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Ben Yu-Kuang Hu
Laboratory ofAtomic and Solid State Physics, Cornell University, Clark Hall, Ithaca, New York 14853-2501
and Department of Physics, The Ohio State Uni Uersi ty, 1 74 West 18th A uenue, Columbus, Ohio 43210-1106*

Sanjoy K. Sarker
Department of Physics and Astronomy, Uniuersity ofAlabama, P.O Box .1921, Tuscaloosa, Alabama 35487-1921

John W. Wilkins
Department ofPhysics, The Ohio State Uniuersity, 174 West 18th Auenue, Columbus, Ohio 43210-1106

(Received 28 November 1988)

The Kadanoff-Baym formulation of quantum transport is used to derive a formulation for non-
equilibrium carrier screening. The approach extends the Boltzmann-equation approach for calcu-
lating carrier-screening phenomena to include quantum eA'ects due to the spatial nonlocality of the
electron. To simplify calculations, the quantum relaxation-time approximation for the collisions
used by Mermin is adapted for use in this quantum transport equation. As an example, we use this
formulation and the quantum relaxation-time approximation to study the linear screening of a
parabolic-band semiconductor in a high electric field, and we compare the results for this formula-
tion with the classical Boltzmann-equation formulation of nonequilibrium screening. We find that
the Boltzmann-equation method gives reliable results for the susceptibility y(q, co) when q is much
smaller than the average electron wave vector, but is unreliable for q much larger than the average
electron wave vector. For q~ ~, g approaches a Lindhard-like formula for the susceptibility, but
with the equilibrium distribution functions replaced by the nonequilibrium ones.

I. INTRODUCTION

Current trends in semiconductor physics emphasize
the need to understand semiconductors in highly none-
quilibrium situations. For example, the very small scale
on which semiconductor devices are currently fabricated
leads to very high operating electric fields within these
devices. Furthermore, advances in femtosecond spectros-
copy permit the study of optically excited carriers that
have not been thermalized by collisions and hence are
very much out of equilibrium. In these highly nonequili-
brium situations, many of the physical properties of the
systems differ markedly from their values at equilibrium.
In particular, the screening due to free carriers is sub-
stantially altered. The change in free-carrier screening
then manifests itself in the alteration of the carrier-
impurity, carrier-phonon, and carrier-carrier interac-
tions, and therefore is of great importance in the study of
high-field transport, and of carrier relaxation in photoex-
cited carriers.

Previous attempts to study screening in nonequilibrium
situations have mainly dealt with screening due to car-
riers in a high electric field. Barker and Lowe studied
the formal aspects of high-field screening by examining
the nonequilibrium correlation functions. Lugli and
Ferry have performed a coupled molecular-
dynamics —Monte Carlo simulation of electrons in silicon
in a high electric field to obtain the nonequilibrium
carrier-carrier correlation functions. Neither of these
methods, however, is particularly suitable for calculating
physically measurable quantities at high electric fields.

Therefore, the drifted-Maxwellian approximation has
often been used in performing these calculations,
despite the fact that this approximation is somewhat
suspect at high electric fields.

Recently, two of us utilized the Boltzmann equation
to calculate screening in nonequilibrium situations. The
method consisted of solving the Boltzmann equation for
the nonequilibrium situation being studied, and then su-
perimposing a spatially and temporally varying potential
on the system. The screening is then obtained by calcu-
lating the density response of the carriers to the applied
potential. As an example, the linear susceptibility y(q, co)
was calculated for a nondegenerate semiconductor in a
high static electric field within the relaxation-time ap-
proximation. In the course of the analysis of the results,
two important length scales emerge from the calcula-
tions. These are I,h, the thermal mean free path, and ld,
the drift mean free path, of the carriers. However, since
the Boltzmann equation treats carriers as classical point
particles, it ignores a third important length scale, which
arises from the quantum-mechanical spatial broadening
of carriers. When the scale of the spatial variation of the
external potential is long compared to the scale of the
typical electron wavelength, the quantum-mechanical na-
ture of the carriers is unimportant, and the Boltzmann-
equation picture suffices. However, when the scale of the
spatial variation of the external potential is short com-
pared to the scale of the typical electron wavelength, the
quantum-mechanical nature of the carriers must be taken
into account. Therefore, the results for the susceptibility
y(q, co) calculated from the Boltzmann equation cannot
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be trusted in the regime where the wavelength 1/q is
smaller than the typical electron wavelength.

