the strong electronic covalent binding effects
present in such a structure. A number of empirical in-
teratomic  potentials recently proposed for the
molecular-dynamics simulation of Si had to include
three-body interactions.! > Even with the addition of
complicated forms for the interaction, it is difficult to find
a potential which can satisfactorily describe all the prop-
erties of Si.° The reason is that the quantum-mechanical
and directional nature of the bonding in Si cannot be
easily incorporated into these potentials which are based
on classical approximations. In addition, even when
these potentials reproduce experimental values it is hard
to relate the properties of the solid to the underlying elec-
tronic structure in order to unearth the microscopic ori-
gins of such behavior. On the other hand, much progress
has been made during the past decade in the calculation
of various structural and vibrational properties of solids
in a fundamental first-principles approach with the use of
density-functional calculations. However, such calcula-
tions are almost always limited to considerations of zero-
temperature systems. The investigation of disorder and
temperature effects is still a difficult and largely unsolved
problem.

In a recent paper,
scheme which unifies

7 Car and Parrinello proposed a

the approaches of density-
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functional theory and molecular dynamics and allows the
interatomic forces of Si to be calculated by fully
quantum-mechanical calculations in the course of
molecular-dynamics simulations. This scheme is, in prin-
ciple, fundamental and superior. However, in practice it
requires so much computational effort that, at present, it
is restricted to very short simulation times and a small
number of atoms. It does represent a method which will
become more desirable in the future when computers be-
come even more powerful.

The limitation of the Car-Parrinello scheme is mainly
due to two reasons. Firstly, the use of plane waves as a
basis to expand the electron wave functions limits the
number of atoms used in the simulation due to the large
number of basis functions required in the calculation.
Secondly, because of the inclusion of degrees of freedom
from the electron wave functions (W¥’s) in the molecular
dynamics, the simulation time step has to be chosen
much smaller than that in simulations with classical po-
tentials (typically ten times smaller).

In this paper, we propose a simplified Car-Parrinello
scheme designed for molecular-dynamics simulations in-
volving larger numbers of atoms. This scheme tries to
overcome the difficulties in the Car-Parrinello approach
by calculating the electronic energies and Hellmann-
Feynman forces by an empirical tight-binding method
rather than by the density-functional method. Although
less rigorous, the empirical tight-binding calculation in-
volves only a few atomic orbitals for each atom to
represent the electronic states, thus larger numbers of
atoms can be tackled within the present computer capa-
bilities. Also, since the electronic degrees of freedom are
not explicitly included in the molecular-dynamics simula-
tion larger time steps can be used. The use of the empiri-
cal tight-binding method to simplify the problem is
justified by numerous successful applications of the
method to the study of surface relaxation and reconstruc-
tion, surface vibrations of crystalline Si, as well as
geometries of Si clusters and steps on surface.? " !!

Although our scheme is somewhat simplified, it has the
advantage over classical empirical potential models in
that the interatomic interactions are determined at the
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microscopic level by first-principles total-energy and
electronic-structure calculations without resorting to
fitting experimental data; also the covalent bonding of the
material enters in a natural way from the electronic
structure without appealing to three-body potentials.

We arrange our paper as follows. In Sec. II the general
features of the empirical tight-binding molecular-
dynamics scheme are described. The determination of
the potential parameters for the molecular-dynamics
simulation of crystalline Si is discussed in Sec. III. Some
molecular-dynamics simulation results obtained using the
present scheme will be presented in Sec. IV. Finally, we
close our paper with concluding remarks in Sec. V.

II. EMPIRICAL TIGHT-BINDING MODEL
FOR MOLECULAR-DYNAMICS SIMULATION

We model the interatomic potential for a given
configuration of N atoms {r,,r,,...,ry} by expressing
the total potential energy (per atom) of the system as

E . f{ry,...,ty}=Egg{r, ...t} +Ufr, ..., 1y},

2.1

where Egg=N _IZ}\LIE ; is the “band-structure” energy
(per atom) consisting of the sum of the eigenvalues E; for
the occupied part of the electronic band structure. In the
present scheme, E; is calculated by the Slater-Koster
empirical tight-binding method!? with the tight-binding
parameters determined by fitting the calculated electronic
structure of Si:

1 N
N i‘jE:1¢(rij)
i#j

Ufry,...,ty}=

is a short-ranged two-body potential representing the
sum of the ion-ion repulsion and the correction to the
double counting of the electron-electron interaction in
the band-structure energy Egs. ¢(7;;) can be determined
by subtracting the volume-dependent band-structure en-
ergy Egg from the energy-versus-volume curve obtained
from first-principles total-energy calculations.

