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Diffuse scattering of x rays at grazing angles from near-surface defects in crystals
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We derive the cross section for the intensity of diftuse x-ray scattering under conditions of grazing
incidence and exit in the vicinity of Bragg rejections induced by near-surface defects. The theoreti-
cal results for a simple model are compared with first measurements on Si single crystals implanted
with 80-keV As ions. Reasonable agreement is obtained for a profile of a defect distribution corre-
sponding to that of the collision energy deposited by the implanted ions.

I. INTRODUCTION

Lattice distortions caused by impurities, vacancies, and
interstitials in real crystals give rise to a diffuse scattering
of x rays which carries detailed information on the loca-
tion, symmetry, and strength of such defects. In particu-
lar, the long-ranged part of the static displacements leads
to a strongly enhanced diffuse intensity in the vicinity of
the Bragg peaks which is called Huang scattering.

In the past, measurements of the Huang scattering
have been made primarily on simple systems with ran-
domly distributed defects at low concentration to study
lattice distortions in the bulk of materials. ' In this paper
we extend the method to investigate defect configurations
near the surface of crystals.

The confinement of x-ray scattering to a subsurface
layer is achieved by employing grazing incidence or exit
angles. In this diffraction scheme the width of the il-
luminated layer is controlled by the penetration depth of
the interior evanescent wave associated with total
reAection. Following first experiments, ' several experi-
mental investigations of the near-surface structure of
solids have been reported (e.g. , Refs. 5 —7), where Bragg
diffraction under condition of grazing incidence and exit
was observed. In Sec. II the expression for the cross sec-
tion of the surface-specific Huang scattering is derived.
In Sec. III we describe a first experiment on a Si crystal
implanted with As ions and in Sec. IV we compare the re-
sult with the theoretical predictions.

This investigation demonstrates that surface Huang
scattering can be employed to yield depth-resolved infor-
mation on the near-surface defect distribution in a non-
destructive way.

II. THE CROSS SECTION
OF SURFACE DIFFUSE HUANG SCATTERING

We consider a plane electromagnetic wave
E,.(R, t)=E;exp[i(K; R cot)] incident up—on the plane
surface of a crystalline material with an average index of
refraction n =1—(2mr, p/K, ), where r, =e ./mc and P
denotes the spatially averaged electronic density in the
pure crystal. The sample occupies the half-space z)0.
The refracted wave E, (R, t) propagates in the sample
with a wave vector K;, l K; l

=K; =nK;, and is scattered

by the inhomogeneity p(R)—:p(R) —p in the electronic
density p(R).

In a perfect crystal the lattice periodicity of p(R) leads
to a dynamic coupling among interior beams having wave
vectors which-differ by a reciprocal-lattice vector. Ac-
cording to the dynamic diffraction theory this coupling is
only effective in a narrow angular region (Darwin region)
where it describes the structure of the Bragg-reflected in-
tensity. ' Here we are concerned with the difFuse
scattering induced by randomly distributed impurities
which arises in the vicinity of the Bragg rejections but
well outside of the Darwin regime. Therefore, a kinemat-
ical description employing the first Born approximation
for the scattering of a single incident albeit refracted
beam should be sufficiently accurate. In this approach
the scattering cross section is given by

where Q=K,. —K& and

1(Q)= Jd R e'~ p(R) .

The average of I (Q) in (1) is a thermal average as well
as an average over the distribution of the defects. The
geometrical factor a&,. will be specified later; it depends
on the polarization of the incident beam and includes
transmission coe%cients arising from the refraction of the
incoming and the elastically scattered outgoing waves at
the sample surface. The scattering geometry is shown in
Fig. 1. We split vectors into their two-component lateral
part and their z component perpendicular to the surface
so that R=(r, z) and Q=(k,. —k/, tc) with the vertical
component

tc= [(Kn) —k ]' + [(K )
—k ]'