In equilibrium, the quantum nature of the carriers can
be included in determining the linear susceptibility by
calculating the evolution of the one-particle density ma-
trix in the presence of a slowly growing sinusoidal poten-
tial. This yields the Lindhard' or the random-phase-
approximation expression for y(q, co), and is valid for all
q. " When we attempt to extend this method to include
nonequilibrium situations, however, a problem immedi-
ately arises. It stems from the fact that in the calculation
of the Lindhard susceptibility, the electrons are assumed
not to interact with any scattering mechanisms (aside
from the implicit assumption that the electrons couple to
a heat bath, a role that is normally played by the lattice).
However, scattering mechanisms are an extremely impor-
tant and integral consideration when looking at any as-
pect of a nonequilibrium problem. For example, when
carriers are placed in a high electric field, scattering
mechanisms must be present in order for the system to
achieve a steady state. Another example is the photoex-
citation of electrons, where the scattering mechanisms
are solely responsible for determining the evolution of the
distribution of the electrons with time. Therefore, a
method of incorporating scattering mechanisms into the
problem must be found before results in the nonequilibri-
um regime can be achieved. In fact, in equilibrium, an
extension of the Lindhard approach, which includes a
quantum relaxation-time scattering term, has been ex-
pounded by Mermin. ' This sets the stage for extending
the formulation of equilibrium quantum screening to the
nonequilibrium formulation of the problem.

In this paper, we show that this extension can be ac-
complished by utilizing the quantum theory of transport
of Kadanoff and Baym. ' ' The Kadanoff-Baym formu-
lation has several advantageous features: (i) it is suited
for the study of highly nonequilibrium situations; (ii) it
reduces to the Boltzmann-equation formulation of Ref. 9
in the limit of slow spatial variations; and (iii) at equilibri-
um, it reproduces the Lindhard result for the susceptibili-
ty of a colhsionless system. Furthermore, at equilibrium,
when the quantum relaxation-time scattering term used

by Mermin is inserted into the Kadanoff-Baym transport
equation, the Mermin result for the susceptibility is
reproduced. The obvious advantage of the Kadanoff-
Baym approach is that, when scattering mechanisms are
taken into account, it can readily be generalized to none-
quilibrium situations. This generalization, which was im-
possible in the absence of a collision term in the transport
equation (for reasons cited above), can now be achieved
with the help of the quantum relaxation-time scattering
term. This approach to quantum nonequilibrium screen-
ing is the main focus of this paper.

Section II outlines the formalism for the calculation of
nonequilibrium screening. Section III introduces the
quantum-mechanical relaxation-time approximation for
the collision term of the quantum-transport equation.
We then utilize this approximation to calculate the linear
screening for nondegenerate carriers in a high electric
field. Section IV summarizes the result.

II. QUANTUM TRANSPORT FORMALISM

In this section, we briefly review the Kadanoff-Baym
formalism of quantum transport. We also quickly discuss
the difficulties encountered in the formalism, and the
need for simplifying approximations.

The Kadanoff-Baym formalism of quantum transport
is based on the equations of motion for the two-time
correlation functions

g (x), t],xp, t2)=&($ (x2, t2)$(x), t)))

g (x„t„xz,tz)= i (g( xt, —)g (x2, t2)), (lb)

where P (x, t) and P(x, t) are the Heisenberg electron
creation and destruction operators, and the angular
brackets denote the thermal average. Written in terms of
Wigner coordinates (i.e., sum and di(ference coordinates)

R= —,'(x, +x2), T =
—,'(t, +t2), (2)

the equation of motion of g (r, t;R, t)=i(&fr (R—
—,'r, T

,' t)f(R+ z' r, T + —,
'—t)) in a parabolic band is'

A'Vtt V, —U,s +&,s'
i + (R+—'r, T+ 't) (R——'—, T ——' t) g '(r, t;R, T)=I [g ',g ',2', X'], (3)

where U,& is the sum of the external potential and the
Coulomb potential of the carriers, I[g,g,X,X ] is
the quantum collision term, and X,X are the self-
energies.