The potentials modeled as (2.1) are easy to insert into
the standard molecular-dynamics routine as illustrated in
Fig. 1. The interatomic force necessary for performing
the molecular-dynamics run is expressed as a sum of
two-body forces of the type of —(dé/dr;;)?; and a con-
tribution coming from the band-structure energy. In the
empirical tight-binding scheme, such electronic forces or
Hellmann-Feynman forces are easy to calculate, especial-
ly since we employed a two-center approximation for the
tight-binding integrals. The force acting on atom n aris-
ing from the band-structure energy Egg is given by

Fn=—2<¢j|af_1/8'r,,h/ij) , (2.2)
J

where H is the tight-binding Hamiltonian matrix and 7,
is the coordinate of atom n. The sum j is over occupied
levels E; with eigenfunctions ¢;. For a periodic system,

the sum over j is replaced by sums over the band index
and wave vector. By writing the eigenfunction in terms
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FIG. 1. An illustration of empirical tight-binding molecular-
dynamics (ETBMD) routine.

l MOVE ATOMS ACCORDING TO

of the basis functions f,,,

0= 3 Apafmlr—7,) ,

it is easy to find

Fn:_ 2 2 2 E,A';‘mn}"jm’n'aHm’n'mn /aTn (2.4)
j m m' n

or
Fn = 2 2 2 2 }”;‘m'n’}"jmn a}Im'n'mn /aTn = 2 an’
n j m m' n'
(2.5)
with
(2.6)

an':—z 2 A’}!‘mn}\’jm'n' aI:Im'n'mn /aTn .
j m,m’

The F,, appearing in (2.5) is a many-body force be-
cause the electronic states sample the environment of the
interacting atoms n and n’ in the system. Since the
quantum-mechanical electronic bonding of the system
enters explicitly into our calculation through the tight-
binding wave functions, we hope the forces calculated in
this way will give a better representation of the true
atomic interactions in the real system than previous
schemes based on classical approximations. The in-
clusion of the overlap matrix S in a nonorthogonal tight-
binding scheme can be taken into account by replacing
the Hamiltonian matrix H by the H-E;S matrix in the
above formulas.
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III. DETERMINATION OF POTENTIALS FOR SI

As a first application of the empirical tight-binding
molecular-dynamics (ETBMD) scheme, we study the
temperature-dependent properties of diamond-structured
Si: temperature-dependent structural stability, thermal
expansion, temperature-dependent phonon linewidths,
and phonon frequency shifts. As far as we know, there
have been no previous molecular-dynamics studies of
these properties for Si.

The tight-binding parameters required for describing
the electronic structure are obtained from Chadi’s previ-
ous work on the empirical orthogonal tight-binding mod-
el for Si.® Explicitly, the electronic states are represented
by an orthogonal basis containing four sp> orbitals per Si
atom. The two-center approximation is used for the ex-
pressions for interatomic matrix elements and only
nearest-neighbor interactions are taken into account.
There are six tight-binding parameters in this model in-
cluding the on-site energies. These parameters are deter-
mined by fitting to the calculated band structure of
diamond-structured Si, which gives

Violdg)=—1.94 eV, V,,,(dy)=1.75 eV,
Vpoldo)=3.05 eV, V,,.(dy)=—1.08 eV,

E,=—5.20¢V, E,=1.20 ¢V,

(3.1

after Chadi’s work,® where d, is the T=0 equilibrium
nearest-neighbor distance. The bond-length dependence
of the two-center parameters is assumed to follow
Harrison’s universal » 2 scaling behavior:!!

Vssa(r)z Vsso(do )d(z)/r2 ’

Vspa(r)= Vspo(dO )d(l)/rZ ’

~ . (3.2)
Vppo(r)_Vppv(dO)dO/r )
Vel F)V=V,puldo)d3 /77 .

Although this tight-binding model for Si is very simple,

FIG. 2. Total potential energy E,, (per atom) of Si in dia-
mond structure as a function of nearest-neighbor distance r.
The circles are the first-principles calculation results. The solid
line is the fitting universal binding-energy curve.
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FIG. 3. Band-structure energy Egs (per atom) of Si in dia-
mond structure as a function of nearest-neighbor distance r.
The circles are the results of empirical tight-binding calculation;
the solid line is the fitting third-order polynomical function.

it has been shown by Chadi and by Alerhand and Mele
that it describes quite well the T'=0 structural and
dynamical properties of bulk Si as well as various sur-
faces of Si.%°

Unlike the original Chadi model, which fit the two-
body potential to the lattice constant and the bulk
modulus of Si, we have determined the two-body poten-
tial energy function U(r) by subtracting the ETB band-
structure energy function Egg(#) from the first-principles
calculated T =0 total-energy function E (), i.e.,

U(r)=E,,(r)—Eg(r), (3.3)

where r is the nearest-neighbor distance of the diamond
structure. The total-energy function E, (r) is taken
from the results of Yin and Cohen' and fitted to the
universal binding-energy curve

E o (N=E[1+(r—ry)/Alexp[—(r—ry)/A] (3.4)
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FIG. 4. Two-body potential energy U (per atom) of Si in the
diamond structure as a function of nearest-neighbor distance r
obtained by subtracting Egs(r) of 3.5 from the total-energy
function E(r) of 3.4.
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TABLE I. T=0 K equilibrium properties of diamond Si obtained by the present empirical tight-binding model are compared with
the first-principles calculation results and with experiment. The first-principles results are taken from Refs. 13 and 14. The experi-
mental data are also quoted from Ref. 13. A misprint in Table VI of Ref. 13 has been corrected [the values assigned to LOA(X) and

TO(X) have been interchanged].

