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Hot-carrier screening in semiconductors: A Boltzmann-equation approach

Ben Yu-Kuang Hu* and John W. Wilkins*
Laboratory of Atomic and Solid State Physics, Clark Hall, Cornell University, Ithaca, New York 14853-2501
(Received 14 November 1988)

Linear screening in strongly nonequilibrium semiconductors is studied by a Boltzmann-equation
approach. In determining the nonequilibrium susceptibility y(q,), the correct distribution func-
tion is used, and the effects of scattering are included. As an application, we find that the ionized-
impurity—scattering rate in a bulk semiconductor is significantly enhanced by a uniform, static elec-
tric field producing a drift velocity equal to the thermal velocity. A small-g limit of x(q,®) is related
to the longitudinal noise temperature 7, by a Debye-Hiickel-type relation y=—n/kz T, I

The trend towards smaller and smaller semiconductor
devices has resulted in an increase in the operating fields
within the devices, which has spurred the need to under-
stand the physics of hot carriers. The nonequilibrium
distribution of carriers produces many unique phenome-
na (e.g., the Gunn effect), and has interesting effects on
the properties of semiconductors (e.g., the diffusion con-
stant and the differential conductivity). In particular,
screening due to the free carriers should be substantially
altered. Screening in semiconductors is an important
quantity primarily because it affects the carrier-scattering
rates, modifying the mobilities and the distribution func-
tions of the carriers. Previous applications of screening
in nonequilibrium situations have generally assumed the
static equilibrium Debye-Hiickel form.! Recently, at-
tempts have been made to characterize screening in the
case of high static electric fields, but all these efforts ei-
ther have been at a formal level,? or have relied on exten-
sive computer simulations,® or have depended on the
drifted Maxwellian approximation,* which may not be re-
liable for high electric fields.’

This paper describes a method for calculating none-
quilibrium linear screening due to carriers, using the
Boltzmann equation. This method is applicable to a wide
range of nonequilibrium situations, such as optically ex-
cited semiconductor plasmas, hot carriers in superlat-
tices, and ballistic carriers in tunneling transistors. Un-
like previous analytic approaches, this method, in princi-
ple, does not make any assumptions about the carrier dis-
tribution function or the scattering processes.® However,
we do assume linear response, which has widely been
used in describing screening, mainly because calculating
the full nonlinear screening is too complex a task. In a
model study of the screening of carriers in a uniform,
static electric field, we show that screening in the large-
and small-wavelength limits can be understood from the
drift-diffusion equation and the kinetics of a collisionless
plasma, respectively. We show that the Debye-Hiickel
result for the static susceptibility x(q, ©=0)=—n/k;T,
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can be generalized in situations with a uniform static
electric field. The effect of nonequilibrium screening is il-
lustrated with the ionized-impurity —scattering rate.

Linear screening is a consequence of the linear carrier-
density response &n =n,e'9*"%) o a potential
8U=U,e''9* %) The quantity that describes the
screening is xY(q,w)=n,;/U,, and our procedure for the
calculation of x(q,w) is as follows. (i) Set up and solve
the Boltzmann equation for the nonequilibrium situation
being investigated. (ii) Linearly perturb the Boltzmann
equation with an additional small sinusoidal force
iqU,e"'9*~ ! to produce a distribution function response
f1(ple’@*=Y and solve for f,(p). (iii) Integrate f,(p)
with respect to p to obtain n;. The ratio n,/U, gives
x(q,o), and the dielectric  constant e(q,»)
=1—4me*y(q,»)/q* While this method has been used
to determine y in equilibrium”® and for the study of
ballistic transport through a heterostructure,’ this is the
first application to the calculation of the nonequilibrium
susceptibility.

As an example of this procedure, we study the case of a
parabolic-band, nondegenerate semiconductor in a uni-
form, static electric field exerting a force F on the car-
riers in the z direction, with the collisions approximated
by a particle-conserving relaxation-time model'® giving
the Boltzmann equation'!

S (P, X) = f q(P,X)
= . (1)
op, T

This collision model, while being only a rough descrip-
tion of a real system, nonetheless is useful as a heuristic
tool because of its simplicity. The solution for the distri-
bution function f(p) for Eq. (1) [step (i) above] is
straightforward.'>!*  Insertion of U,e/9*~@) and
f1(ple’@*=eY into the Boltzmann equation gives a
differential equation for f(p), which, when solved [step
(ii) above], yields

ot (p;)*—p?
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This equation can be interpreted by the Chambers path-integral formulation of the Boltzmann equation.!* The first
term in the bold parentheses in Eq. (2) is due to the carriers which get swept by the small added potential into the path
leading to p and are not scattered while on the path. The second term is due to carriers which are scattered into the
path leading to p and are not scattered again while on the path.