To transform Eq. (3) into an equation which looks
somewhat like the Boltzmann equation, one introduces
the Wigner distribution function, which is defined by

By virtue of this definition, f (p, R, T) has many similari-
ties to a classical distribution function. For example, the
density at R, T is given by the integral over all momenta

n (R, T) =2(gt(R, T)f(R, T) ) = f 3 3 f (p, R, T) .dp

f (p, R, T) = i fdr exp —i g —(r, t =0;R, T) .

(4)

(The factor of 2 comes from the sum over spins. ) Using
the Wigner distribution function, Eq. (3) can be rewritten
as
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p-V
+ f(p, R, T)+E f f« " ""-""" "(R+—,'r, T)— (R—

—,'r, T) f(p', R, T)dT m

=I[g,g,X,X ] . (6)

Note that by expanding the potential U,z in powers of r,
and keeping only the lowest-order term, the collisionless
evolution terms of the Boltzmann equation are recovered
on the left-hand side of Eq. (6).

Equation (6) embodies much of the physics of a non-
equilibrium system. If it could be solved for any applied
external field, we would have complete knowledge of the
density response to the potential, or the screening, of the
system. Unfortunately, Eq. (6) is very complicated equa-
tion. First, the equation is nonlinear in f(p, R, T) be-
cause of the dependence of U,a. on f. Second, the quan-
tum collision term I is nonlocal in time and space, and

and X are functionals of the correlation functions

g and g . Therefore, progress can be made only in
straightforward situations under many simplifying ap-
proximations.

One straightforward situation in which the transport
equation is studied is that of the application of a uniform
external electric field, U, s.(R, T)= —R F. Then, the
problem reduces to solving

F Pg( ) y[ ( g) y( y)]
Under certain circumstances, approximations can be
made with j[g,g, X,X ] to make it look like the
Boltzmann collision term, with field-dependent scattering
probabilities. ' ' As in Ref. 9, we will use the case of
carriers in a static uniform electric field as a paradigm for
the study of n on equilibrium screening using the
Kadanoff-Baym approach, although we note that this ap-
proach is not confined to this situation.

III. LINEAR SCREENING

Since complete nonlinear screening is far too complex
to solve analytically (even in equilibrium situations), we
shall confine our attention to linear screening. As in Ref.
9, linear screening will be obtained by superimposing a
sinusoidally varying potential and calculating the linear
response of the distribution function to the perturbation.

In order to make the problem tractable, a simple yet
realistic collision model must be chosen. In Ref. 9, the
particle-conserving classical relaxation-time approxima-
tion was used. The natural extension of this relatively
simple collision model is the particle-conserving quantum
relaxation-time approximation that was given by Mer-
min, ' and this model will be used here. While these
relaxation-time approximations are admittedly only
rough descriptions of real scattering processes, they still
retain many of the important features of scattering.
Furthermore, they are extremely useful because of their
relative simplicity.

In this section, we review the particle-conserving quan-
tum relaxation-time approximation. With it, we calcu-
late linear screening for a nondegenerate semiconductor

in a high, uniform, static electric field. This calculation
will differ from Ref. 9 in that quantum mechanical effects
will now be included.

f„(p,R) —f, (p,p+5p(R))I,(=—
7

f,q(p, p+5p(R)) = 1

exp [P[E(p)—p —5p(R) ] j + 1

(8a)

The subscripts "cl" will henceforth be used to denote
classical quantities. In Eqs. (8), P=. 1lksT, E(p) is the
carrier kinetic energy, p is the global chemical potential,
and 5p(R) is the change in the local chemical potential.
5p(R) is determined by local particle conservation

n„(R)=n, (p+5p(R)),
where

n„(R)=f f„(p,R),dp
4~ A

(10a)

n,q(p+5p(R))= 3 3 f,„(p, @+5'(R)) . (10b)dp
4~'A'

Therefore, with this collision model, the Boltzmann equa-
tion must be solved self-consistently, since f,&(p, R) de-
pends on the collision term I,&, which is dependent on
5p, (R), which in turn depends on f,~(p, R) through Eq.
(9).

