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Raman scattering in GaAs/A1As superlattices with Fibonacci structure
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We have used a one-dimensional model to calculate the phonon spectra of quasiperiodic Fibonac-
ci superlattices either with a perfect sharp interface or with imperfection. An analytical prediction
for peak positions of Raman backscattering with a scattering geometry z(x, x)z was derived and
confirmed by an exact numerical computation in the region of long wavelengths. The calculated
Raman spectrum agrees extremely well with the experimental data of Nakayama et al. Critical
phonon modes are found in the frequency region near the upper edge of the longitudinal-acoustical
branch, and cars be destroyed easily by very weak imperfection. Our calculation suggests the re-
quirement of a very-high-quality sample in order to detect the interesting properties of such critical
states associated with the Fibonacci structure.

I. INTRODUCTION

The absence of translational invariance in a quasi-
periodic system leads to the hierarchical splitting of ener-

gy spectra for both electrons' and phonons. The elec-
tronic properties and the lattice dynamics of such sys-
tems have been studied by many authors ' using a
one-dimensional tight-binding Hamiltonian or the modu-
lated Kronig-Penney model. Theoretical predictions of
certain novel properties of one-dimensional quasiperiodic
systems can hardly be confirmed by experiments. How-
ever, one successful case is the optical transmission of
RbzZnBr4, where the calculated spectra" exhibit the
characteristic features of experimental observations. '

The development of molecular-beam-epitaxy (MBE)
techniques provides the opportunity to check many
theoretical results on interesting physical properties of
one-dimensional quasiperiodic systems. Semiconductor
superlattice crystals with layer thicknesses modulated
along one crystal axis can be fabricated with the MBE. '

Assuming a periodic modulation with period incommens-
urate to that of the underlying superlattice, Das Sarma
et al. ' suggested the detection of localized states in an
incommensurate structure via the plasma excitations.
Hawrylak et aI. ' have studied the so-called critical
plasmon states for superlattice with a modulation follow-
ing a Fibonacci sequence.

However, the existing direct experimental investigation
on Fibonacci-modulated semiconductor superlattices is to
probe phonon spectra via Raman scattering. ' ' ' In
this paper we present a theoretical calculation of the Ra-
man spectra and compare our results with available ex-
periments. The model, based on which the theory of Ra-
man scattering will be established in Sec. III, will be de-
scribed in Sec. II. In the long-wavelength region we
derive an analytical expression for the positions of the
main Raman peaks in Sec. IV, and check its accuracy
with exact numerical calculation. In Sec. V our calculat-
ed spectrum is compared with experimental data, demon-
strating excellent agreement. The effect of imperfections
of the sample is investigated in detail, and its influence on

the possibility of observing Fibonacci characteristics will
be discussed in the Sec. VI.

II. THE MODEL

To the advantage of both experimental investigation
and theoretical analysis, GaAs/A1As superlattice samples
are usually grown along the [001] axis. Modern MBE
techniques can control the total thickness of each constit-
uent semiconductor within an error of less than one
monolayer (=2.8 A). ' With such experimental accura-
cy, quasiperiodic superlattices have been fabricated to
specifications. Instead of alternately repeating the basic
building blocks A and 8 [for example, A can be (GaAs)„
and B can be (A1As) ] of the two constituent materials in
a periodic array, A and 8 can appear to be arranged in
some other exotic fashion. Quasiperiodic Fibonacci su-
perlattices have been grown with constituent transition
metals Mo/V (Ref. 19) and strain-layered semiconductors
Si/Ge Si, , besides the GaAs/A1As (Refs. 13 and
16—18) of our current interest.

Construction of Fibonacci sequence with basic building
blocks 3 and 8 is defined by concatenation via the recur-
sion relation Sl+2=SI+]S& for /~1, with S]= 3 and

S2 = AB, Since we are interested at present in the
GaAs/AlAs system, our quasiperiodic Fibonacci super-
lattice (QPFSL) is defined by specifying
A =(GaAs)„/(A1As) and 8=(GaAs) /(AlAs), .

An ideal superlattice has perfect sharp interfaces and
no fluctuation in the thicknesses of each constituent lay-
er. However, this is not the case in reality. Because the
lattice vibration depends strongly on the nearest-neighbor
elastic force, the phonon modes are very sensitive to im-
perfections of the superlattice. With use of a continuum
model, the long-wavelength phonon modes of a QPFSL
have been studied. ' ' Since the continuum model js
invalid for high-frequency phonon modes, in this paper
we will instead use a discrete model. '

Barker et ak. have shown that for wave vectors paral-
lel to the [001]direction, the transverse and the longitudi-
nal vibrations are decoupled because they belong to
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different group representations. Hence, to analyze the
Raman backscattering by longitudinal phonons along the
[001]direction, it is sufficient to consider a discrete chain
of atoms whose positions coincide with the projected po-
sitions of all atoms on the [001] axis, which is defined as
the z axis. Let U; be the displacement of the ith atom
from its equilibrium position on the linear chain, M; the
mass of the ith atom, and K;,.+, the force constant be-
tween the ith and the (i + 1)th atoms. Then, in harmonic
approximation the equation of motion of the ith atom is

M; d U;/dt = EC;—, ;(U; —U;, ) —K;;+,(U; —U;+, ) .

