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Excited states and their relaxation dynamics in trans-polyacetylene
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We investigate excited states in polyacetylene, taking account of electron correlation by trans-
forming the electronic degrees of freedom into a quantum phase variable via boson representation.
When the lattice is fixed at the ground-state configuration, there are the following species of excita-
tions: soliton S', antisoliton S, the first breather B &, and the second breather B&. S' should not be
confused with the usual neutral soliton S' ', in the former, the amount of phase change is 2m and the
lattice is in the uniformly dimerized state, while in the latter the amount of phase change is ~ and
the lattice has a usual soliton structure. S', B &, and S are three components of the triplet exciton,
and B2 is the singlet dipole-forbidden exciton which corresponds to the 2 Ag state in finite po-
lyenes. The electronic structure of B2 can be regarded as a bound state of S' 's. We study the dy-
namics of the lattice relaxation from B2 by applying a semiclassical approximation to the boson sys-
tem. Since the lattice is driven by the electronic structure of B2, a neutral soliton pair or their
bound state is formed as a relaxation product.

I. INTRODUCTION

Photoexcited states and their relaxation processes in
polyacetylene have attracted much attention. ' Especial-
ly, many experimental' and theoretical ' works have
been stimulated by the possibilities that various types of
nonlinear excitations (solitons, polarons, or breathers )

are generated in the relaxation processes. Photoinduced
absorption ' and photoconduction experiments show
that charged solitons may be photogenerated. Photoin-
duced electron-spin resonance (ESR) data suggest the
photogeneration of neutral solitons. The 1.35-eV peak in
the photoinduced absorption spectrum' ' suggests that
bound states of the neutral soliton pair (breathers of
diradical type ' ) might be generated.

On the other hand, there is now accumulating experi-
mental evidence of the importance of the ~-electron
Coulomb interaction in polyacetylene, ' ' so that one of
the most important problems in photophysics of polyace-
tylene is to elucidate the role of the Coulomb interaction
in the excited states. If the screening effect is very large
and the effective Coulomb potential is very weak (U «r,
where U is the on-site Coulomb potential and t is the
transfer interaction), the Su-Schrieffer-Heeger (SSH)
model which does not explicitly take account of the
Coulomb interaction may be a good approximation.
Then, the Coulomb interaction can be treated perturba-
tively taking the SSH Hamiltonian as the zeroth-order
starting point. If, on the other hand, the effective
Coulomb interaction is not so weak ( U ) t),
independent-particle picture based on the SSH model
should be fundamentally altered; low-lying excitation is
not a particle-hole excitation but a collective excitation.

The collective nature of the low-lying excited states is
well confirmed in polyenes which are short-length-
molecule versions of polyacetylene. ' In polyenes (CH)„
with n &22, there is a dipole-forbidden singlet excited
state in the low-energy region. This state has the same

symmetry as the ground state (A symmetry) and is
0.1 —0.6 eV below the lowest dipole-allowed excited state
(B„syminetry). In theoretical calculations, ' a large-
scale configuration-interaction (CI) expansion is neces-
sary to make the calculated energy of this lowest 3 ex-
cited state (hereafter referred to as the 2'A state) lower
than the energy of the lowest optically allowed B„state
(the l 'B„state). This means that the 2 'A state is a col-
lective excitation. The existence of this low-lying 2
state is evidence for the importance of the electron corre-
lation effect in polyenes.

In trans-polyacetylene, the search for the correspond-
ing dipole-forbidden excited state was done using the
two-photon absorption technique by Kajzar et al'.

They found the sharp two-photon absorption peak at 0.91
eV, suggesting the existence of the ' 3 state at 1.82 eV,
which is 0.2 eV below the peak of one-photon absorption.
The existence of the low-energy '3 state shows that the
Coulomb interaction in polyacetylene is not weak; its
strength is at least in the intermediate regime. Through
the various theoretical methods, many authors es-
timated the strength of the effective on-site Coulomb po-
tential U so as to explain the experimental data on the
regularly dimerized chain and solitons. They found U is
about 5 —6 eV; this also indicates that polyacetylene is in
the intermediate correlation regime (U ) t), and is out of
the perturbative regime (U((t). In this paper, we as-
sume the Coulomb interaction is not weak, and we main-
ly focus our attention on the dipole-forbidden singlet ex-
cited states in trans-polyacetylene. In the long chain mol-
ecule with the translational symmetry, the 2'3 state
and other higher-energy dipole-forbidden singlet states
form an exciton band. Thus we hereafter call these sing-
let excitations in polyacetylene the 'A exciton. There
are other series of dipole-forbidden states, that is, triplet
excited states. The lowest energy state in this series has
B„symmetry. Thus, we call this series of triplet excita-
tions the B„exciton. For the same reason, we call the

39 8511 1989 The American Physical Society



JUN-ICHI TAKEMOTO AND MASAKI SASAI 39

low-lying optically allowed singlet excitation the 'B, ex-
citon.

The physical insights on the '2 exciton can be ob-
tained from the theoretical analysis of the 2 Ag state in
polyenes. Using the valence-bond (VB) analysis, Soos and
Ducasse ' showed the electronic structure of the 2 'Ag
state of (CH)8 is very similar to that of the bound neutral
soliton pair. We show in Fig. 1(a) the VB diagram corre-
sponding to the 2 ' A state. The 2 ' A state of (CH)8 was
also analyzed by using the method of correlation func-
tion, and the resemblance between the electronic struc-
ture of the 2 '2 state and that of the neutral soliton pair
was shown. Ohmine et al. used the CI expansion
method based on localized orbitals. They showed that
electronic configurations corresponding to the bound
state of two localized triplet excitations have large
weights in the CI wave function of the 2'A state. We
show in Fig. 1(b) some of the electronic configurations
important in the CI wave function of the 2 'A state in
(CH), o. If we consider the localized triplet excitation in
Fig. 1(b) as a bound state of two neutral solitons, then the
2 'A state can be regarded as a composite of four neutral
solitons. Hayden and Mele' calculated the 2 '3 state of
(CH), 6 using the numerical renormalization-group
method. They calculated optimized lattice geometry in
the 2'2 state and showed the 2'3 state will relax to
the neutral soliton pair in long polyenes. These investiga-
tions strongly suggest the close relationship between the
2'3 state and neutral soliton. The 2'3 state should be
composed of two or four neutral solitons. In short po-
lyenes, however, the end effect makes the physical inter-
pretation obscure. Therefore, to prove the relation be-
tween the '3 excitation and neutral soliton, the analysis
in the longer polyene is to be desired.