The quantum formulation of the particle-conserving
relaxation-time approximation is further complicated by
the noncommutivity of p and R, and writing down the
collision term is itself a nontrivial problem. As a guide to
obtaining the quantum relaxation-time collision term, we
utilize the approach given by Mermin. ' Mermin
modeled the collisions by a constant-rate relaxation of the
nonequilibrium density matrix p to the local equilibrium
density matrix p/ eq where

1

exp[P(e —p —5p)]+ 1

A. Quantum relaxation-time approximation

We begin by reviewing the classical Boltzmann-
equation relaxation-time approximation, and then we
proceed to discuss the quantum relaxation-time approxi-
mation. In each case, we discuss how the calculation is
simplified if situations where only small spatial changes
in the overall density are considered.

In the classical Boltzmann-equation case, a simple and
widely used collision model is the particle-conserving
relaxation-time approximation, where the collision term
1S
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Here, p is the global chemical potential, f is the kinetic
energy operator, which is diagonal in the momentum rep-
resentation, and 6p is the operator for the change in the
chemical potential, which is local and hence diagonal in
the coordinate representation.

Since particles must be conserved locally, the condition

&RIPIR& =&Rip .,IR& (12)

which must be satisfied for all q. The matrix elements

5p(q) =
& k —

—,'ql5Plk+ —,'q & must be obtained self-

consistently in finding the solution of the nonequilibrium
density matrix p, so that both Eq. (13) and the equation
for the evolution of p are simultaneously satisfied. [Note
that 5p(q)=&k —

—,'ql5plk+ —,'q& does not depend on k,
because 5p is a local operator, i.e., & r

l 5p l

r'
&

=5@5(r —r'). ]
We now use this to construct the equivalent

relaxation-time approximation for the Wigner distribu-
tion function which will be used in the collision term in
Eq. (6). This is achieved by simply replacing p and pi,
by their Wigner-function representations, f(p, R) and

fi, (p, R), respectively. Then, in this approximation, the
collision term in the quantum transport equation, Eq. (6),
is

f (p, R) —f„(p,R)I=— (14)

where fi,z(p, R) is given by

f .,(p, R)=f, &A 'p —
—,'qlp„ lA 'p+ —,'q& ' .".dq

(15)

must be satisfied for all R. The momentum-space repre-
sentation of Eq. (12) is

f &k —
—,'qlplk+-, 'q&dk= f &k —

—,'qlpi. ,lk+ —,'q&dk,

(13)

As described above, the matrix elements 5p, (q) must be
obtained self-consistently so that the particle-conserving
condition

3 3 P, R —
3 3 ( g P, R (16)4~'f' 4~'W'

and Eq. (6) are simultaneously satisfied.
In either the classical or the quantum-mechanical

relaxation-time models, solving the equations self-
consistently with arbitrary spatial density variations is an
extremely formidable task. In one case, the classical
model has been used in a highly spatially inhomogeneous
system to study transport of carriers through a micros-
tructure, ' but extensive numerical calculations had to be
performed to obtain the full solution. Any attempt to do
the quantum case would be considerably more difficult.
However, when only small spatial variations in the densi-

ty are considered, the calculations simplify considerably,
as we will now show.

In the classical case, if the density n, i(R) has small
spatial variations, then 5p, (R) will be small, and hence

f, (R,p+5IM(R)) can be expanded in powers of 5p(R):

f.,(p @+5'«»=f„(p V)

+ (p,p)5p(R)+O(5p, ) .
Bp

(17)

Therefore, when the spatial variations in density are
small, 5p(R) is proportional to the change in the density.
When Eq. (17) is substituted into the I,&

in Eq. (8a) and

terms second order and higher in 5', are neglected, we see

that the term due to the inhomogeneity in density is

linear in the change in density. This often simplifies
matters considerably.

As in the classical case, in the quantum-mechanical
relaxation-time approximation, simplifications also occur
when only small spatial variations in density are con-
sidered. The matrix elements of &k+ —,'qlpt, lk+ —,'q&

can be written in a series expansion in powers of 5'(q),
V1Z. 0

(18)

(For convenience, we will suppress the p dependence of
f,~. ) For small spatial variations in the density, the
second-order terms in 6p are negligible, and therefore,
the Fourier components of the spatial density are simply
linearly dependent on 5p(q).