=K[(sin a,. —sin a, )'~ +(sin aI —sin a, )' ], (3)

where K = / coIcn (3), a, denotes the critical angle for
total external reflection as determined by sin o.,=1—n .
Since n & 1, the z component K becomes complex with
I1TlK )0 if o,', & a, or aI & a, . In such cases the z integra-
tion in I is practically confined to a surface layer of
depth = (Imtc) ' which is typically of the order of
50—100 A. As long as Q~O, p(R) may be replaced by
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with the static Debye-Wailer exponent

M (Q)=pc, [f'+V(Q)' ]
S

(9)

FIG. 1. Diffraction geometry. Incident (K;) and diffracted
(K&) beam wave vector. The specular beam is not shown. The
reciprocal-lattice vector H is perpendicular to the (220) planes
of a single crystal. The (220) planes make an tilt angle 4 with
the normal surface vector. 0' is defined by sin'0 =H, /lHl.

p(R) which is a superposition of localized electronic
charge densities

p(R)=g p (R—R —5U ) .

The displacements 5U —=U —( U ) from the equilib-
rium lattice positions R in the reference lattice are due
to thermal phonons and static fluctuations of the internal
stress caused by the defects.

With p(R) from (4) we have

1(Q)=QF (Q)e (5)

V' (Q)=1+iQ G' —(1+f' )exp(iQ G' ) .

For the sake of completeness the direct (Laue-) scatter-
ing from defects with amplitudes E, has been introduced,
although its contribution is negligible if t.", ((1. Like-
wise, the Debye-Wailer factor exp( —M ) may be re-
placed by unity, provided the sum in (9) converges, which
holds for pointlike defects and compact clusters but ex-
cludes extended line defects. '

We specialize now for diffuse scattering near a Bragg
reflection with reciprocal-lattice vector H=(h, O) lying
parallel to the surface. Thus Q=(h+q, Ir)—=Q+h. If
H, &0, then Ir must by replaced by Ir H, . —

The leading singular term in the cross section for q~0
arises from the long-distance behavior of G'
—lR —R, l

. This contribution is subtracted in
V' (Q), which only contains short-range parts. As a fur-
ther simplification we neglect surface effects in F and
M by setting (F (Q))exp[ —M (Q)]=F(h). Hence,
for small q values and after neglecting the Laue term we
arrive at

where F (Q) is the atomic scattering factor. We assume
that the thermal average and the average over the defect
distribution factorize, which holds strictly in a harmonic
lattice. The former yields thermal Debye-Wailer factors
which we absorb in F (Q) and a thermal diffuse scatter-
ing. Since we focus attention on distortion scattering, we
may eliminate the thermal contribution by subtracting
the diffuse intensity of a defect-free sample. For the
defect-induced displacements, denoted by U, we employ
the usual linear superposition

U =Q6' r, ,

where the sum runs over defect sites R, and ~, =0, 1 are
occupation numbers with (~, ) =c„ the local concentra-
tion of defects. Similarly, we have

F (Q)=F (Q) I++f' ~,

for the dependence of F upon defects. The form factors
F of the defect-free lattice will also be inhomogeneous
because of the near-surface relaxation in the lattice posi-
tions.

Our basic assumption is that the defects are distributed
independently with a small concentration c, &(1. The
average on the configurations [r, ] can then be carried
out straightforwardly, as for bulk scattering, " with the

iq r, F(h)
A, =e ' d r dziQ. G(r, z, z, )e' 'e'"

V~ 0

Q G(QI, ) .
V~

In (11) we employed the translational symmetry in lateral
directions and the continuum approximation for lattice
sums, with v, denoting the volume of the unit cell. A fur-
ther discussion of this approximation is given later [fol-
lowing Eq. (21)].

Substituting (11) into (8) we obtain ultimately

f dz'p (z')IQ G(Qlz')I',
V~ 0

vyith the illuminated surface area V and the density of de-
f'ects pD(z)—:(pD(R) ). Equation (12) corresponds to the
well-known expression for the Huang scattering in the
bulk case." The modifications arise solely from the bro-
ken translational symmetry in the z direction perpendicu-
lar to the sample surface. In (12), pD(z) describes the
density profile of the defects. Likewise, the kernel
G(Qlz) varies with the depth z because of boundary con-
ditions for the displacemeats at the surface z =0.