The electronic structure of polyene is described by the
Pariser, Parr, and Pople (PPP) Hamiltonian:

(a)

FIG. 1. (a) The VB diagram of the 2'A~ state in (CH)ll, taken
from Ref. 31. (b) The representative electronic configurations in
the CI wave function of the 2 'A~ state in (CH)&p taken from
Table V of Ref. 24. f f' and $ $ are triplet electron pairs.
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where k is an electron-lattice coupling constant and a is
the lattice constant. The spin Hamiltonian becomes a
good approximation to the original ~-electron Hamiltoni-
an (1.1) if the Coulomb interaction is strong enough
( U ))t). However, even for intermediate Coulomb
strength (U ) t), the covalent excitations such as low-
lying dipole-forbidden excited states can be well de-
scribed by the effective spin Hamiltonian. The applicabil-
ity of the spin Hamiltonian has been investigated for
short polyenes; Bulaevskii derived the effective spin
Hamiltonian by summing up infinite perturbation series.
He compared it with the PPP Hamiltonian numerically
and showed that the spin Hamiltonian gives a fairly good
approximation. Kuwajima showed the spin Hamiltoni-
an derived from his extended valence-bond theory agrees
well with the full CI calculation in the PPP Hamiltonian.
These studies indicate that the spin Hamiltonian is a
good starting point to describe covalent excitations in po-
lyacetylene.

In Sec. II, we start from the spin Hamiltonian and, us-
ing the Jordan-Wigner transformation, transform it to
the Hamiltonian of spinless fermions. We first apply the
mean-field (Hartree-Fock) approximation for spinless fer-
mions and discuss the excitation spectra. We calculate
how the excitation energy depends on the lattice distor-
tion within an adiabatic approximation for the lattice de-
gree of freedom. We will show that when the lattice is

where a„(a„)is the creation (annihilation) operator of
the spin up (o.= l') or down (o = 1) electron on the nth
site, X„=a„a„,t„„+,is the transfer integral between
the nth and (n +1)st site„and V„ is the Coulomb in-
teraction between the nth and mth site. M is the mass of
a CH unit, ~ is the spring constant of the o. skeleton and
r„ is the displacement of the nth C atom along the chain
direction. t„„+& is assumed to be linearly dependent on
(r„—r„+,). Based on this PPP Hamiltonian, the CI
methods have been applied to polyenes of lengths up to
16 carbon atoms. The CI methods, however, become in-
creasingly di%cult as the length of polyenes becomes
long. Therefore, in order to discuss polyacetylene, we
need to develop a different approximation suitable for the
infinitely long polyene.

Since the 2 'As state is an almost neutral state (co-
valent state, in terms of the VB theory), '3 exciton
in polyacetylene should also be a covalent excitation. A
simple and natural way to describe such covalent excita-
tions is to use the Heisenberg spin Hamiltonian
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deformed to the shape of bound solitons, the energy gap
between the 2'3 state and the ground state becomes
very small, which means that the '3 exciton can nonra-
diatively decay to the ground electronic state. In Sec. III,
we further transform spinless fermions to bosons using
the bosonization procedure developed by Tomonaga,
Luther, and others. The electronic degrees of freedom
are represented by a quantum phase variable. The phase
Hamiltonian derived in this way was applied to polyace-
tylene by Nakano and Fukuyama. Using this phase
Hamiltonian, the electronic structure of the excited states
can be described in a physically intuitive way; A and
B„excitons really have the electronic structure of bound

neutral solitons even in the regularly dimerized lattice.
This solitonic character of the excitons drives the lattice
to generate neutral solitons. In Sec. IV, we develop the
semiclassical model, which describes the dynamical lat-
tice distortion. In Sec. V, the semiclassical equations of
motion of lattice and electrons are integrated numerically
and results are discussed. In Sec. VI, the photorelaxation
scenario and the photogeneration of neutral solitons in
polyacetylene are discussed. We also discuss the exten-
sion of the model to the more general one including both
spin and charge fluctuations.

II. EXCITATION SPECTRA
IN MEAN-FIELD APPROXIMATION

to. In this section, we calculate the '3 excitation ener-

gy in the lattice which is distorted to the shape of bound
solitons by the use of Hashimoto's method. Hashimoto
showed the 2 '3 state is expressed by the particle-hole
excitation from the Hartree-Fock ground state i gHF &:

1i2'~s &
= ~- «sUaho —ai'a-)iPHF& (2.4)

energy//E

where lu (ho) is the lowest unoccupied (highest occupied)
Hartree-Fock orbital and su (so) is the second-lowest
unoccupied (second-highest occupied) orbital. Using Eq.
(2.4), we numerically calculate the energy of the singlet
excited state (2'AsiHi2'As & for the lattice with 80
sites. The lattice is treated in the adiabatic approxima-
tion and distorted following the equation used by Ono-
dera and Okuno. ' Their equation for lattice structure
smoothly interpolates between the regularly dimerized
lattice configuration and the two-soliton configuration
(soliton S and antisoliton S are separately. placed in the
chain) or the four-soliton configuration (S, S, S, and S are
separately placed in the chain). In Fig. 2, we show how
the energies of the 2'A state and the ground state

Using the Jordan-Wigner transformation, spin opera-
tors in the Hamiltonian (1.2) can be transformed into
spinless fermions,

Sz = ——'+g fa
n 2 n n

+
Sn Sn+] anan+

n —1

S„+=exp —im g a a a„=(S„)
j=1

(2.1)

The Hamiltonian Eq. (1.2) is then expressed by spinless
fermions as -soliton

H =Ho+Hi+Hi„„„,
Ho= —,

' J +[1+(—1)"Au„/a]

X(a„a„+,+a„+,a„N„N„+,), — —
(2.2)
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H„„;„=—,
' +[Mr' „+~(r„r„+,) ], —
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where X„=a,a„and u„ is the order parameter for lattice
distortion,

u„=(—1)"(r„r„+,)/2 . — (2.3)

The simplest approximation to treat Hamiltonian (2.2) is
the mean-field (Hartree-Fock) approximation. Within
the mean-field approximation, the problem of the bond
alternation in polyacetylene was discussed by Kondo
and excitation energy spectra in the regularly dimerized
lattice were discussed by Bulaevskii and by Hashimo-

FICx. 2. The adiabatic energy spectra of the 2'A~ state and
the ground state of (CH),o calculated by the mean-field meth-
od using parameters kuo/a =0.171, A, /(4aa') =0.6, and
g/a =4. 1, where uo is the amplitude of dimerization in the
ground state and g is soliton width. The ordinate is the energy
normalized by the energy of the neutral soliton, E, =0.195J.
The abscissa is the lattice deformation; from the center to the
right, the lattice is deformed from the regularly dimerized struc-
ture to the structure with a pair of solitons. From the center to
the left, the lattice is deformed to the structure with four soli-
tons. The lattice shapes u (x)/uo at representative points are
shown in the lower part of the figure.
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change when the lattice is distorted towards the two- or
four-soliton configurations. Typical lattice shapes are
also shown in Fig. 2. In the limit of separate S and S the
2 ' A state and the ground state are not degenerating. In
the limit of a lattice with separate S, S, S, and S, on the
other hand, the 2 ' 2 state is degenerating with the
ground state. The reason for this behavior is very simple.
In the former limit, there are two separate doublet spins
in the chain. These two isolate doublet spins can form
only one singlet state, which is the ground state at this
lattice configuration. Therefore, there must be a gap be-
tween the lowest two singlet states. In the latter limit,
however, there are four separate doublet spins which can
form two singlet states with the same energy. Thus, the
mean-field method gives qualitatively correct results
when the lattice is distorted to the shape of two or four
separate solitons. The nonradiative transition from the

excited state to the ground state is possible when the
lattice has the shape of four bound solitons where the gap
becomes very small.