The expansion (18) can be used to simplify the
relaxation-time collision term in the quantum transport
equation. We assume there is a small spatial sinusoidal
variation in the density; small arbitrary variations in the
density can be treated as linear superpositions of these

f(p, R, T)=f,(p)+f (p) "'"
with n, ))ln, l, where

dp
no = 4,~, fo(p» (20a)

(20b)

sinusoidal variations. Then, the Wig ner distribution
function is'
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Using Eqs. (15), (16), (18), and (19), we obtain
n&

5p(q) =-
7 (q, 0)

where

f.,(p+-,'~q) —f.,(p —
—,'~q)

xi(q ~)=
4rr3g3 e(p+ —,'fiq) —s(p —

—,'A'q) —A'co

(21)

(22)

will be recognized as the Lindhard expression for the sus-
ceptibility. The relaxation-time collision term for the
Wigner distribution function, in the limit of small
sinusoidal density variations, is obtained by substituting
Eqs. (15) and (19) into Eq. (14) and using Eq. (18), yield-
ing

fc(p)+f i(p)e"'" ""—lf.,(p)+~f (p q)nie"'" "]I=— (23)

where

f,q(p+ —,'A'q) —f, (p —
—,'A'q)

5f (p, q)=
yL(q, O) E(p+ —,'Rq) —E(p —

—,'A'q)

In the limit that q ~0, 5f (p, q) approaches

(24)

technique. The collisions are approximated by the quan-
tum particle-conserving relaxation-time model described
in Sec. III A, and to keep the calculation as simple as pos-
sible, the carriers are chosen to be in parabolic-band
semiconductor. Then, the "unperturbed" quantum trans-
port equation is identical to the Boltzmann equation with
the relaxation-time approximation model

(25)
0.6

This is the expression for the classical relaxation-time ap-
proximation, obtained by substituting Eq. (17) into Eq.
(8a). As expected, as the q approaches zero, the Bohr
correspondence principle ensures that we regain the clas-
sical result from the quantum formulation. As q in-
creases, 5f (p, q) broadens in momentum space, as ex-
pected from the Heisenberg uncertainly principle. In
Fig. 1, 5f (p, q) is shown as a function of p for various
values of q.

B. Linear screening in high electric fields

0.2—

Linear screening is due to the linear carrier-density
response n, e'q " ' to a potential U, e'" -". The
procedure for calculating linear screening with the quan-
tum transport equation, Eq. (6), is essentially identical to
the procedure used with the Boltzmann equation, as de-
scribed in Ref. 9. The procedure is as follows. (i) For the
nonequilibrium situation being investigated, set up and
solve the quantum transport equation to obtain the "un-
perturbed" Wigner distribution function fc(R, p, T). (ii)
Linearly perturb the transport equation with an addition-
al small sinusoidal potential U,s(R, T) = U, e'q' ' to
produce a response f&(p) ' e' q' in the Wigner func-
tion, and solve for f&(p). (iii) Integrate f&(p) with
respect to p to obtain n, . The ratio n, IU, gives y(q, ro),
and the dielectric constant e(q, eo)=1 —4~e y(q, co)/q .
Kadanoff and Baym used a similar technique to calculate
screening in a collisionless plasma at equilibrium, and
they obtained the Lindhard result. '

As in Ref. 9, we study the linear screening of carriers
in a uniform, static electric field as an example of this

O.O 0

FICr. 1. The function 5f(p, q} to which a small sinusoidal
density perturbation f, (p)e' '" r' relaxes, in the quantum
relaxation-time approximation of the collision term. 5f(p) is
plotted as a function of p for various values of q (the component
of q parallel to p), and 5f (p) is normalized so that the area un-
der each curve is 1. That is for a nondegenerate system, where

f,„(p) is the Maxwell-Boltzmann distribution function. The
three curves correspond to fiq =0.1p,&, Aq =2p, &, and Aq =4p, &.