There are two different values of elastic constant: one
for the Ga—As pair and the other for the Al—As pair.
Since these two elastic rnoduli are almost identical, ' we
will adopt a single value K;;+I=K for all i. To simplify
the algebraic manipulation involved in numerical solu-
tions of (1), we will normalize the phonon energy by set-
ting the force constant K=1, the mass of As atom
M~, = 1, and the lattice constant a= l. Then, the massa
of the Ga atom and the Al atom are, respectively,
MG, =0.930 57 and MAi 0 360 13.

Although (1) can be solved numerically for a QPFSL
constructed from arbitrary building blocks
A=(GaAs)„/(A1As) and B=(GaAs) /(AlAs)„we will
solve (1) for a specific structure with p=v=y = 10 and
~=0, for which detailed Ramao backscattering data are
available. ' The thicknesses of the QPFSL samples used
in experiments correspond to either the 13th or the 14th
generation in the Fibonacci construction. That is, when
the samples are generated by concatenation via the recur-
sion relation S&+2=5&+,S&, for I ~ 1, with S]= 3 and
S2= AB the last block S„ is the 13th or the 14th of the
whole sequence (ii=13 or 14). Hence, each measured
sample consists of typically about 10 monolayers of
GaAs and A1As. [In particular, in the ideal case there
will be 6100 and 9870 "monolayers" (of GaAs and AlAs)
for the 13th- and 14th-generation FSL, respectively. ] For
such sample length, exact numerical solutions of (1) can

be easily derived with modern computational techniques.
In our energy units the top of the longitudinal-

acoustical branch has the value (2K/M~, )' =&2. The
corresponding measured value is 201 cm '. Since lattice
vibration with long wavelength is insensitive to the local
structure, the e6'ect of Fibonacci modulation on phonon
modes may manifest itself more in the high-frequency re-
gion of the spectrum, and hence can be detected by Ra-
man backscattering.

The only additional approximation in our model calcu-
lation is the use of a single force constant K, , +,=K for
all pairs of nearest neighbors. To be precise, the force
constant of pure A1As is slightly larger than that of pure
GaAs. Therefore, in the vicinity of the top edge of the
longitudinal-acoustical branch, phonons propagate in
AlAs layers but weakly decay exponentially in GaAs lay-
ers. Such inhuence may interfere with the expected
strong effect of quasiperiodicity on phonon modes in this
energy region. In later sections we will return to this
point for details.

III. RAMAN SCATTERING

A complete description of the theory of Raman scatter-
ing has been presented by Born and Huang. In this sec-
tion we will only outline the key points and then use the
bond-polarizability approximation ' ' ' to calculate
the backscattering from a QPFSL sample. However, we
should mention that He et a/. have argued that a
correct description of Raman intensities scattered by
longitudinal-acoustic phonons requires the coupled solu-
tion of Maxwell's equations in the superlattice.

Consider a polarizable medium under an electric field

E(r) =E exp[ ico, t +2m.i—n(r)k r/A, ]
+E+exp[i co; t 2r in (r—)k.r/A. ], (2)

where n(r) is the local refractive index, E =(E+)* an
arbitrary constant vector, and the wavelength A, is much
longer than the lattice constant. The induced local elec-
tric moment m(r, t) associated to the transition between
two eigenstates ~p) and ~v) can be expressed as

m (r, t)= g [(p[P &(r)[ )'vE& exp[2irin (r)k r/A. —i(co;+co„)t]

+ (p~P &(r)~v)Et3 exp[ 2irin (r)k —r/A+i (co;+co„)t]I (3)

for a,P=x,y, z. fico„, is the difference of the two corre-
sponding eigenenergies, and P &(r) is the (a,g) com-
ponent of the polarizability tensor.

Since we are interested in the backscattering along the
z axis which lies in the [001] direction of a, discrete lat-
tice, k is parallel to z and k r=j, where j labels the pro-
jection of the atomic position on the z axis. Furthermore,
the experimental data to be compared with our calcula-
tion are obtained with the scattering geometry z(xx)z.
That is, both incident and scattered electric fields propa-
gate parallel to the z axis and are polarized along the x

axis. The frequency ~; of the incident laser beam is
much higher than co„and hence we can neglect the co„
in (3). Under such condition, (3) reduces to

m„(j, t) = (p~P„„(j)~v) E„exp[2irijn (j )/A, ico;t]—
+(plP„.(j)lv)

XE+exp[ 2irij n (j ) Ik+ico,—t] . (4)

The total electric moment of the system M (t) is the sum
of all local moments m (j, t) over j. However, from
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difFerent atoms the scattered lights reach the detector at
difFerent times. Taking into account this retardation
effect and approximating the local refractive index n (j)
by its average value n, the time t in (4) must be replaced
by t j—n /c, where e is the speed of light. We then obtain
the total electric moment of the QPFSL sample as

M„(t)= g ((utP„(j)iv)exp( 2—ij co;n/c)

XE exp( i co;
—r)

+ g (pie„(j)lv)exp( 2i—j co;n/c)
'

J

XE+exp(ice;t) .