Although the present approximation gives correct re-
sults in the above sense, there are two important
deficiencies. (i) The approximation given in Eq. (2.4) de-
scribes the excited state by a particle-hole excitation from
the Hartree-Fock ground state. This picture takes ac-
count of the collective nature of the excited state to some
extent, since the electron correlation effect is already con-
sidered in the spin Hamiltonian (1.2). The correlation
effect between spinless fermions is, however, not ade-
quately considered. H, is not small in Eq. (2.2), so that
the excited states must be treated more carefully. There-
fore, quantitative details of the adiabatic energy spectrum
shown in Fig. 2 are not reliable. (ii) The gap between the
singlet excited state and the ground state becomes very
small when the lattice begins to have the shape of bound
solitons. Then the adiabatic approximation does not hold
and the nonadiabatic treatment of the lattice becomes
necessary. To overcome the first point, we use, in Sec.
III, the method of boson representation. The boson
method gives a clear picture for the excited states. The
second point, the nonadiabaticity, is taken into account
by the semiclassical method introduced in Sec. IV.

III. EI,ECTRONIC STRUCTURE
OF Ag AND B EXCITONS

In order to treat the strongly interacting spinless fer-
mions, we employ the method of the boson representation
developed by Tomonaga, Luther, and others. The bo-
son method was applied to polyacetylene by Nakano and
Fukuyarna. They showed that in the continuum limit
a ~0, the Hamiltonian (2.2) for the spinless fermion can
be transformed into the Hamiltonian for the phase boson:

H = f dx I 2 [V(b(x)] —B (x)cosP(x)+ C~(x)

+(M/2a)u(x) +(2ir/a)u (x) I, (3.1a)

and u(x) is defined as u(x =na)=u„. P(x) is a boson
operator and ir(x) is its conjugate momentum operator
satisfying [P( x), ir( x')]=i5( x —x'). A and C are deter-
mined so that the Hamiltonian (3.1) reproduces the exact
results for the spin wave velocity and the correlation
function in the case u (x)=0. The phase P is related to
the local spin density m (x) by the following equation:

1 1m(x) = VP+ —sin[2kFx +P(x)],
2& a

(3.2)

J
u0/a =

4Ka
(3.3)

1/3

e (y2) y2 0

a
(3.4)

Using the identity

( 2)/2cosP =e (~ ) :cosP:, (3.5)

where:: means the normal ordering with respect to the
ground state determined by the SCHA, we can express
the Hamiltonian Eq. (3.1) in the following form:

2 f dx [VP(x)] +—2P4vr(x)

—
q OQ (x)[:cosiI)(x):]

+ —,'qo Q(x)'+, Q(x)', (3.6a)

where

P'=(C/~)'"=2ir,
v =2(AC)' =~Ja/2,

qo =p (XJuo/a v)e

Q(x)=u (x)/uo,

cv = (4ir/M) 'i

(3.6b)

Here p is the parameter which represents the strength of
the quantum fluctuation and plays the role of A' in the
semiclassical expansion.

In this section, we discuss the electronic structure in
the static lattice Q(x) =0. First we study the neutral soli-
ton by expressing the boson state by the coherent state

where kF is the Fermi wave number ~/2a. The spin den-
sity at the nth site of the original electron system is
m(x =na).

The ground state of the Hamiltonian Eq. (3.1) is deter-
mined by the self-consistent harmonic approximation
(SCHA). 3 The amplitude of dimerization uo and the
quantum fluctuation (P ) in the ground state is given,
within the SCHA, by

3/2

where
=Ja/8

B (x)=iUu(x)/a2,
C =~ Ja/2

(3.1b)

lP, m-, &=e' ' ' lo&,

G(i/i, ir, ) = f [P ~, (x)P(x) —P, (x)m(x)]dx . (3.8)

H«e l0) is the ground state at u (x)=uo. p, and ir, are
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ly dimerized lattice. When the lattice is fixed as
Q(x) =1, Eq. (3.6a) becomes a well-known sine-Gordon
Hamiltonian. Its excitation spectrum is studied by
Dashen et al. (DHN) using the semiclassical path-
integral method. The procedure of DHN is summarized
as follows. They first find all the static or periodic solu-
tions of the classical equation of motion

P, (x)=u~, (x)=u (V P, qos—in/, ) . (3.17)

Then these classical solutions are quantized using the
semiclassical quantization condition. Finally, the eA'ect

of the small quantum Auctuation around the classical
solutions is taken into account by the simple renor-
malization of the parameter f3; i.e., I3 is replaced by
P' =13 /(1 P /8v—r) =8~/3.

The classical equation of motion has two kinds of solu-
tions: one is the soliton solution, which is a static solu-
tion; the other is the breather solution, which is a period-
ic solution. Through the quantization method described
above, the soliton solution becomes a quantum-
mechanical particle with energy

EO=8/(P' ro) .

The corresponding classical solution is

P, (x) =4 tan '[exp(x/g)],

vr, (x) =0 .

(3.18)

(3.19)

cu„=ro 'cos(nP' /16) (3.20)

are selected by the quantization condition. Here the
quantum number n can take the values n =1,2, . . . ,
(8'/P' The energy . of this quantized breather is

The amount of phase change accompanying this soliton
and the neutral soliton of Eq. (3.12) is 2m and m, respec-
tively. In order to avoid confusion, we call the soliton of
Eq. (3.19) "electronic soliton" S', and the neutral soliton
"electron-lattice soliton" S' ', since the former is a pure
electronic excitation in the uniformly dimerized lattice.