After integrating f,(p) over momenta to find n, [step (iii) above], we obtain the nonequilibrium field-dependent sus-

ceptibility
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where I, =v.,7=[(2ksT/m)1"?*r, v=p/m, and
v,=Fr/m. Figure 1 displays xr(q,») for v, -G=2vy,.
Below, we examine the large- and small-q limits of
Xr(q,).

Large-q limit of Xp-.
proaches

In this limit, the Eq. (3) ap-
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This is the result for y of a collisionless plasma with no
external fields,” with carrier distribution f(p). This ex-
pression is valid only for wavelengths small enough so
that (a) there is no significant scattering in the time that a
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FIG. 1. The imaginary (dashed lines) and magnitude of real
(solid lines) parts of the nonequilibrium static susceptibility
xr(q, ©=0)/(n/kgT) for v,-G=2v,,. The bold lines are for
obtained from the Boltzmann equation [Eq. (3)]. The thin lines
are Xrpp, an approximation obtained from the drift-diffusion
equation [Eq. (5)]. The real parts are negative, except for the
bold curve for g/, <4. For ¢—0, X pp approximates the imag-
inary part of y accurately, but there is a discrepancy in sign for
the real part. This discrepancy can be removed by the inclusion
on a field-gradient term in the drift-diffusion equation (see Ref.
17). For g — o, xr approaches the form for a collisionless plas-
ma with distribution function f(p), because the carriers are not
significantly scattered or accelerated by the static field over the
distance of a wavelength. In this limit, ¥ pp is a poor approxi-
mation.

carrier takes to traverse the distance of a wavelength, al-
lowing us to ignore the effects of collisions, and (b) the en-
ergy gained from the static field by a carrier in traversing
a wavelength is not significant compared to the kinetic
energy it already possesses, allowing us to ignore the
effect of the uniform electric field. While Eq. (4) was de-
rived from a relaxation-time model, it should describe x
for any collision model so long as the above conditions
are met and quantum effects such as the finite spatial ex-
tent of the carrier wave function can be ignored. For the
relaxation-time model used above, these constraints on
the wavelength are quantified by (a) ¢ >>1/[,;, and (b)
q>F/kgT.

Small-q and. -o limit of xp. In the slow spatial-
temporal variation limit g/,;, and wr<<1, Eq. (3) can be
approximated by making asymptotic expansions of the
numerator and denominator. To understand Yy(q,®) in
this limit, we employ the drift-diffusion equation
(j=nv,(F)— 3}, D;;(F)(dn /3x;)X; [where D;(F) is
the field-dependent diffusion tensor]) which is valid in
this slow g, variation limit.!”> This equation, together
with the continuity equation V-j+0dn /3t=0, yields the
susceptibility

v, ;

3
n 3 44;
o1 OF;

Xr,pp(Qq,0)=— 3 (5)
i(Vd'q_a))+ 2 DU(F)q,qj
ij=1
The diffusion tensor can be obtained from the current-
noise power spectrum,'® which, in turn, can be calculated
using a Green-function technique;'> for the relaxation-
time model D,=kpyT(1+2v]/v})7/m, D, =D,
=kpTT/m, and Dij=0 for is~j. These results, together
with dv,;/dF;=8;7/m (8; is the Kronecker delta),
when substituted into Eq. (5), yields an expression for
Xr,pp(q,®) that agrees with the small g, asymptotic ex-
pansion of Eq. (3) to lowest order in w and ¢, even when
the first-order terms cancel in the denominator (i.e., when
0=v,q)."

Equation (5) approximates Eq. (3) only if w7 <<1 and
1/g >>max(vy,v,, )7, i.e., when quasi-steady-state condi-
tions are achieved, and carriers are not ballistic over the
distance of a wavelength. When these conditions are not
met, Eq. (5) does not accurately represent Eq. (3), as
exemplified by Fig. 1. However, when these conditions
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are satisfied, Eq. (5) is valid even in real systems, and not
just for the relaxation-time model used here. Equation
(5) can then be used to generalize the Debye-Hiickel re-
sult ¥x(q, ®=0)=—n /kyT to systems in a static electric
field, where T is replaced by the longitudinal noise tem-
perature T, .

The longitudinal noise temperature T, is defined as
the generalization of the Nyquist relation between the
current-noise spectrum and the impedence of a sys-
tem,'®!® and it obeys a generalized Einstein relationship
kgT, ,=eD,, /ii,,, where fi,,=0dv,,/dE,, for v, parallel
to z. On the other hand, for q parallel to v; and
w=v,-q, Eq. (5) gives x(q, o=v,-q)=nf,, /eD,,. Com-
bining these results yields

Xra=q%, 0=v;Q)=—7—""— (g—0). (6

ks Ty

Hence, the longitudinal noise temperature is a measure of
the long-wavelength susceptibility for a wave moving at
the drift velocity of the carriers. Thus, a negative T,
(due to a negative differential conductivity) gives a posi-
tive susceptibility, which is indicative of the existence of a
plasmon instability, and the concomitant Gunn effect.