The above expression is the same as Eq. (19.16) in Ref.
24 except for the additional phase factor
exp( 2ij —co;n/c) due to the retarded-time effect. There-
fore, the intensity of Raman scattering due to the transi-
tion between two vibrational states ip) and iv) is given
by Eq. (49.1) in Ref. 24 as

2
X exp( 2ij —co, n /c )

av
(9)

structure. We have mentioned earlier that in a
longitudinal-acoustical mode, all atoms in a single (001)
plane vibrate as a whole. For such mades, we only need
the contributions to bond-polarizability tensors from lon-
gitudinal displacements which have the same value for all
atoms in one (001) plane. The net contribution to the to-
tal polarizability tensor from all four bonds in one cube is
then linear in z components of the relative displacements
of the corner As atoms with respect to the center Ga or
Al atom (linear in Uo, —U;, with i =1,2,3,4).

The explicit expression of the bond polarizability of
one cube is given by Eqs. (8) and (10) in Ref. 23. If we
define S as the set of Ga and Al atoms in the linear-chain
model system, then the Raman tensor for the z(xx)z
scattering geometry can be expressed as

1„„„„(co)=(( z rz„„,(p. (l(U+, —U, )(~v)
jcS

J(co, )=(co; /2n. c )I„,(co)E„E+, (6)

where co, is the frequency of Raman scattered light, and
the Raman tensor I„„„(co)of frequency co=co; —co, has
the form

l„„„„(ru)=
((

' z (pip (j)l~)
J

X exp( 2tj co;—n /c )

Ga Ai Ga Ga AX Ga AX Ga Ga AA

In the above equation (( )),„ is the thermal average
over the initial vibrational state.

The polarizability tensor P(r) will be calculated in the
bond-polarizability approximation, ' ' ' by which
each bond contributes independently to the total polari-
zability. We start with a general three-dimensional sys-
tem and let r, =R,. +U; be the instantaneous position of
the ith atom, where U; is the displacement from the equi-
librium position R;. To each bond of the (ij ) pair of
atoms separated by r,. =r; —r. , there is an axially sym-
metric bond polarizability P(r; }. If P(r;. } is the mean
polarizability and y(r; ) the anisotropy, we can then
write

P(r, )=P(r, ) I+y(r J )(r~r~ —
—,'I),

where r;.=r; /r, ., and J is a unit tensor.
Since the relative displacement

t U; —U i is much
smaller than the equilibrium distance tR, —R t, we can
expand P(r,~ ) in powers of iU; —UJ i and keep only the
linear term. The algebraic manipulations are very
lengthy and have been worked out in Ref. 23. Here we
only quote the final results. Let us divide the QPFSL into
cubes, each of which is demonstrated in Fig. 1(c) of Ref.
23. The atom at the center of the cube (marked by A) is
either an Al atom or a Ga atom, and the four atoms at
the corners of the cube (marked by Bi, B2, B3, and B4)
are As atoms. The four bonds connecting the center
atom and the four corner atoms are identical, and so the
corresponding bond-polarizability tensors have similar

~a—As—AX—Aa—A2—As—Oa—As=—-Qa—As—AX—

(b)

SOLUTION I
SOLUTION II

e=o (C)

iilllg

FIG. 1. Schematical description of the computation pro-
cedure used in Sec. III. See text for details.
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where jC S means that j belongs to the set S, and the pa-
rameter a„ is defined by Eq. (9a) in Ref. 23. Depending
on the kind of atom (Ga or Al) at the jth position, a„„l
can have two values.

The matrix element & pl( U +, —Uj, ) I v& in (9) can be
calculated using the phonon modes (or normal coordi-
nates) of (1). Let t lqi & } be the normalized complete set
of longitudinal-acoustic modes with associated eigenener-
gies I ficoi }. The displacement U can then be expressed
as

U = [1/(M )'i ] g g i lqi &,
I

(10)

where g.i is the jth component of the lth phonon mode

Iq, &. When (10) is substituted into (9), the matrix ele-
ment &plqilv& will be finite only if coi=kco„. Equation
(9) can now be cast into the form

ixx, (~l ) g ax,j (Ci+ i, i kj —i /)e"p( 2ij~ n /c)
jCS

To avoid the divergence introduced by the factor 1/co, as
I

The thermal-averaged matrix elements are given in Sec.
16 of Ref. 24. For the Stokes component they are

« I & iJ I qi I
v & I »„=(iri/2coi )[1—exp( —Acoi /ka T) ]

(12)

col approaches zero, we will instead calculate the Raman
tensor component

R„(co)=(2co/A)I„, „,(co)

+XXj j+1,CO j —],~
jcs

2
X exp ( 2—ij co; n /c )

X [1—exp( —A'co/kii T) ] (13)

We remind the reader that we have changed the labeling
of the eigenmode from l to co, and so g~ i is now expressed
as g . It is clear that R„„(co)is proportional to coJ(co),
where J(co) is the intensity of Raman scattered light
defined by (6).