Among the classical breather solutions with various os-
cillation frequencies, only the solutions with frequencies

e(p) = (u 'p'+ so) ' ', (3.23)

where eo is given by Eq. (3.18) or (3.21).
Since P' =8'/3 in the present case, there are only two

quantized breathers (n =1 or 2). We will refer to the
breather with n =1 (2) as the first (second) electronic
breather 8; (82), in order to avoid the confusion with
the electron-lattice breather 8' ' previously discussed in
Refs. 7 and 8. Equations (3.18) and (3.21) show that
E, =Eo, i.e., the energy of B', is equal to that of S'. The
energy of 82 is E2 =&3EO. Since the z component of the
total spin j m (x)dx of S', 8 i, and S' is 1, 0, and —1,
respectively, these three excitations should correspond to
the three components of the triplet exciton ( B„exciton).
The remaining excitation B2 corresponds to the '

Ag exci-
ton. If we use Nakano and Fukuyama's parameters
X=2 eV, A, =8.1, and va =55 eV, g and ro can be es-
timated, using Eqs. (3.3), (3.6b), (3.14), and (3.16), to be
/=2. 6a and ro=0. 55 fsec. Then the energy of the 8„
exciton is Eo = 1. 1 eV and the energy of the Ag exciton
is E2=2.0 eV. E2 well reproduces the value 1.82 eV of
the two-photon absorption peak.

The state vectors of these excitons can be constructed,
within the semiclassical approximation, by superposing
the coherent states Eq. (3.7) as follows. For S', it is given
by

lS'& = f dz f (z)lz &,

lz&=e ' 'ly, m, &,

where

P= —J dx[VP(x)]sr(x)

(3.24a)

(3.25)

is the translational momentum operator and exp( iPz) is-
the spatial displacement operator. Equation (3.19) should
be used for P, and m, . f (z) is a complex c-number func-
tion, and it should be a plane wave exp(ipz) in order for
lS'& to be an eigenstate of P. In the case of 8„', on the
other hand, states at various oscillation phase g must also
be superposed,

IB:&=f dzdxf(zx)lz, x&
(3.24b)

E„=(16/P' ro)sin(nP' /16) . (3.21) lz, X&=e ' 'lp, (X;x,O)vr, (X;x,O) &,

Its corresponding classical solution is

P, (X;x, t)=4tan ' tan(nP' /16)

vr, (X;x, t) =P, /u,

sin(cu„t +X)
X

cosh[sin(n13' /16)(x /g')]
(3.22)

where y is the initial phase of the oscillation. Equations
(3.18) and (3.21) are believed to be exact although their
derivation is approximate. These energies correspond
to the excitations with zero translational momentum.
Since the sine-cordon Hamiltonian has Lorentz invari-
ance, the energy of the excitation with finite momentum p
is given by

in which Eq. (3.22) should be used for P, and ~, .
In order to visualize the internal structure of these ex-

citons, we show in Figs. 3(b) —3(d) the classical solution
P, (x) and the corresponding spin density m(x) [Eq.
(3.11)]of S' and 8„' (n = 1,2). In the case of 8„' we show
snapshots of oscillating P„ together with m (x) corre-
sponding to the P, with maximum amplitude. By com-
paring Figs. 3(b) and 3(c) with Fig. 3(a), we see that the
electronic structure of S' or B; can be regarded as a

'
bound state of two S' 's. On the other hand, Fig. 3(d) in-
dicates that the electronic structure of B2 can be inter-
preted either as a bound state of S' and S ' or as a bound
state of two or more S' 's. This interpretation is in
agreement with the analyses of the structure of the 2 ' A

state in finite polyenes ' ' which were discussed in the
Introduction.
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IV. METHOD OF SIMULATION
GF RELAXATION DYNAMICS

In this and following sections, we get rid of the restric-
tion Q(x) =0 and study the relaxation dynamics of excit-
ed states. In order to follow these dynamics, we must
determine the time dependence of the lattice order pa-
rameter Q (x, t) and of the state vector of the boson sys-
tem ~4(t) &. We treat Q(x, t) as a classical variable and
determine its time dependence by

d 5X 5X
dt gj (x} 6$, (x) ' (4.2)

Q(x, t)= —co [Q(x, t)

—
& +(t)~:cosP(x):~4(t) & /&% (t) ~% (t) & ] .

(4.1)

As the state vector ~%(t) & we use the superposition of
coherent states Eq. (3.24), in which P„vr„a dnf are tak-
en to be time-dependent functions. First we consider the
relaxation of electronic soliton ~S'&. In this case we as-
sume that ~%(t) & always has the form of Eq. (3.24a). At
t =0, P, and m, are given by Eq. (3.19) and f (z) is taken
to be a suKciently delocalized wave packet. We deter-
mine the time dependence of these functions by the time-
dependent variational principle

V(z) acts as a potential for g (z), and 3 (z) plays the role
of the inverse mass. If we derive the equations of motion
of P, and n, using Eq. (4.4), the resultant equations are
still very complicated. But neglecting terms of higher or-
der in P, we get

U
' P, (x) =m, (x),

(4.6)
U

' &,(x)=P,"(x)—qosing, (x)f dz~g(z)~ Q(x+z) .

In a similar way, the equation of motion for Q is given by

co Q(x }= —Q (x }+f dz ~g (z)
~ cosP, (x —z) . (4.7)

If we include terms higher order in P into Eqs. (4.6) and
(4.7), the energy expectation value E [given in Eq. (A17)]
would be strictly conserved. Actually, we retained only
the lowest-order terms in Eqs. (4.6) and (4.7) and E is not
strictly conserved. But the results of numerical calcula-
tions using Eqs. (4.5)—(4.7) show that E fiuctuates only
about 10/o. This fact partially justifies the neglect of
higher-order terms.

Numerical simulation of Eqs. (4.5) —(4.7) is carried out
by usual discretization method using spatial and time
steps bx =(0. 1 —0.2)g and At =(0.001—0.005)ro.

Within the framework of the semiclassical approxima-
tion, it wou'1'd be natural to assume that g (z) is of Gauss-
ian form:

where
1/4 —az

g (z) =(2a~ /m. )'~ e

CX =CXg + l Ay

(4.8)

(4.9)

and similar equations for m, and f (z). (Note that vr, is
not the momentum conjugate to P, ; both of them are
generalized coordinates in the Lagrangian formalism. )

Although the Lagrangian L can be evaluated exactly, the
resultant equations of motion are too complicated to be
handled. To simplify the form of X we use the Gaussian
overlap approximation (GOA), which is a kind of semi-
classical (small-P ) approximation. Details of this ap-
proximation are given in Appendix. The final result for

1s

X=—f dz[g*(z)g(z) —g *(z)g(z)]
2

—f dz g'(z)&,~g(z), (4.4)

where &,s is given by Eq. (A33) and g(z) is defined by
Eq. (A15). Due to the nonzero overlap & z, ~zz & for
z, &zz, not f (z) but g (z) should be interpreted as a wave
function of the center of mass of the excitation. Note
that g(z) is always normalized: J dz~g(z)~ =1. The
equation of motion of g (z) is

In this approximation, Eq. (4.5) is replaced by the equa-
tions of motion of eR and cx~. The latter equations are
easily obtained by first expressing X in terms a~ and at,
and then using the Euler equation

d BX BX
dt Q~ Ba

(4.10)

We carried out two types of simulations using Eqs. (4.5)
and (4.10), and got similar results.