As in the bulk case, the behavior of G(Qlz) for values
of q which are small compared to inverse lattice distances
may be obtained from continuum elasticity, whereby the
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defects are represented by force dipoles. The internal
stress tensor reads [U(R)=U (R)]

o. p=C p ~B U~, (13)

with the elastic constants C
& &. The mechanical equilib-

rium conditions are

version of (6):

U(R)= fd'R'G(R;R')pD(R') . (15)

From (13) and (14) we infer that in the semi-infinite
system

Biota p(R)=P pBgpD(R), RH V

np(R)cr ii(R)=0, RE8V
(14)

Bg C
& G (R;R')=PB 5(R—R'), R, R'E V

(16)
BsC 3 sG (r, 0;R')=0, R'EBV .

where we assume the surface (i.e., "boundary" ) of the
sample, BV, with unit vector n to be stress free. We take
the defects to be pure dilation centers. Then the force-
dipole tensor is diagonal, J' &=J'6 &. The displacements
obeying Eq. (14) may then be written in the continuum

In order to proceed analytically we finally simplify to
an elastically isotropic material so that C

& &

=~& g~s+p(& r&ps+le s&s~). The solution of Eqs. (16)
for the partial Fourier transform G(qIz, z') can be ob-
tained by standard methods and reads

T

—(A, +2p)G(qI, ') = 'q ——8 ' ' + q 2 q +2' ~+V ' X+V
(17)

The first term on the right-hand side of (17) gives G for the infinite medium, and the second term arises from the
boundary condition of a stress-free plane surface at z =0. For Eq. (12) we need the additional Fourier-Laplace trans-
form with respect to z, which is found as

r

A, +2@ .——,, ;, h q q, q p(iver q)+i'(p—+A, ) 2izp+A(iver , q)—
q +K q +ir (@+A)(iraq),

.— (P+~)(&&

After collection of terms, the final result for the scatter-
ing cross section, which is proportional to the experimen-
tally observed diffuse scattered intensity I~, is

IF(h) I'
S (Q)7& Qf&dQ v,

(19)
S(Q)= f "dz' IQ G(QIz') I'PD(z') .

0

For an incident wave with electric field polarized perpen-
d.icularly to the plane of incidence, the factor af; is given

b

a&;=IT; I (IT&I cos 20+IT/I sin 2gsin a&),

where cos20=k;.kf and

2 slnei f
Ti f sinn, f+n sinn, f

Tgl = 2 slnef

sinef + n sinn&

(20)

(21)

The glancing angles are related through Snell's law,
cosei f 6 cosei f '

Let us go back for a moment to Eq. (11), where we in-
troduced a continuum approximation for lattice sums.
Thereby we tacitly assumed the reference lattice to be
homogeneous. This is not quite correct, since the lateral-
ly averaged defect distribution varies with depth z. The
averaged displacement (U(R)) arising from pD(z) may
be estimated from Eqs. (13) and (14) for dilatation clus-

ters and with isotropic elastic constants. If we ignore
stresses at the lateral edges of the sample we find
(U(R)) =(0, 0, u, (z)) and

u, (z) = f 'dz'pD(z') .
A, +2P 0

(22)

VS(Q)- k+p
Ih.-+i I'

2qIir I'
(23)

which predicts a q
' singularity. This is in contrast to

In principle this lattice distortion leads to an inhomo-
geneous index of refraction n(z) in the surface layer,
where pD(z)&0. However, the deviation of n(z) from
its bulk value n is numerically negligible: %1th
pD(z ) lD)=0, lD =O(10 ' cm), P/(A+2@) =O(10
cm ), and no =0(10' cm ) for the number of defects
per unit area as typical values for point defects in Si pro-
duced by ion implantation to a medium dose, we obtain
u, (lD)=O(10 ' cm) for the maximum displacement and
average strain e„=O(10 ), yielding In(z) —nI
=

I
n —1

I
e„=0 (10 ).