IV. RAMAN TENSOR
IN I.QNG-WAVELENGTH REGION

All approximating calculations in the region of the
long wavelength are based on the condition that the pho-
non wavelength is much longer than the lattice constant
a (in our case ci= 1). In the extreme limit of the continu-
um model, the coefficient g. „has the form of a plane
wave and the Raman intensity has been computed by
many authors. ' ' ' ' For the discrete model con-
sidered here, we calculate gl from solving (1) numerical-
ly, but introduce the long-wavelength approximation
through the phase factor by rewriting (13) as

R„„(co)= g a„„lI/i+ i „exp[ 2i (j—+1)co;n /c] —
gl i exp[ 2i (j——1)co;n/c]} [1—exp( fun/kii T)]-

jcs
(14)

Since the set S contains all Ga and Al atoms, the
atoms at positions j 1 are As atoms. Within the same
constituent material, there is a large number of cancella-
tions in the summation of (14) between terms a, i(i+i
and a, 1+pi+, „because a, i =a„1+2. Only for those
As atoms which mark the interfaces between two constit-
uent materials, the bond polarizabilities from both sides
(one from Ga—As bond and the other from Al—As
bond) will not cancel each other. Let us define a, ~1 and
a 0, the values of a„„ for the Al—As bond and the
Ga—As bond, respectively. Equation (14) can then be
simplified to

R„„(co)= Ia,„Ai—a

X g —g ( exp( 2ij co n/c)—
jcR jcl

X [1—exp( —A'co/kii T) ]

where R (or L) is the set of As atoms on those interfaces
with GaAs constituent material to the right-hand (or
left-hand) side of the interface. The elements of the set R
(or L) are shown in Fig. 1(a) as j; (or l; ).

The numerical results presented in the next section are
obtained with (15). In the rest of this section, we will fur-
ther analyze (15) to give the theoretical prediction of the

I

positions of main Raman peaks. In each constituent ma-
terial, the time-independent eigensolution of (1) has the
general form

gj „=C +exp[inc.(co)j]+C . exp[ inc(co)j], —(16)

where for given co there are two values of ic(co) —=ic„:
for position j in GaAs and ~A] for position j in AlAs. K„
is determined by the boundary conditions at the inter-
faces as

a.„=—,'arc cos (co 2)(M„co 2M~—, ) —1—1

AS

g=Ga, A1 .

Substituting (16) into (15), the summation can be divided
into two parts

exp( 2ijco;n /—c)=:-+(co)+:- (co),
jCR jCL

where

:-+(co)= g C +exp[i (+ic~. i q)j]—
jCR
—g C i+exp[i (+KG, q)l]—

1 CI



8580 G. WAHLSTROM AND K. A. CHAO 39

with q =—2~;n/c.
To continue our analysis we need to know the ampli-

tudes C„j+ and C I+ of the As atoms at the interfaces.
The general procedure of solving (1) is as follows. I.et us
first consider an infinite chain of GaAs for which the gen-
eral solution is given by (16) and (17). The wave traveling
to the right and the left are indicated by superscripts + as

U = G~ exp(+LKo+ Ecot),

where q=Ga if there is a Ga atom at the jth position,
and q=As if at the jth position there is an As atom. Us-
ing (1) we derive from U, U + „and U +z the relation

U&
=D —„exp(+~~il —i cot), g =Al, As

yields the relation

D„~,—[(1 ,'M—~—ico )/cosK~i]D~ ~i

(21)

(22)

when U&, U& i, and U& z are substituted into (1). Now
we refer to Fig. 1(b) and study the two solutions at the in-
terface position j2. Solution I is based on the A1As chain
and leads to (22), but solution II is based on the GaAs
chain and (20) is valid. The uniqueness of the solution
implies

G ~,exp(iic&J'2)+6 ~,exp( inc—oJ'2)

G —
A,

= [(1—
—,'M»co')/cosK»]6 —» . (20)

=D p„exp(iK/il'2)+D ~,exp( iKA—ii2) . (23)

Similarly, for an infinite chain of A1As, the solution
Since in (18) the atomic positions are for As atoms

only, we can rewrite =+(co)+:- (co) as

:-+(~)+:-—(~)= g {D., A, exp[& (&« —q)j]+D., ~,exp[& ( —~« —
q Vjj

jCR

g ({G A, exp[i(aG, —q)j]}exp[i(ic»—q)d ]+{G A, exp[i( —ic&, —q)j]}exp[i(—Icz, —q)d ]),
jCR