So far we considered the relaxation of the electronic
soliton S'. Next we consider the relaxation of the elec-
tronic breather B„. In this case, the initial condition for
~4(t) & should be of the form of Eq. (3.24b), i.e., we must
average over the initial phase g. Since we cannot keep
track of infinitely many values of g, we discretize in the g
direction and approximate ~'P(t) & in the following form:

B

~W(t) &
=

&&z g f dz f (z)~z j &, (411)
(N )' J=,

where ~z,j & =e ' '~P 7r &, and ~P m & is given by Eq.
(3.7) in which P, and n, are replaced by P and m At.
t =0, P and vr are given by Eq. (3.22) with g equal to

ig(z)=&,t8 (z) y =2~j/N~, j =1,2, . . . , N~ . (4.12)

= —8 A (z)Bg (z) —i [ W'(z)+ 2 IV(z)r}]g (z)

+ V(z)g (z), (4.5)

In the actual calculations we take Nz =8 or 16. In the
spirit of the semiclassical approximation, we assume that

where B=B/Bz and 8'(z) is given by Eq. (A20). 2 (z)
and V(z) are given by Eqs. (A34) and (A35), respectively.

&zi Al. Iz~ i~&=0 (AWJ'2) . (4.13)

Within this approximation, the evaluation of X in terms
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of Pj, ~J, g (z), and Q(z) is almost identical to that in the
soliton case. If we denote the Lagrangian in the soliton
case [Eq. (4.4)] by X„„„„(P„~,), the Lagrangian in the
breather case is given by

B

breather X soliton( 4j & ~j )
8 j=]

(4. 14)

(4.15)

In the actual simulations we take g and ro as a unit of
length and time, respectively. If we express the equations
of motion in terms of the dimensionless variables x =x /g
and t =t/~0, all of the parameters with dimension disap-
pear from the equations and only two dimensionless pa-
rameters remain: /3 and coro. Although D(x) defined in
Eq. (A3) depends on the cutoff wave number k„actual
dynamics do not depend on this cutoff (or on g/a). The
reason is that D (x) itself is irrelevant and only integrals
of D(x) [such as r)(x) defined in Eq. (A22)] are relevant
to dynamics. These integrals have finite values even in
the limit k, —+ oo, as long as P, (x) and ir, (x) are well-
behaved functions. Thus the dynamics do not depend on
k, as long as k, g))1. Since we fix P at 2rr, achro is the
only parameter of our simulations.

V. RESULTS OF THE SIMULATIONS

We first discuss the initial conditions of our simula-
tions. At t =0 the lattice is taken to be in the uniformly
dimerized state: Q (x, t =0)= 1 and Q(x, t =0)=0.
+(t =0) ) is assumed to be either the electronic soliton
S') or the electronic breather B„'). g(z, t =0) is taken

to be a sufficiently delocalized wave packet. Some com-
ments on this initial condition for g (z) are necessary.

If the 'A exciton, for example, is created by a two-
photon absorption, its center of mass may be in a delocal-
ized (plane-wave) state. But if we take a plane-wave state
as an initial condition for g (z), the lattice order parame-
ter Q (x) is under uniform and infinitesimally small force,
and no lattice relaxation will take place. This is a
shortcoming of the classical treatment of Q(x). If we
treat Q (x) quantum mechanically, lattice relaxations can
take place even if we start from a translationally invari-
ant state. Although the state vector [including that for
Q (x)] has a translational invariance at all times, it would
be, after the relaxation completes, a superposition of
wave packets which are localized at various positions
along the chain. In other words, translational invariance
can be broken through the quantum fiuctuation of Q(x).
In our classical treatment of Q(x) this localization pro-

The resultant equations of motion are also very similar to
those in the soliton case. Equations for P and ~ are
identical to Eqs. (4.6). Equations for different values of j
are decoupled. Equations for g (z) and Q(x) are given by
Eqs. (4.5) and (4.7) except that the terms containing P,
and ~, are replaced by the average over j of the form of
Eq. (4.14). For example, Eq. (4.7) is replaced by

N~

co Q(x) = —Q (x)+j dz ~g (z)
~ g cosP, (x —z) .

N~ .

(5.1)

is (5 —16)g. This assumption may seem rather arbitrary at
first. In real polyacetylene samples, however, there are
many inhomogeneities due to, for example, the thermal
fiuctuation of Q (x), finiteness of the chain length, various
lattice imperfections, etc. These inhomogeneities would
cause the localization of g(z). Thus the above assump-
tion for g (z, t =0) is, in our opinion, an acceptable one.

Now we present the results of the simulations. We
focus on the relaxation of Bz, which corresponds to the

exciton. First we show the results of a simulation us-
ing Eq. (4.10); g (z) is taken to be of the form of Eq. (4.8)
at all t. The initial condition for o. is taken to be
ajt =10 g and ai=0. ~V(t)) is assumed to be of the
form of Eq. (4.11) with Xii =8. The total length L of the
system is taken to be L =60/, and the periodic boundary
condition is used. The frequency of the lattice vibration
~ is set to 0.2~o . The equations of motion are discre-
tized using spatial and time steps b,x =0.2g and
At =0.005&o. Figure 4 shows the time dependence of the
width o. of the Gaussian ~g (z)

~
defined in Eq. (5.1). The

actual forms of ~g (x)
~

at typical instances are shown in
Fig. 5, together with the forms of Q(x). Since P has a
form of bound neutral solitons, the lattice starts to be de-
formed to the shape of the soliton pair following Eq.
(4.15). Then the deformed lattice gives rise to the attrac-
tive potential V(z) [see Eq. (A21)]. g (z) starts to localize
due to this potential V(z), and the localized g(z) gives
the stronger force for the lattice deformation. Thus, the
relaxation process proceeds in a cooperative way and the
lattice is deformed to the form of the soliton pair. The
solitonic shape of P is the driving force of the whole pro-
cess. The actual dynamics, however, does not proceed in

16—

80 160

FIG. 4. The time dependence of the width cr of the wave
packet ~g(x)~'. Cxaussian approximation Eq. (4.11) is used for

g (z). The frequency of the lattice vibration co=0.2~0 '.

cess cannot be described.
We avoid this difficulty by using as an initial condition

for g(z) not a plane-wave state but a wave packet local-
ized within a large but finite region. More explicitly, we
take g(z, t =0) to be of the form of Eq. (4.8) with
a jt

= (10 —10 )g . The corresponding width o of
the Gaussian ~g (z) ~, defined by
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Q(x)
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-30 x/I

t =1007o

FICx. 5. The probability amplitude ~g(x)~ of the center of
mass of the excitation and the lattice order parameter Q(x) at
several typical t. (a) t =0, (b) t =40~p, (c) t =60~p (d) t = 100~p,
(e) t = 140 ~p, and (f) t = 180~p. j