Knowing xy(q,®) allows one to calculate the density
of carriers around an external charge. Figure 2 shows the
redistribution of carriers around an ionized impurity in
the presence of an electric field. The shift in the centroid
of the screening charge produces a dipole field at large
distances from the impurity. In the relaxation-time mod-
el the long-wavelength limit, yp(q, ®=0)—ing?/F-q,
implies a long-range effective potential

_ QimpF'r

73 (r—o), (7)
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corresponding to an effective dipole formed at the impur-
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FIG. 2. Contours of the screening electron density (multi-
plied by 100) around a negatively charged impurity, for
vy /vy =1.0, with 0,7=1 (@, is the plasma frequency). The
densities of adjacent contours differ by a factor of 2. These pa-
rameters correspond to, e.g., GaAs with n=10"% cm™3,
7=2X10"" s, at 77 K and a field of 3.5X10° V/cm. The shift
of the centroid of the screening cloud (denoted by +) from the
position of the impurity (denoted by the dot) creates a long-
range dipole field, which increases the ionized-
impurity—scattering rate. For the above parameters, the screen-
ing le?gth I, =(eokp T /4mwne?)'’? is 40 A and the dipole length
is 60 A.
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ity, QimpF/4ﬂ'ne2 (where Q;,, is the charge on the im-
purity).

The range of ¢.4(r) in Eq. (7) is much longer than the
Debye-Hiickel screened Coulomb potential. This implies
that hot carriers are not as effective in screening a static
charge as carriers in equilibrium, and consequently,
ionized-impurity —scattering rates are enhanced when
carriers are hot. Figure 3 shows a rough estimate of the
magnitude of this enhancement. The carrier-ionized-
impurity —scattering rates were first calculated using the
equilibrium (Debye-Hiickel) dielectric function €(g),
and then recalculated using the nonequilibrium dielectric
function €,4,.4(q). The scattering rates are given by

2 2
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where the f(#k) used in both cases is the solution of Eq.
(1). .

Figure 3, displaying the ratio 7.q/T,oneq as a function of
v,, shows that the effect of nonequilibrium screening in-
creases with decreasing temperature. At equilibrium, the
typical momentum transfer due to a collision of a carrier
with an ionized impurity is ~gqg5=(2mkyzT)'"?/#, the
thermal de Broglie wave vector. Screening influences
momentum transfers of magnitude zero wup to
~qy.=(4mne?/exky T)'/2. Therefore, the larger the ratio
q../qq4p, the larger the fraction of collisions that are
affected by screening, and hence the more sensitive the
system is to changes in the behavior of the screening.
Lowering the temperature increases g, /qqg and hence
enhances the effect of nonequilibrium screening. Figure 3
shows that under favorable conditions the percentage in-
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FIG. 3. Increase in the ionized-impurity —scattering rates due
to nonequilibrium screening, for different temperatures. The
densities are varied to keep the chemical potential u, a fixed ra-
tio of kzT. The effective mass used was that for GaAs. At
T=4, 20, and 77 K, n =10, 1.14X 10"%, and 8.5X 10" cm 3,
and g, /g, =0.67, 0.45, and 0.32, respectively. When g, /q,
increases, the fraction of carriers influenced by screening in-
creases, enhancing the effect of nonequilibrium screening. In
the inset the scattering rates with equilibrium (solid line) and
nonequilibrium (dashed line) screening are shown for the case of
T=4K.
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crease in the scattering rates can be fairly large, and so
reanalyzing old data on high-field transport may prove in-
teresting.'®

Other scattering processes in nonequilibrium situations
are similarly screened by €,,,,4(q,®). In carrier-phonon
scattering, unlike impurity scattering, screening is not
critical in making the scattering rates finite (and often is
ignored altogether) and so the effect of nonequilibrium
screening is expected to be much smaller. Carrier-carrier
scattering differs from impurity scattering in that
carrier-carrier interactions are dynamically screened,

which already reduces the effectiveness of screening.?’

Therefore, further reduction due to nonequilibrium
screening is also expected to be smaller.
In conclusion, we have presented a method utilizing
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the Boltzmann equation for calculating the screening due
to nonequilibrium carrier distributions. In applying the
method to a system in a uniform, static electric field, we
have (i) derived a nonequilibrium Debye-Hiickel-type re-
lationship, Eq. (6), and (ii) shown that for low T (but for a
nondegenerate system) the increase in the ionized-
impurity —scattering rate due to screening by hot carriers
can be substantial.
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