(24)

where d. is the thickness of the constituent GaAs layer to the immediate right-hand side of the position j. If at a
specific frequency co all phase factors in (24) satisfy

exp[i (ico, q)d ]=ex—p[i ( . leo, q)d~
—]—

within a small error of the order qd; then using (23), (24) becomes

:-+(co)+:- (co)= g (D ~, {1—exp[i(lc» q)d ]}exp[—i(ic« q)j]—
jcR

+D „~,{1 —exp[ i ( lc» q)dr ] j exp[—i ( ic—~i qj)]) . — —

Similarly, if we assume that at a specific frequency co all phase factors in (24) satisfy

exp[i (ic« —q)d& ]=exp[E' ( —ic« —q)d& ]

(24a)

within a sma11 error of the order qdI, where dl is the thickness of the constituent A1As layer to the immediate right-
hand side of the position l, then (24) can be put in another equivalent form:

:-+(co)+:- (co) = g (6+~, {exp[i (~~, q)d&] —1—

}exp[i�(Ic»

—q)l]
1CL

+6 A, {exp[i(—~A,
—q)d&] —1 }exp[i( lc» q)l)) . — — (24b)

When ~:-+(co)+:- (co)} reaches its maximum at a
specific frequency co, then from (15) and (18) we see that a
peak in the Raman spectrum will be detected at the same
frequency co. The forms of (24a) and (24b) suggest the oc-
currence of maximum ~:"+(co)+:- (co)

~
if all phases fac-

tors in (24a) and (24b) satisfy (+le&,—q)dj=(odd in-
teger)vr and (+Ic~L—q)d& =(odd integer)~ within a small
error of the order qd (or qd, ). This is exactly the same
conditions which lead (24) to (24a) and (24b). Under the
assumption that these conditions are satisfied, (24a) and
(24b) reduce simply to

:-+(co)+:- (co)=2 g {D„+~,exp[i(lc« —q)j]
jcR

+D„„,exp[i ( —&« —qV] j

= —2 g {6+~,exp[i( ic»q)l]
lcL

+6 A exp[i ( Ko q)l] j

In each of the above forms there are two groups of terms
representing the scattering of light by two degenerate vi-
bration waves traveling in opposite directions. Therefore,
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in I:-+(co)+:- (co)l the summation over the mixing
terms of these two scatterings is expected to give negligi-
ble contribution. In this case we can equivalently consid-
er the approximated formula

I [:-+(~}+=- -(~}11'=
I
=-+(~}I'+ I:--(~}I'

Substituting K„(co) into (28), we have

co+ =v[ —,
' (Ao, )+A«)r+ —,

' (Ao, z
—Ao, ))+10(2m+ 1)q/m. ],

(30a)

w~ere

where

I:-+(~)I

= g (D ~, I 1 —exp[i (+Ko,—q)d ] )
jCR

v=(~/10) I(r+1)[(1+MG,/M~, )/2]'

+r[(1+MA, /M~, )/2]' (30b)

2
X exp[i (+KA, qj)])— (25a)

g (G—,Iexp[i(+K, —q)d, ]—lI
lcL

2
X exp[i (+K&,—q)l] } (25b)

However, the QPFSL sample considered here does not
satisfy these idealized conditions. In reality, each phase
factor deviates from the idealized value by a phase shift

5+ .(co) =(+KG,—q)d. —(odd integer)n. , (26a)

or

5g 1(co)=(+K«—q)d, —(odd integer)m . (26b)

We then expect high intensity of Raman backscattering
at frequencies for which the accumulated phase shift over
the whole sample vanishes

g 5+ .(co)+ g 5+1(co)=0 .
jcR l&L

(27)

We cannot prove this statement, but the ansatz (27) is
justified by the following numerical results. It is impor-
tant to mention that while all predicted strong Raman
peaks do exist in the Raman spectrum, it does not mean
that all peaks in the Raman spectrum are predicted by
(27).

To calculate the sum in (27), we consider the specific
QPFSL with basic building blocks 3= (GaAs), o/(A1As), o
and 8=( GAas), ofor which Raman backscattering data
are available. ' In this system there are three di6'erent
sections of constituent semiconductors: (GaAs), o,
(GaAs)zo, and (A1As), 0 as shown in Fig. 1(a). Let the
numbers of such sections be F~,&, F&,2, and FA& for
(GaAs), o, (GaAs)zo, and (A1As), 0, respectively. It is easy
to show that Fz„=FA]—FG,2, and for sufBciently high
generation of the QPFSL system (i.e., for a sufficiently
long chain) the ratio FA~ /Fo, z approaches its limit gold-
en mean r=(&5+ I)/2. If the corresponding three
Phase shifts are 5o„+=20(+Ko,—q) —(+Ao„)m, 5&,z+
=40(+Ko,—q) —(+Ao,z)~, and 5«+ =20(+K« —q)—(+A«)m, where A&», Ao, z, and A«are positive odd
integers, then (27) leads to

TABLE I. Positions of main Raman peaks predicted by the
analytical solution co'+"' and derived by the exact numerical
solution co+"'. The five integers under column indices are A&,2,

AQaf~ AA]~ p (AQa2 AQal) and
2 (AGa~+ AA~). The units of co+

are in cm

Indices (An)
+

(An) (Nu)67+ ~(Nu)

If we set Mo, =M«, then (30a) redu'ces to the same equa-
tion which was derived for the continuum model, ' ' ex-
cept that in (30a) the indices to label the Raman peaks
are (AG„+A«) /2 and ( Ao, z

—Ao„)/2. For given
values of Ao, z, Ao„, and A«, we calculate co+ from (30a).