~ I I

such a straightforward way. As can be seen from Fig. 4,
at t =30~o, g(z) begins to delocalize again without wait-
ing for the lattice motion. This is due to the large kinetic
energy of g(z) motion. Then the force acting on Q(x)
becomes weak and Q (x) returns to the initial con-
figuration Q (x)= 1, although Q (x) cannot follow the
motion of g(z) completely. Thus from t =30ro to 100~o,
g(z) and Q(x) show complicated oscillations. But the
lattice is eventually deformed to the shape of the soliton
pair for t ) 120~p. The generated neutral solitons are
running away from each other. The oscillation of g (z) is
left even for t ) 140~p. In Fig. 6 we show internal struc-
tures of the excitation P (x)(j =1,2, . . . , Nit =8). Up to
t =(100—120)ro their motion is similar to that of the
electronic breather [see Eq. (3.22)]; they oscillate with a
period close to 2vr/ruz=4~ro=13' [C02 is defined in Eq.
(3.20)]. At around t =(100—120)ro they stop oscillating
and rapidly approach to the soliton-pair form. Since we
started from a singlet state, the resultant soliton pair is a
singlet linear combination of g

&

'+g
&

' and g
~
'+g

&

'.
Next we show the result of a simulation using Eq.

(4.5). We used the parameters I. =60/, bx =0.1$,
At =0.001Tp cc)7 p

=0. 1, and Nz = 16. The initial condi-
tion for g(x) is given by Eq. (4.8) with az =0.01$ and
at=0. Figure 7 shows the forms of ~g(x)~ and Q(x) at
several typical t. As can be seen, g(x) is almost always
Gaussian-like; the Gaussian approximation for g (x) was
a reasonable one. The oscillation of the width of the
wave packet ~g(x)~ still exists in this more accurate
treatment of g (x), although it cannot be seen from the
data shown in Fig. 7 alone. Q(x) in Fig. 7, on the other
hand, smoothly approaches the soliton-pair form with no
oscillation, unlike in Fig. 5. The reason for this difference
is that in Fig. 7, compared with Figs. 4 —6, the initial
value of o.~ is larger and co is smaller. With the larger
value of att (t =0) the amplitude of the oscillation of g (x)
is reduced: with the smaller value of co the motion of
Q(x) becomes slower and it experiences time-averaged
force from g (x). Thus the oscillation of g (x) has weaker
effects on the motion of Q(x), and Q(x) changes smooth-
ly into the soliton-pair form. The motion of P (x) is simi-
lar to that in Fig. 6 and not shown here.

—30
I

30

FIG. 6. Internal structures P, (x) (j =1—8) of the excitation
at t =40~p, 100&p, 140&p, and 180zp.

2
g(x)

02—

0.0

1.0
G)(x)

—1.0-30 0 x/I 30

FICi. 7. ~g(x)~ and Q(x) at several typical t. No restriction
is made on the form of g (x). The frequency of the lattice vibra-
tion is M=0. 1~p . (a,) t =0 (b) t =207p (c) t =607p and (d)
t = 100~p.

In both of the above two examples the final state was
the neutral soliton pair. If the initial width of g(z) is
sufficiently small [0 (0)/g(2 —5], we always get the soli-
ton pair as a final state. If, however, we increase the ini-
tial width of g(z), the probability of getting the soliton
pair decreases. (This probability also decreases if we in-
crease ru. ) When the soliton pair is not formed, what we
get is a localized large-amplitude oscillation of Q(x).
This kind of oscillation has been previously studied
within an adiabatic approximation. ' In this approxima-
tion the electronic state completely follows the motion of
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Q(x), and we get an electron-lattice coupled oscillation.
This oscillation will be referred to as an electron-lattice
breather. It can be thought of as a bound state of S' '

and S' '. In the present simulation, however, g(x) be-
comes quite delocalized and the spatial dependence of
P (x) becomes very weak when the large-amplitude oscil-
lation of Q(x) is formed. Thus Q(x) oscillates alone
while the electronic state stays always close to the ground
state. But this decoupling of the electron and the lattice
may be an artifact, since our approximation becomes
worse when g (x) is delocalized and/or x dependence of
P, (x ) is weak, as can be seen from the following argu-
ments. (i) In a coherent state like Eq. (3.7), the quantum
Auctuation d (x)= ( [&f(x)—(P(x) ) ] ) is independent of
x and assumed to be the same as in the ground state. But
when the x dependence of P (x) becomes weak, the x
dependence of d(x) becomes important; for example, if
P (x) is independent of x the potential V(x) can depend
on x only if the x dependence of d(x) is taken into ac-
count. (ii) We used the same internal structure P (x) for
all values of the center-of-mass coordinate z; in a more-
accurate treatment we should take account of the z
dependence of the P (x). In the case that Q(x) has a
large spatial variation, neglect of this z dependence is al-
lowed only when g(z) is well localized. Thus it is almost
certain that the large-amplitude oscillation of Q(x) we
have found in the present approximation corresponds to
nothing but the electron-lattice breather found in the adi-
abatic approximation. If we accept this assignment, we
can say that when we start from relatively delocalized
g (z) there are two possible relaxation products of the ' A

exciton: the neutral soliton pair and the electron-lattice
breather. But, as pointed out at the start of this section,
the classical treatment of Q(x) becomes worse when the
initial width of g (z) is large. Thus we cannot exclude the
possibility that the formation of the electron-lat tice
breather is an artifact due to the classical treatment of
Q (x).

Before closing this section, we brieAy discuss the relax-
ation of the triplet exciton (S' or 8;). In the present ap-
proximation the magnitude of the total spin is not con-
served, while the z component of the total spin is con-
served. Thus, in order to avoid unphysical mixing with
the ground electronic state, it is better to use the S' state
as an initial state. We carried out the simulations using
the assumption Eq. (3.24a) for ~%(t) ), and always got an
S& '+S~ ' pair as the relaxation product. There is no
other channel of relaxation of the triplet exciton.

