
PHYSICAL REVIEW B VOLUME 39, NUMBER 1 1 JANUARY 1989

Instability of the long-range resonating-valence-bond state in the mean-field approach
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We show the instability of the mixed s+id flux phase by showing that a continuous path con-

nects it to a lower-energy dimerized phase without crossing any energy barriers. We discuss the

consequences of this result for possible expansions around mean-field theory.

After Anderson' suggested a possible connection be-
tween the resonating-valence-bond (RVB) phase of the
quantum Heisenberg antiferromagnet and high-tem-
perature superconductivity there has been substantial
effort in trying to elucidate the existence and the physical
properties of magnetic phases which are disordered be-
cause of quantum fluctuations.

At this point there are only two ways of modeling these
phases; one uses variational wave functions and the other
decouples bond variables by introducing auxiliary gauge
fields. The leading approximation in the second approach
is a mean-field theory first proposed by Baskaran, Zou,
and Anderson (BZA). This approach is very appealing
because of its simplicity and because it naturally leads to a
spectrum of fermionic excitations which is known to be
the correct spectrum of excitations in one dimension.

This approach can describe different phases of the
resonating-valence-bond theory depending on the different
expectation values of the bond variables. In their original
paper, BZA considered an order parameter with equal
amplitude and phases in all bonds. It describes a phase
with a pseudo-Fermi-surface and a Fermi-liquid type of
excitation spectrum which is responsible for a constant
low-temperature susceptibility and a linear specific heat.
Later Kotliar and independently Affleck and Marston
found a lower-energy solution within mean-field theory by
taking the relative phase of certain bond variables to be
tz/2. The equivalence of the approaches of Refs. 5 and 6
was established in an elegant paper by AfBeck, Zou, Hsu,
and Anderson. This mixed s+id or flux phase has an ex-
citation spectrum of particle and hole pairs with a quasi-
particle dispersion vanishing at four points in the Brillouin
zone. As a result this phase has a specific heat which is
quadratic in temperature and a susceptibility which van-
ishes linearly at low temperatures. This choice of phases
has a deep physical meaning. Indeed it is needed in the
fermion representation of the variational wave functions
to obtain the correct Marshall sign of the wave function in
the spin representation. AfHeck and Marston also found
a Peierls spin phase with perfect dimerization, having the
lowest energy. This phase is highly degenerate and a corn-
bination of different dimerization patterns could describe
a short-range RVB phase with a gap to spin excitations

Atj = g et~i~ .
J (2)

Now the partition function is given as a functional in-
tegral over all time-dependent histories of the bonds 5;~
and a static field X,; which enforces the constraint of N/2
flavors per site:

and exponentially vanishing susceptibility and specific
heat.

Even though the gauge-theory formulation of RVB
(Refs. 7 and 10) is in principle exact, all the calculations,
so far, have been done at the level of mean-field theory
which is exact in the limit of large number of fermions.
It has been shown that the uniform BZA solution is unsta-
ble to phase Auctuations ' but it is widely believed that
the Aux phase is locally stable.

We studied the effect of Gaussian fluctuations of arbi-
trary frequency and wave vector around the flux s+id
solution, to see how the free fermion spectrum of excita-
tions is modified by the interaction with the gauge fields.
We found that while this phase is stable against phase
Auctuations with an arbitrary wave vector and frequency
it is unstable against amplitude fluctuation with wave vec-
tor (O, tz), (tz, 0). These fluctuations produce umklapp
scattering between the different species of low-energy fer-
mions and dimerizes the lattice, opening up a gap in the
fermionic spectrum.

In this communication we will prove the instability of
the Aux phase by studying the free-energy functiona1 al-
lowing for the most unstable modes of wave vector
(O, tz), (tr, O). This we do by doubling the periodicity of the
Aux phase.

We recall the derivation of the free-energy functional.
Starting from the exchange Hamiltonian