The details of numerical computations will be given in
the next section. Here we will only list some results to
justify the ansatz (27). If we set Ao, z

=3 and
Ao»=AA, =1, we can calculate co+ from (30a) and the
corresponding K„(co+) from (29). The three phase shifts
40[Ko,(co ) +q], 20[KA, (co ) +q], and 20[K',(co ) +q]
across the constituent semiconductors (GaAs)zo,
(A1As), o, and (GaAs},o are indicated in Fig. 1(c) as angles
1, 2, and 3, respectively. The angle indicated by f in Fig.
1(c) which represents the value of the left-hand side of
(28), lies just along 8= sr. Therefore, (27) is satisfied.

Since from (29) it is clear that KG, )K«, we have

a2 AG» + AA~. For given values of A~a2~ A/a
A«, we have computed from (30a) the corresponding co+
and list them in Table I as co+(An). The five integers
under the first column indices are AG, 2, Az», A&&,

( AGaz Aoa1 ) /2, and ( A&al +AA1 ) /2. Exact num«ical
calculation of Raman tensor R „(co) will be performed in
next section. The so-derived peak positions of Raman in-
tensity are also listed in Table I as co+(Nu). The agree-
ment between the analytical value co+(An) and the exact
numerical solution co+(Nu) is very good. Nevertheless,
we must point out that for the Raman peak of lowest en-
ergy, the corresponding indices (AG,z, Ao„,A«) are not
odd integers. Very likely, for this extremely low energy
the approximation (25) breaks down.

Before closing this section, we should also mention
that our proposed ansatz (27) is based on (25a) and (25b)
in which the e6'ect of boundary conditions at both ends of

(T+ 1 )[Ko,(co)+q]+r[K«(co)+q]
= [r( Ao~~ +A«) + (Ao z Ao &

)]w/20

Ko (co) and K«(co) are given by (17). In the low-
frequency region K„(co} can be well approximated as

K„(co)=I[(1+M /M~, )/2]'~ Ice, g=Ga, A1 . (29)

(2,0,0;1,0)
(1,1,1;0,1)
(3,1,1;1,1)
(5,3,1;1,2)
(7,3,1;2,2)
(5,3,3;1,3)
(7,3,3;2,3)

13.94405
21.009 20
32.440 76
50.937 43
62.369 02
69.434 16
80.865 72

08.91906
15.984 20
27.415 76
45.91246
57.344 02
64.409 16
75.840 72

13.806 18
20.940 97
32.273 74
50.615 21
61.692 96
68.653 05
80.348 87

8.805 34
16.11441
27.431 68
45.765 19
56.962 92
63.987 54
74.988 00
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the sample on D —
&, and 6—

A, are not taken into ac-
count. On the other hand, exact numerical solutions are
derived with a large but finite system, where boundary
conditions at both ends must be specified. We have stud-
ied the phonon mode of co =27.43168 cm ', using a
9th-generation FSL. The vibration pattern of the As sub-
system is plotted in Fig. 1(d) together with the positions
of interfaces marked by vertical bars along line S at the
bottom. Except for the perturbation in the vicinity of
each (GaAs)2O layers, the vibrational amplitude is almost
constant, indicating negligible effects of the boundary
conditions. In this respect, our analytical conclusion is
also applicable to finite but large systems.

V. NUMERICAL SOLUTIONS
IN LONG-WAVELENGTH REGION

We will perform an exact numerical study of (14) for
samples with perfect sharp interfaces, and for samples
with imperfection. At the end we will compare our cal-
culations with measured Raman spectra. With the basic
building blocks S, = A =(GaAs), 0/(A1As), o and S2 =—8
=(GaAs)&o, a QPFSL is generated on computer by con-
catenation via the recursion relation Sl+2=S~+,S( for
l ~1. In most calculations we used 9th-generation FSL
samples, but higher-generation FSL samples were also
used in order to check the convergence of the calcula-
tions. Such samples have perfect sharp interfaces, and
will be referred to as perfect samples. For a given sam-
ple, we solve (1) numerically to obtain the phonon spec-
trum and all phonon eigenmodes.