VI. PHOTORELAXATION SCENARIO
AND MORE ON ELECTRONIC SOLITONS

We showed in Sec. V that the '3 excitation promptly
decays into a neutral soliton pair (S& +Si ) or their
bound state (diradical breather, 8 t (~). In Fig. 8 the relax-
ation pathways to generate S

&
'+S

&

' and 8
& &

are shown.
We use the symbols S

&
', S

&
', and B

& &
in order to distin-

guish them from charged solitons S+ and S': and zwit-
terionic breather 8+' . 8

& &
is a bound state of S

&

' and
S~ 'and 8' ' is a bound state of S' and S' '. Both 8~~
and 8 +' are localized, large-amplitude, and time-

~ 'B„exciton
polaron pair it &+ „,to ( Be )2
S +S- /4
pe-l

one photon

c -[ e-l

t wo photon

ground state

FIG. 8. Possible pathways of the photogeneration of a neu-
tral soliton pair S ~

'+S
~

' and of their bound state B
~

~'.

dependent oscillations of electrons and lattice. The pres-
ence of such breather oscillations was numerically
demonstrated in the SSH model and in the PPP model.
In Refs. 7 and 8, lattice oscillation was treated classically
with the adiabatic approximation. After the lattice
motion is quantized, discrete numbers of 8&& and 8+
will be left. Energy spacings between these quantized
breathers may be of the order of the energy of an optical
phonon. Then, high-energy (low-binding-energy) 8

& ( can
decompose into S

&

' and S
&

' by absorbing phonons. On
the other hand, colliding S

&

' and S
&

' can be trapped into
8 &&. Thus S& '+S& ' and 8

&&
can be mutually converted

by emitting or absorbing phonons.
By one-photon absorption from the ground state, a '8„

exciton is created. Since this exciton is an ionic excita-
tion, it can decay into S+'+S' ' or a polaron pair. They
have excess kinetic energy but would be quickly thermal-
ized. ' These charged excitations may be carriers of pho-
tocurrent. Neutral excitations (such as 'A~ or St '), on
the other hand, can be created from 'B„exciton only
through perturbations which break the electron-hole
(e-h) symmetry. ' If the one-photon absorption peak at
2.0 eV and the two-photon absorption peak at 1.8 eV are
assigned to 'B„and ' 2 excitons, respectively, the
'8„-'2 energy gap is small so that nonradiative transi-
tion is possible due to a weak perturbation breaking the
e -h symmetry. Grabowski et al."suggested that the adi-
abatic energy surface of 'B„state does not fall ofF mono-
tonically from the Frank-Condon state to the S+'+S' '

state, but instead there is a local minimum in between
them. If there is such a minimum, it is a candidate for
the initial state of the transition to the 3 state. In this
way S

&
'+S

&

' or 8
&

&' can be created by one-photon ab-
sorption through the ' 3 state.

In the photoinduced absorption (PA) spectrum, the
band which has a peak at 0.45 eV has been assigned to
photogenerated charged solitons. ' There is another PA
band peaked at 1.35 eV. ' This 1.35-eV band is regarded
as due to the overall neutral excitations. ' 8

& &
is a possi-

ble candidate for the origin of this 1.35-eV band. ' On
one hand, Levey et aI. observed the photoinduced ESR
(PESR) signal by carefully eliminating the effect of tran-
sient heating. Their PESR result suggests that neutral
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solitons are photogenerated. Thus the relaxation paths
shown in Fig. 8 can give a reasonable explanation for
both the PA and PESR data.

There is a correlation between the excitation spectrum
of the 1.35-eV PA band and the excitation spectrum of
the PESR both the 1.35-eV PA and the PESR signals
have stronger intensity when pumped by the red light
than when pumped by the blue light. This is in sharp
contrast with the 0.45-eV PA band and photocurrent
they both have stronger intensity when pumped by the
blue light than when pumped by the red light. Therefore
it is natural to assume that neutral excitations St ', S& ',

and 8 t &
are generated through a path different from that

for generating charged excitations S+', S' ', and 8+' .
In the scheme shown in Fig. 8, the probability of decay
from the '8, to the ' A state may be larger when
pumped by the low-energy light, because the small
'8„-'A energy gap makes the transition to the 'A state
easier. Consequently, the scheme that S

&
', S

&
', and 8

& &

are generated via the ' A state is consistent with the exci-
tation spectrum of PA and PESR. Another possible pro-
cess to generate 8

& ~
was studied by Bishop et al. They

showed 8
& &

can be generated together with S+' and S' '

directly from the '8, excited state. This mechanism,
however, does not explain the difference between the ex-
citation spectrum of the 1.35-eV PA band and that of the
0.45-eV PA band.

Kivelson and Wu' proposed a different mechanism for
the generation of S

&

' and S ~
'. They showed the possibil-

ity that an almost-separate S+'+S' ' pair will decay into
a S

&
'+S

&

' pair due to the presence of a weak interaction
which violates the electron-hole symmetry. It is not
clear, however, whether this mechanism explains the ex-
citation spectrum of PA and PESR. If ESR and absorp-
tion data induced by two-photon pumping are observed,
the more detailed and direct information will be obtained
to judge these theoretical models. If two-photon induced
ESR and absorption have strong signals suggesting the
generation of S

~
', S

&
', and 8

& &, the importance of the
decay process through the ' A state may be certified.

Since the 8, exciton is an ionic excitation, it cannot
be described by our phase Hamiltonian Eq. (3.1). In or-
der to study the relaxation process from the '8, exciton
to the ' A state, charge and spin degrees of freedom must
be treated on equal footing. This is possible by introduc-
ing two phase variables P and 0 which describe spin and
charge degrees of freedom, respectively. Using this for-
malism, the PPP Hamiltonian can be transformed in the
following form:

H = f dx[A (V0) +C 7r 9 Bcos(20)—
+ A (VP) +C a&+8 cos(2$)
—2gu cosOcosg+(M/2a)u +(2I~/a)u ],

(6.1)

where

u (x) is the lattice order parameter as in Eq. (3.1), and g is
an electron-lattice coupling constant. The explicit forms
of the parameters A, 8, C, A, 8, and C can be
found in Ref. 45. (They depend on the strength of the
Coulomb interaction. ) Local spin density m(x) and local
charge density n (x) are related to P(x) and 0(x) as

m(x) = VP(x) ——sin[2kFx +0(x)]sin(h(x),
2n a

n (x)= —V0(x)+ —cos[2k~x +0(x)]cosg(x) .
7T a

(6.3)
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%'hen the lattice is fixed at the uniformly dimerized
configuration [u (x) =uo], 8 and 8 terms can be
neglected with respect to the term V(0, $)= —2gu cos0cosg due to large quantum fluctuations. ~6

Then it is easily seen that there are three types of elec-
tronic solitons which connect among the minima of the
potential V(0, $). For example, the electronic soliton
connecting between (0,$)=(0,0) and (0,27r), which has
spin 1 and charge 0, corresponds to the B„exciton. Be-
sides these solitons, there may be some breathers. Classi-
cally, we can easily find two breathers. One is the P
breather in which 0 is fixed at zero while P oscillates just
as Eq. (3.22). If the roles of 0 and (t are interchanged, we
get the 0 breather. If these breathers survive the quanti-
zation procedure, we can make the following assignment;
i.e., the P breather corresponds to the 'A exciton while
the 0 breather corresponds to the 'B„exciton. Whether
this assignment is correct or not is now under study.