This work This work First-principles
(with 64 atoms) (with 216 atoms) calculations Experiment
Lattice constant (A) 5.456 5.456 5.456° 5.44
B (10" erg/cm?®) 9.20 9.20 9.20* 9.78
C;;—C,, (10" erg/cm?) 7.25 7.10 9.80° 10.12
C9% (10" erg/cm?) 10.26 10.19 11.10°
Cy (10" erg/cm?®) ©6.16 6.17 8.50° 7.96
LTO(I') THz 16.95 16.70 15.16* 15.53
TA(X) THz 4.96 4.96 4.45 4.49
TO(X) THz 14.71 14.68 13.48° 13.90
LOA(X) THz 12.37 12.33 12.16° 12.32
Y110(T) 0.98 0.99 0.92* 0.98
y1alX) —1.12 —1.13 —1.50° —1.40
Y1olX) 1.37 1.42 1.34* 1.50
YLoa(X) 1.02 1.03 0.92° 0.90
2Reference 13.
"Reference 14.
with E,=—4.8060 eV, r,=2.3627 A, and 4=0.5076 IV. RESULTS

A, as shown in Fig. 2. The ETB results of Egg(r) can
also be fit to a third-order polynomial function

Egs(r)=Ag+ A\(r —r)+ Ay(r =1, + A3(r —r,)°
(3.5)

with A,=—23.37 eV, 4,=17.32 eV/A, 4,=—12.42
eV/A2, 4,=5.25 eV/A? and r,=2.20 A as shown in
Fig. 3. The resulting U(r) is shown in Fig. 4.

By further assuming that the two-body potential con-
tains only nearest-neighbor interactions and each nearest
neighbor contributes equally to the total two-body poten-
tial energy, we can extract the pair potential for the
molecular-dynamics simulation

¢(rj)=F[E\(r;)—Egs(r;)] (3.6)

which can be expressed analytically via the analytic ex-
pression of E () and Egg(r).

Before proceeding to the molecular-dynamics simula-
tion, we have used the constructed potential model to
study the 7'=0 properties of Si. The results, compared
with first-principles calculations and with experiment, are
listed in Table I. The agreement is generally good. In
particular, the correct prediction of the negative
Griineisen parameter for the TA(X) mode with our mod-
el is quite encouraging. The above represents a well-
defined procedure for constructing model potentials that
can be applied to any material where information about
the electronic structure and total energy versus volume of
the ground state system are available from first-principles
calculations.

FROM MOLECULAR-DYNAMICS SIMULATIONS

The ETB potential model constructed in the preceding
section was used for the molecular-dynamics simulations
of crystalline Si at finite temperatures. The simulations
were performed with 64 Si atoms initially arranged in the
diamond structure in a periodic cubic “box.” A flow
chart indicating the steps performed in our molecular-
dynamics simulations with the above scheme is given in
Fig. 1. Only the I" point was used to evaluate the tight-
binding electronic structure and Hellmann-Feynman
forces. However, because of the 64-atom-supercell
geometry, this is equivalent to a k-point sampling of 32
points in the Brillouin zone for the primitive diamond-
structure cell. The convergence of the sampling grid
point is tested by comparing the T=0 static properties
calculated using the I" point with 64 atoms per unit cell
and with 216 atoms per unit cell (see Table I). The equa-
tions of motion of the Si atoms were solved by a
predictor-corrector  algorithm!>  with  time step
At=1.07X10" 15 s. This choice of time step conserved
the total energy of the system within an accuracy of
4X107% eV over 18000 MD steps in the simulation for a
microcanonical (N, V, E) ensemble at T=100 K.