The laser light source used in the Raman scattering ex-
0

periment' has a wavelength 5145 A, and the correspond-
ing average refractive index of the sample is about
n=4.7. Therefore, we have q—:2~, n/c=0. 0163 which
yields a doublet splitting of each Raman peak by
co+ —m =5 cm '. In Ref. 22 the values of the Raman
polarizability are given as a„6,=6.0 and a„AI=1.2.
The experiment is usually done at room temperature, and
so we set T=300 K. With all these specifications, the
Raman intensity is calculated from (14). In the region
~ & 100 cm ', the Raman spectrum of a perfect sample is
shown in Fig. 2(a). The drop of the Raman intensity with
increasing co is due to the Boltzmann factor
[I—exp( —A'co/k~T)] '. The splitting of each Raman
peak into a doublet is clearly seen.

In reality the QPFSL samples are not perfect. Nakaya-
ma et al. ' have claimed that in their samples the posi-
tion of each interface is controlled within an accuracy of
one monolayer. Such imperfection can be generated by
computer simulation with two different methods. We can
first make a perfect sample, and then displace each inter-
face randomly by one monolayer either to the right or to
the left with a probability X. Then the probability of an
interface remaining at its correct position is 1 —2X. In
this case, the imperfections at different positions are not
correlated. We call this situation independent disorder.

For the second method, we generate the first interface
with its position measured from the substrate. The prob-
ability of having correct separation between the first in-
terface and the substrate is 1 —2X, and the probability of

(a} X-0 (b) X=0.1

+ g g ~ g i 4. I i I I L R. - ~ .
. ~ I, g g z ) ~ J 1 .a 3~ c t.

l l I l 1

(c}X=0.2 (d} X=0.3

A~g44, a, b Jggk, g. ~-~~ J&&J. .-L& J~. xJ
I I I I

o so ~oo o 50 )00
RAIvIAN SHIFT (cm ')

FIG. 2. Computed Raman spectra in the low-frequency re-
gion for various degrees of independent disorder specified by the
value of X. All plots have same vertical scale in arbitrary units.

having one monolayer either thicker or thinner than the
correct thickness is X. Knowing the exact position of the
first interface and using it as a reference position for
measuring the thickness of the next constituent material,
the second interface is simulated in a similar fashion.
This procedure is repeated until the entire QPFSL is gen-
erated. In this case, the imperfections from a correlated
disorder.

The Raman spectra of independent-disordered samples
are shown in Fig. 2, and the Raman spectra of
correlated-disordered samples are shown in Fig. 3. The
degree of imperfection is indicated by the value of X. In
both cases the effect of imperfection decreases with in-
creasing wavelength, as one would expect. Nevertheless,
by comparing Figs. 2 and 3, we still detect the difference
that the correlated disorder destroys the Raman signal
more effectively than the independent disorder.

When we compare our calculated Raman spectra with
the measured ones of Nakayama et al. ,

' although all
measured doublet Raman peaks are reproduced by
theory, the calculated peak positions are slightly lower
than the corresponding measured ones. While the top
edge of the longitudinal-acoustic branch is pinned by the
ratio of the elastic constant K and the heavier As atomic
mass M~„we notice from (30a) and (30b) that in the long
wavelength region the phonon frequency cu is a function
of the mass ratios M~~/MA, and Mo, /Mz, . In our cal-
culation we have used the bare atomic masses for Mz„
MA&, and MA, . On the other hand, in our simple one-
dimensional model for a QPFSL the ratios Mo, /MA, and
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(0,1)

(u) X=O (b) X=0.1
~3
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i(1.0)

EXPERINENT
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(c) X= 0.2 (d} X=03
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FIG. 3. Computed Raman spectra in the low-frequency re-
gion for various degrees of correlated disorder specified by the
value of X. All plots have same vertical scale in arbitrary units.

M«/MA, should have proper effective values. If we
treat Mz, /MA, and M«/MA, as adjustable parameters,
the low-frequency part of the longitudinal-acoustical pho-
non spectrum will be modified but the high-frequency
part will remain practically unchanged. By reducing the
ratios M«/MA, and Mz, /MA„and so increasing the
long-wavelength phonon frequency cu by a factor about
1.2, our calculated Raman spectrum ( —I/co)R (co) is
shown in Fig. 4, together with experimental curves of
Nakayama et al. '

In the experimental spectrum the broad maximum
around ~=0 is due to the elastic scattering of the in-
cident laser light. If we subtract this elastic peak, the
theoretical calculation agrees very well with the experi-
mental observation. Each double-peak is labeled by two
indices [—,'(Ao, z

—Ao»), —,'(Ao, +A«)], the values of
which are listed in Table I as the last two integers under
the column indices.