If the lattice has no dimerization (u =0), the Hamil-
tonian Eq. (6.1) decouples into two sine-Gordon Hamil-
tonians for 0 and P. In this case the terms cos(20) and
cos(2$) cannot be neglected in general. The elementary
excitations are given by the P soliton and the 0 soliton
(both of them are vr kinks). If, however, the electron-
electron interaction in the starting Hamiltonian Eq. (1.1)
is a simple repulsive one, the energy of the P soliton van-
ishes. Thus P solitons are created spontaneously, and
the ground state can be regarded as a P-soliton liquid or
as the so-called resonating valence-bond (RVB) state.
Then the P soliton and the 0 soliton should be related to
the "spinon" and the "holon" excitations in the RVB
state. To establish this relationship is also the subject of
our current study.

In this paper, we discussed the electronic structure and
dynamics of covalent excitons in polyacetylene using a
nonperturbative method, i.e., the boson representation.
Excitons are classified in terms of solitons and breathers.
The solitonic character of the inner structure of excitons
is the driving force of the lattice distortion. The
Coulomb effects cannot be taken account of by simple re-
normalization of the parameters appearing in the SSH
Hamiltonian. The nonlinearity of the Coulomb interac-
tion manifests itself in the structure and dynamics of ex-
cited states in an explicit way.

[0(x),crt'(x')] =i5(x —x'),
[P(x),~~(x')]=i6(x —x') .

(6.2) We thank the IMS computer center for the use of the
HITAC S810 supercomputer.
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APPENDIX: GAUSSIAN OVERLAP APPROXIMATION h (z) = &zlHlz ), (A9a)

When /3 is small the overlap &z, lz2 ) has a narrow peak
at z, =z2, and it can be approximated by the following
Gaussian:

—y(zl —z2) /2
&z, lz, &=e

where y, which is of order P, is given by

(Al)

, J dx dy D "(x —y)[q,'P, (x)P, (y)+P,'(x)P,'(y)

Here L, is the length of the system and the summation
over k is restricted to kl (k„where the cutoff k, is tak-
en to be n/a.

The energy expectation value E = &'I'lHl'p&/&'Pl'0)
can be evaluated within the Gaussian overlap approxima-
tion (GOA) (Ref. 44) as follows. Using the formula

1/2

&z, lz, ) =
—y(z l

—z ) r(Z2 z )
dz e

we can express & +l+& and & plHl+& as
' 1/2

(z —z) 2

f(z, ), (A5)f dz f dz, e&+le) =

+ir, (x)~,(y)],
and D (x —y) is the P-P correlation function,

e"'-"
D(x —y)=, &y( )y(y)) =

2 I. „(q,'+k')'"
(A3)

ah(z, , z~)
h, (z)=

BZ1 z =z =z
I 2

(A9b)

etc. In terms of the momentum operator I' defined in Eq.
(3.25), h, (z), h, 2(z), . . . can be expressed as

h, (z) =i & zlPHlz ),
h, (z)=&zlPHPlz) —yh (z),

(A10a)

(A lob)

where y= &zlP lz) is identical to Eq. (A2). The follow-
ing relations are also useful:

h ', (z) = h „(z)+h, ~(z),

h "(z)=h» (z)+2h, 2(z)+h22(z),

(A 1 1)

(A12)

where a prime indicates differentiation with respect to z.
Using the identities

—y(z, —z)f dz f(z, )e ' (z, —z)= af(z),
2y

— (z —z)2f dz, f(z, )e ' (z, —z) = (a +2y)f(z),
4y2

(A13)

(A14)

where a=a/az, and defining g (z) by

(z —z) f(z)),g(z)=JV J dz, e (A15)

E=f dzg*(z) h(z)+ [a(h —h )1 2

where JV is a normalization constant such that

f dzlg(z)l =1, we get the following expression for E:

&elHle) =
1/2 —y(z —zl )

J dz dz, dz2f*(z, )e —(h, —h2)a —2h, 2]

- r(z-z2)'
Xh (z„z~)e ' f (z2), + a(4h, ~

—h")a g(z) .
gy2

(A16)

(A6)

where

h (z &,zz) =
& z& lHlzz ) /& z& lz2 ) . (A7)

Within the GOA h (z, ,z, ) can be approximated by its ex-

pansion around z, =z2 =z up to second order:

h (z&,zz) =h (z)+ c&h &(z)+E2h2(z)

To derive this equation, partial integrations and Eqs.
(All) and (A12) are used, and higher-order derivatives
such as h'» are neglected to be consistent with the ap-
proximation in Eq. (AS). h (z), h&(z), etc. , can be evalu-
ated by an elementary method, and we obtain

E = f dz g "(z).ling(z),

where

+ —,
' E,h &1(z)+E &Ezh, z(z)+ —,

'
Ezh 2z(z),

where F =z, —z (j= 1,2), and

(AS) e='a~, (z)a+i[am(z) —w(z)a]+ v, (z), (A18)

~
Ao+ 2

dx Q(x+z)(4il' cosp, —p,"sing, ),I2

2y Sy /3

2
Vqp

ll (z)=
2 f dx Q(x +z)il'(x)sing, (x),

2yP2
2

l'i(z)=; f dx[ ,'W,'+,'~! qoQ(x+—z)cosp,(x—)]— &, — ', f dx Q(x+z)cosp, (x)(—'p,' +q2''),
2y 2yp

(A19)

(A20)

(A21)
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where

g(x)= f dy D(x —y)rr, (y), (A22) T2 —A2f dz +V2,Bg(z) (A29)

Ao= f dx[P," +ir,'+qo( —,'P,'i —2g' )] . (A23)

Now we turn to the evaluation of the term

where

Vz= f dx P, vr, —&,P, + (P,~," r'r—,P,")

where

i &e)i) —&i(e)
2

(A24) (A30)

T, =, , dz, dzzf*(z, )f(z2)&z, iz2)+c.c. ,2(% %)
(A25)

The Lagrangian X is given by X=T E, a—nd using Eqs.
(A17), (A24), (A25), and (A29), we finally get

T, = —f dz[g*(z)g(z) —g *(z)g(z)] (A27)

Using Eqs. (A4) and (A15), T, can be transformed into

X=—f dz[g*(z)g(z) —g *(z)g (z)]
2

—f dz g *(z)&,sg (z),

where

&, =BR (z)8+i [r)W(z) W(z—)B]+V(z),

(A32)

(A33)

(terms containing y are exactly cancelled). Tz can be cal-
culated as follows. First we evaluate c), ~z ) as

A (z)= A, (z)+ A2, (A34)

t), ~z) =e' 'B,e' ~0) =e' '(iG+ —,'[G, G])e' ~0) . (A28) V(z)= V, (z)+ V2, (A35)

Then using &zi ~B, ~zz) l&zi ~zz ) in the place of h (zizz)
and following the calc)ilation from Eq. (A8) to (A23), we
get

and A, (z), A2, V, (z), and V2 are defined in Eqs. (A19),
(A31), (A21), and (A30), respectively, and W(z) is defined
in Eq. (A20).
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