In order to test the stability of the diamond structure
at finite temperature within the ETB potential model, we
have run the molecular dynamics for an (N, V,E) ensem-
ble at a number of temperatures ranging from 7 =100 K
to T=1035 K. The MD steps used for each temperature
are over 22,000 steps corresponding to 2.2X 107 !s It
can be seen from the temperature-dependent pair-
correlation functions of Fig. 5 that the diamond structure
is indeed stable in this temperature range. The total ener-
gy of the system as a function of temperature shows a
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FIG. 5. Molecular-dynamics results of temperature-

dependent pair-correlation function.
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FIG. 6. The total energy (per atom) of the system as a func-
tion of temperature obtained from the microcanonical
molecular-dynamics simulation.

linear behavior as displayed in Fig. 6. Further evidence
is provided by the temperature-dependent dynamics of
Figs. 7 and 8. The phonon spectral intensities at each
temperature are calculated by taking the Fourier trans-
form of the velocity-velocity autocorrelation function,
defined as

—ikR, (vn(t)-vo(O))

(v,(0)-vy(0)) @1

G(k,0)= [dte™ 3 e

with K=(1,1,1)27/a for the LTO(I') mode and
K=(0,0,1)27/a for the TA(X), TO(X), and LOA(X)
modes, respectively, and R, is the lattice position of
atom n. The results in Figs. 7 and 8 show that all of these
high-symmetry modes are very stable even at tempera-
ture as high as 7=1035 K. Slight shifts in frequencies
and broadening in the linewidths are due to the effects of
the anharmonic interactions.

From the calculated phonon spectral intensities we can
extract temperature-dependent phonon frequency shifts
and phonon linewidths for the phonon modes of Si at the
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FIG. 7. Molecular-dynamics results of temperature-
dependent phonon spectral intensity of the LTO(I") mode of Si.
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FIG. 9. Lattice thermal expansion behavior of Si. The exper-
imental data are taken from Ref. 18.
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FIG. 10. Total energy (per atom) of the system as a function
of temperature obtained from the constant-pressure and
constant-temperature molecular-dynamics simulation.
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FIG. 11. Temperature-dependent electronic eigenvalues at I'
point of the 64-atom supercell obtained from microcanonical
molecular-dynamics simulation.
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I' and X points in the Brillouin zone. The results agree
well with available experimental data. Details will be
presented in another paper.!® In this paper we will con-
centrate on the results we obtained for the thermal ex-
pansion and specific heat of Si. Since molecular dynam-
ics treats the motions of the atoms classically, quantum-
mechanical corrections to the phonon occupation will be
important for thermodynamic quantities like specific heat
and thermal expansion below the Debye temperature.
Therefore in the present paper, we will display results for
temperatures above 300 K (the Debye temperature for Si
being 645 K). In our simulation of thermal expansion,
the constant-pressure MD method of Rahman and Par-
rinello!” was used. The external pressure was set equal to
zero in the course of the simulation. The lattice constant
at each temperature is evaluated from the average density
at that temperature with the averaging performed over
3500 MD time steps. In Fig. 9 we show the MD results
for the temperature-dependent thermal expansion param-
eter € defined as e=[a(T)—a(T =300 K)]/a(T =300 K).
The corresponding experimental quantity is also shown
in the same plot for the purpose of comparison. The
agreement between the present calculation and experi-
ment is reasonably good.

The total energy of the system as a function of temper-
ature from this simulation is plotted in Fig. 10. From the
slope of the energy-versus-temperature curve, we esti-
mate the specific heat of the system to be C, ~3.22ky at
high temperatures. This value is above the Dulong-Petit
value of 3ky expected from harmonic crystals, however,
it compares very well with experimental data of Si at high
temperatures (C, ~ 3.3k at T=2800 K)."

Finally, we would like to point out that with the
ETBMD scheme, not only the temperature dependence
of lattice properties but also the temperature dependence
of the electronic properties can be investigated. For ex-
ample, we present in Fig. 11 the tight-binding eigenvalues
at the I' point for our 64-atom supercell as a function of
temperature. The results have been averaged over the

last 18000 MD steps in a total of 22 000 MD simulated
steps at each temperature. The zero of the energy level
indicates the top of the valence band for the perfect dia-
mond geometry. We see clearly that thermal disorder
broadens the electronic eigenvalues. We also see that the
gap between the valence band and the conduction band is
narrowed but still well defined at temperatures as high as
T=1035 K, indicating a stable diamond structure at this
temperature. A more quantitative investigation with
denser k-point sampling to get a better electronic density
of states is under way.

V. CONCLUSION

In conclusion, we have shown that a very simple
nearest-neighbor two-center ETB force model is able to
stabilize the diamond structure of Si within a reasonable
temperature range. We also show that the ETBMD
scheme makes possible the quantitative calculation of the
temperature dependence of various anharmonic effects.
At present, the weakness in our method lies in the limited
accuracy of the ETB description of the band structure.
Work is in progress to remedy this situation to enable us
to study Si in more complex systems, including surfaces,
amorphous and liquid states, and the effects of impurity
and doping. Since the scheme uses only a few atomic or-
bitals to represent the electronic states on each atomic
site, it can be applied to simulate systems involving rela-
tively larger number of atoms without going beyond the
present computer capabilities.
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