In the limit Rq~0, 5f (p) approaches the Maxwell-Boltzmann
distribution function. For A'q =O. Ip,„,5f{p) is still very similar
to the Maxwell-Boltzmann distribution. As A'q increases, 5f (p)
broadens in momentum space (see the Aq =2p, & curve), as ex-
pected from the uncertainty relation between p and q. For even
larger values of q, the maximum of 5f (p) moves away from
p=0, as shown in the Aq =4p, q curve.
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BfoF (p)=-
Op

fo(p) —f„(p)
(26)

The perturbation U, ir(R, T) = U, e' ' is then add-
ed to the quantum transport equation, Eq. (6), and the
Wigner distribution function is assumed to respond
linearly with the field, i.e.,

f (p, R, T)=fo(p)+ f, (p)e'q" (27)

with f, ~ U, . This sinusoidal density variation modifies
the quantum relaxation-time collision approximation, as
is shown in Eq. (23). When the "unperturbed" solution is
subtracted away from the "perturbed" transport equa-
tion, and keeping only first-order terms in U, and f,
from the resulting equation, we have

dfi p q iUiF +i —o~ f i(p) — (fo(p+ —,'«) —fo(p —
—,'fiq))

Z

n, f„(p+—,'«) —f,q(p
—

—,'«)fi(p)—
gL (q, 0) E(p+ —,'fiq) —E(p —

—,'«) (28)

This is a simple first-order inhomogeneous differential equation, and can be solved to yield

iU& n, f, (p'+ —,'«) —f, (p' ——,'«)f (p) = f dp.
'

qF ffo(p'+-,'«) —fo(p' —
—,'«) 1+

irip' q/m

Xexp '

t 2 2p. —p. . p.q. +p, q,1+I. S 7 +lF. m . 2mF
(29)

ni 1

To obtain an equation relating n, to U„Eq. (29) is integrated with respect to p, yielding

1

y
dt iF qt . . t dp . t f«(p+Y~«) f«p Y~«)

exp — +i cot ——
3 3 exp —I p .q

yL (q, O) o i 2m 4~3/3 m fiq p/m

iUi

of dt exp
iFqt . t dp . t+i cot —— exp i p q [fo(p+-,'«) —fo(p —

—,'«) j .
2m & 4~'A'

(30)

As a check on setting F=0 and f =f, , we regain the result obtained by Mermin' for an equilibrium system.
We specialize further to the case of a nondegenerate semiconductor, when f,q(p) is the Maxwell-Boltzmann distribu-

tion function,

F3( 3 )1/2f.,(p) "o e"p( p /p'h)
pth

(31)

where p,h=(2kiimT)' is the carrier thermal momentum. The Fourier transform of fo(p) is easily obtained from Eq.
(26), and when used in Eq. (30), we obtain

np LS kdx
ni 1— dx exp — +~coax —x exp

kii TyL (q, O) o 2
x s exp( ixsq /2)Z (

—ixs/2+q /—2)+cc.
2q

2Ui wnp

fi pJ dx exp
2»'kdx . . xqs exp( —x s /4)+lc07x x sm

2 2 1+ik sx
(32)

Here, kd
——pd /p, h (pd =F~ is the average drift momentum of the carriers), q =Rq/p, h, s=ql, h (l,h =p,h~/m), and Z (()

is the plasma dispersion function. The susceptibility y(q, co) =n, /U, can be produced from Eq. (32).

C. Discussion

In the classical derivation of the susceptibility, the only
two length scales that were important were the carrier
thermal mean free path l,h =p,h~/m and the carrier drift
mean free path Id =pd s/m. In the regime
q max(l, „,ld ) «1 and cor « 1, the carriers are not ballis-

tic over the distance of a wavelength, and local equations
apply; therefore the screening can be derived from the
drift-diffusion and continuity equations.

The quantum-mechanical nature of the carriers neces-
sitates the introduction of a third length scale. For a
nondegenerate semiconductor, this length is the thermal
de Broglie wave vector, qdB=p, h/A, which is the inverse



HU, SARKER, AND %'ILKINS 39

fo(p+-,'&q) —f0(l —
—,'&q)

E(p+ —'Aq) —E(p —
—,'fiq) —&~—~O

as q —moo (33)

This result for y(q, co) was obtained by Barker, but with
no apparent limits on the validity of the result as a func-

I t I I ! 1 I I l I I I & I I I I I I I I I I I

of the average wavelength of a thermal electron. This
sets the scale at which the quantum-mechanical screening
differs from the classical screening.