H = gg c;~,.—c,'.,c,.J (1)
N (,j),

with (i,j) denoting nearest-neighbor pairs of sites, and a
and a' flavor indices running from 1 to N. In the spin- 2

problem N =2 and o and o' are the up and down spin in-
dices, respectively. We write the partition function of
model (1) introducing a Hubbard-Stratonovich field for
the valence-bond operator

e ~ =Z= dctQc;+6;~exp —
J dzgc; c; +N g + g (A~Ict;c I+H.c.)+gk;(ct;c; ——,

' )
io ~ (ij) (i j) i, c

(3)
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The flux-phase mean-field solution takes 6;J to be static
and doubles the unit cell; the lattice sites are divided into
even and odd sites depending on the parity of the sum of
the coordinates. The bonds emanating from an even site
have all the same amplitude but are assigned diAerent
phases as shown in Fig. 1. To allow for fluctuations with
wave vectors (x,O) we consider a unit cell containing four
sites and therefore eight bonds (see Fig. 2). We assign to
the bonds emanating from the first even site of the new
unit cell four independent amplitudes while keeping their

relative phases as in the Aux phase (the variable Q; in Fig.
2 is taken to be real). Bonds attached to the second even
site are obtained from those in the first even site by a x ro-
tation. This is not the most general solution compatible
with the new periodicity but is general enough to illustrate
our point. For Q~ =Q3=Q2=Q4, our phase is just the
flux phase. The free energy per flavor and per site for the
configuration of the bonds described in Fig. 2 is simply
given by

1

(2~)2 gJ KJ K
(8~ cos k„+83sin k„+82cos k~+84sin2k~)' (4)

with

Qi+Q3
2

Q2+ Q482=
2

Qi -Q3
2

Q2-Q4
2

which by using (5) can be rewritten as

f
a' cos2k

(2x) 8 " ~" ~ (cos k„+cos k ) '~

x f m sin 2k~ &0,
(2x) 4& ~" ~ (cos k„+cos k )

For 63 =64 0 we recover the spectrum of the flux phase.
In the limit 6~ =63 62 64 we have a dispersionless spec-
trum characteristic of localized dimers. Minimizing the
free energy we find that the free energy of this phase is
given by —J/8 (in fact the same as the dimer phase).
This is lower than the free energy of the Aux phase (which
is given by —0.115J). Formula (4) interpolates continu-
ously between the two suggesting that the flux phase is un-
stable. This is confirmed directly by calculating the
second derivatives of the free-energy function (4) at the
flux-phase saddle point. Indeed, the flux phase corre-
sponds to 83 =64 =0 and 8~ 62 =6' where 6 is the solution
of

] f'x f'n cos k„
dk„de .

(2x) " ~ ~ b'(cos k„+cos k )'
(5)

(7)
where the last result comes from an integration by parts.
This shows that the energy of the flux phase can be
lowered by an infinitesimal variation of 83 or 64 and there-
fore proves its instability. In fact, it is easy to convince
oneself by a similar argument that inside our family of
phases parametrized by 8&, 82, 83, and 64 local minima can
exist only at 6& =63, 62 =64, i.e., for phases with localized
fermions.

It is surprising that the minimum of the functional" de-
scribes a phase where the bonds form disconnected
squares, and which has the same energy as the dimer state
considered by AfBeck and Marston. We also proved that
this is indeed the absolute minimum of the full free ener-
gy. Creating bond patterns more complicated than

At this point, the second derivative with respect to 63 is
given by

Px )x sin kx

(2~) " " 6(cos k„+cos k ) '

Q
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FIG. 1. Expectation value of the bond variables in the flux

phase.
FIG. 2. Expectation value of the bond variables in the dou-

bled unit cell, in the phase treated in this paper.
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squares or pure dimers only raises the free energy.
In this communication we found an instability in a

mean-field theory of RVB based on a factorization in the
particle-hole channel. This is the correct factorization in
the limit of a large number of fermion flavors. It is clear,
however, that the same instability will be present in the
SU(2) formulation of the mean-field theory, which might
be more suitable to treat the N 2 case.

Recently, several papers" have addressed the role of
the gauge fields and the low-energy fermions exploiting
connections with the theory of anomalies in quantum field
theory. Our calculation shows that these subtleties might
not complicate the study of fluctuations around mean-field
theory. The most dangerous fluctuations eliminate the
low-energy fermions by opening up a dimerization gap.

For the reasons given at the beginning of this paper the
flux phase is theoretically appealing. It seems that we
have lost a good starting point to investigate the reso-
nating-valence-bond state at zero doping and it would be

interesting to find terms in the Hamiltonian that could
stabilize the flux phase. An obvious possibility is that a
finite concentration of holes will eliminate the instability
discussed in this paper. A theoretical description of this
scenario will certainly require new techniques.

There seems to be a rather close parallel between
mean-field calculations and numerical evaluation of the
energy of Gutzwiller-projected wave functions. ' ' It
would be interesting to confirm the instability found here
using variational Monte Carlo techniques.
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