Nakayama et al. ' have used the continuum model to
calculate the Raman spectrum. Their result [Fig. 3(a) of
Ref. 18] agrees with ours, except that they could not ob-
tain the (1,2) doublet peak around co =55—60 cm
Dharma-wardana and his co-workers ' have shown
that when the structure factor of the building blocks is
properly taken into account in the plane-wave approxi-
mation, via a projection from a related two-dimensional
periodic structure, the continuum model should also yield
this (1,2) doublet-peak around co=55—60 cm '. In the
framework of our analysis, we can easily demonstrate the
effect of this structure factor for the particular basic

~3

3

AC
I

THEORY

FIG. 4. Comparison of our computed Raman spectrum for a
perfect QPFSL sample and the measured one from Ref. 18.

building blocks A=(GaAs)&o/(AIAs)&o and B=(GaAs)&o.
Let us use simple plane waves for the phonon eigenmode.
Then, within an error of the order q, (25b) reduces to

~:-+(co)
~

cc g [exp(+i ad, ) —1]exp(+ill) . (31)
1cL

It has been shown' ' that ~:-+(co)~ is negligibly small
unless

+a =2~( n r+ m ) /(rd „+d~ ), (32)

~:-+(ro)
~

a: g [exp(+i2rr) —1]exp[i (+v —q)l] =0 .
lcl

(33)

%'e have also checked the eigenmodes corresponding to
the (1,2) peaks. The Fourier spectra of these modes clear-
ly indicate that plane waves do not give good approxi-
mated eigenfunctions. This investigation explains the
discrepancy between the calculated spectrum of Nakaya-
ma et al. ' and our result, Fig. 4, which agrees with the
analysis of Refs. 28 and 29.

VI. FIBONACCI CHARACTERISTIC

It was first pointed by Dharma-wardana and his co-
workers ' that the Raman peak positions in a QPFSL

where d„(or dz ) is the thickness of the building block A
(or 8) and the integers (m, n) play the roles of our indices
[—,'(Ao, z

—Az, t)—,'(Ao»+A«)]. For the QPFSL sample
under consideration, dz =40 and d& =20, and for all l in
(31) we have d&=d„—d&=20. Therefore, for m=1 and
m =2 we have
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FIG. 5. Computed Raman spectra in high-frequency region
for (a) a perfect QPFSL sample, (b) and (c) samples with
independent-disorder, and (d) samples with correlation disor-
ders.

FIG. 6. Lattice vibration patterns of the four eigenmodes
specified in Fig. 5.

sample are specified by double indices as opposed to the
single-index labeling of the peak positions in a periodic
superlattice. The same conclusion remains when the
discrete model is used instead of the continuum model.
This signature of the Fibonacci characteristics in the
low-frequency Raman spectrum is clearly revealed by the
excellent agreement between the theoretical calculation
and the experimental data as shown in Fig. 4.

Another important feature of the Fibonacci structure
is the so-called critical state. As short-wavelength pho-
non modes are more sensitive to the Fibonacci modula-
tion, critical phonon modes are expected to appear near
the top-edge of the longitudina1-acoustical branch. It is
therefore very interesting to study the Raman spectrum
in this region. Unfortunately, in reality, the Raman in-
tensity is very weak in this frequency range owing to two
reasons. The first one is the Boltzmann factor
[1 exp( ——%co/ks T)] ' in (15) which suppresses R,„(co)
for large m. The second reason is the imperfection which
affects strongly eigenmodes of short wavelength.

Figure 5(a) shows the calculated Raman spectrum of a
perfect QPFSL sample in the frequency region between
100 and 201 cm ' (between the middle and the top edge
of the acoustical branch). The doublet of each Raman
peak can still be clearly resolved. When imperfection of
the independent-disorder type is included, the Raman
spectrum changes into Figs. 5(b) and 5(c) for X=0.1 and
X=0.2, respectively. This distortion of the spectrum gets
even worse for imperfection of the type of correlated dis-
order, as shown by Fig. 5(d) with X=0.1.

In order to demonstrate the efFect of imperfection on
eigenmodes, we selected four Raman peaks and analyzed

in details their corresponding eigenfunctions. These four
peaks are marked as 1, 2, 3, and 4 in Figs. 5(a) and 5(b).
Figure 6 gives the vibration patterns of these eigenmodes.
It is important to point out that mode 1 is the so-called
critical state characteristic to the Fibonacci structure, but
mode 2 is simply a normal phonon mode. However, a
very weak imperfection (independent disorder with
X=0.1) turns these two qualitatively entirely different
eigenfunctions into mode 3 and mode 4, both of which
are typical wave functions of a random system. In other
words, the critical phonon modes of a QPFSL are easily
removed by very weak imperfection at the interfaces.

To our knowledge there is no published Raman back-
scattering data in the frequency range between 100 and
201 cm '. Our analysis here suggests the requirement of
extremely high-quality QPFSL samples in order to ex-
plore the interesting properties of the critical eigenmodes
in the Fibonacci structure. However, we must remind
ourselves of the fact that the force constant of pure AlAs
is slightly larger than the force constant of pure GaAs.
Hence, near the top edge of the longitudinal-acoustical
branch, phonons propagate in A1As layers but decay
weak exponentially in CxaAs layers. As a result, in the re-
gion where critical phonon modes are expected, one may
find something entirely difFerent.
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