In Fig. 2 we show the static susceptibility g(q, co=0)
obtained from (I) the Kadanoff-Baym quantum transport
equation and (2) the Boltzmann equation, both using
their respective relaxation-time approximations. For
qdB «q, the two approaches yield virtually identical re-
sults. On the other hand, for q &qdB the two approaches
produce markedly different curves. For q —+ ~ the curve
derived from the Boltzmann equation asymptotically ap-
proaches the susceptibility of a collisionless classical plas-
ma. The curve derived from the quantum kinetic equa-
tion, however, tends towards the Lindhard form, with the
equilibrium distribution functions replaced by the none-
quilibrium ones, i.e.,

tion of q. This paper shows that Eq. (33) is valid only in
the regime where the carriers are essentially ballistic over
the wavelength 1/q; that is, in the regime where the clas-
sical transport equation would have given a y(q, co) of the
form for a collisionless plasma '

dp q ~fo(p)
y(q, co) =

4~ A q.p/m co —i 0— (34)

The ratio of lengths scales qdBl, h for Fig. 1 was chosen
to be 10. Because qdBl, h » 1, the "drift-diffusion" regime

q «1/l, „ is separated from the Lindhard regime
q)&qd~. In the limit ~he~~ qdBl, „&1, on the othe~
hand, the results in this paper would be rather suspect.
This is because the system would be in a regime where
the scattering was so strong that the mean free path was
less than the electron wavelength, leading to a "weak-
localization"-type regime, where the concept of freely
propagating quasiparticles is somewhat questionable.

Finally, we mention that in this paper we have ignored
the effects of the high field on the scattering per se in the
transport equation —what is known as the "intracol-
lisional field cffcct." It has been estimated' that this
effect, which broadens the energy-conserving 6 functions
in the scattering term, start to become noticeable at fields
of the order of several MV m '. This effect might be im-
portant when precise scattering mechanisms are used, but
since scattering is represented in this paper only at a sim-
ple and imprecise level, inclusion of this effec would only
serve to make the approximation much morc complicat-
ed, but no more precise.

IV. SUMMARY
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FIG. 2. The imaginary (dashed lines) and negative real (solid
lines) parts of the normalized nonequilibri'um static susceptibili-
ty y(q, ~=0)/(n/kBT), for pd q=0. 4p, „and q„~l,„=10. The
normalization is chosen so that, at equilibrium,
g(q~O, co=0)/(n/k&T)= —1. The bold lines are obtained
from the quantum kinetic equations, whi1e, for comparison, the
thin lines are obtained from the Boltzmann equation (see Ref.
9). For q smaller than qdB, the two approaches give similar re-
sults, but for q )qdB, they differ. In this q~ ~ limit, the thin
line tends to the susceptibility of a collisionless classical plasma,
whereas the bold line tends to that of the Lindhard form with
the equilibrium distribution functions replaced by the nonequili-
brium ones.

We hive applied the Kadanoff-Baym transport equa-
tion develop a method for calculating the screening of
systems that are out of equilibrium. This method is an
extension of the Boltzmann-equation method utilized by
Hu and Wilkins. In order to make calculations tract-
able„we have used a particle-conserving quantum
relaxation-time approximation, introduced by Mermin, as
the collision term for the transport equation. This col-
llslon tclm ls again thc quantum cxtcnsloI1 of tllc classical
particle-conserving relaxation-time approximation used
previously by Hu and Wilkins.

As an example, we have used this formulation and the
quantum relaxation-time approximation to study the
linear screening of a parabolic-band semiconductor in a
high electric field, and we have compared the results for
this formulation with the classical Boltzmann-equation
formulation of nonequilibrium screening used earlier.
We have found that the Boltzmann-equation method
gave reliable results for q «qdB, but for q )qda quantum
effect due to spatial nonlocality of the electrons start to
dominate, and the susceptibility approaches a Lindhard-
like formula, with the equilibrium distribution functions
replaced by the nonequilibrium ones.
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