It is instructive to evaluate (19) in the angular regime
of total refiection (a, (a, or a& (a, ) for a constant den-
sity pD(z) =pD and to compare with the intensity for bulk
Huang scattering. As we pointed out before, the scat-
tered intensity in the case of Im~)0 comes from a sur-
face layer whose depth can be controlled by variation of
a; and a&. The leading term in S(Q) for q~0, Im~) 0,
1S

2
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the q behavior of the bulk Huang scattering. The
latter may also be obtained from (19) for angles
a; = —nf ))a„ i.e., ~=0, which formally yields an
infinite penetration depth. Of course, we have to take
into account absorption, which can be done simply by
keeping a finite value of (Ima) ' as determined by the ab-
sorption length. We then find for Re~~0 and small q
values that

10

~&

0&

p
0 1

a~/ a.
I

2

a& = 0 63a,
0.00

3

, lh. q+ 1 I',
q

(24)

where ND=9pD/Imv is the number of defects in the
scattering volume.

In order to illustrate the angular dependence of the
scattered difFuse intensity as given by (19) we discuss
some q scans chosen in view of the experimental situa-
tion. Let us consider the projections k; and kf of the ex-
terior wave vectors K; and Kf, starting in the Bragg po-
sition with a; =af & a, (see Fig. 2). After rotation of kf
by the angle y with fixed nf, the resulting deviation from
the Bragg reflection is q ("q scan"). Simultaneous rota-
tions of k; and kf by —y at fixed cx; =af yields q~, being
practically perpendicular to the reciprocal-lattice vector
H=(h, 0) for small values of ~q&~ ("q~ scan" or "co scan").
Alternatively, k;~k' and kf kf gives qI~

which is
strictly parallel to h ("q~~ scan" or "8-28 scan"). If af is
now varied, then the tails of q, q~~, and q~ move slightly
along the directions of kf and kf, as indicated schemati-
cally by the heavy marks.

To exhibit the purely geometric features of the cross
section, we take a homogeneous defect concentration
pD(z) =pD within the sample. The later comparison with
experimental data will be based on a more realistic defect
distribution. We choose the relevant ratio of the Lame
constants p/(A, +p)=0. 5 and to include absorption we
replace sin a, by sin a, +iP in ~ with P = —2. 5 X 10

Figure 3 shows the dependence of the diffuse intensity
on af/a, for fixed ~p~ and a;/a, (1 near the (220)
reflection in Si with a wavelength of 1.32 A: curve (a) is

p
Q

0 1 a~/a,
I

3

2-
4

~ i+0

0Q

p 1
a~ / a,

2 3

FIG. 3. af profiles of the diffuse intensity at the Bragg point
(q=o if a;=af); (a), (b), and (c) for deviation angle cp=0. 1'
along two different paths in reciprocal space.

for y=O. The strong peak at af =e; occurs in the vicini-
ty of the Bragg reAection, whereas the second lower max-
imum arises from the strong variation of the penetration
depth when ~f =~, . The o.f profiles for

q~~
and q, with

~y~ =0.1' are displayed by the curves (b) and (c), respec-
tively. Because of q~.h=O there is a strong reduction of
the intensity in the q~ scan relative to the

q~~
scan. In Fig.

4 the q dependence for the q scan is plotted for different
fixed values of o.f. It is noteworthy that the crossover

10

10
cf

10-s.
~&

10~
10 10

qa/zn
10 '

FIG. 2. Scattering geometry in the surface. For further in-
formation see text.

FICx. 4. q dependence of the diffuse intensity in the q-scan
mode, with the lattice constant of Si, a =5.43 A. a;=1.26a, .
Solid line, af =0.7a, ; dashed line, af =1.0a, ; dotted line,
af =1.26a, .
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2-

0
0 500 )000

FIG. 9. Defect densities used in the theoretical calculations.
Dotted line: defect density I (constant density). Solid line, de-
fect density II, which corresponds to the dependence on z of the
nuclear collisional energy deposited by the incident ion; dashed
line, distribution in z of the implanted As ions. The functional
dependence of densities II and III on z was chosen according to
a TR.IM Monte Carlo simulation (Ref. 12).

tation and annealing. To our knowledge no experimental
information on the defect distribution from TEM or RBS
measurements is available after low-dose (6 X 10'
As/cm ) implantation with 80-keV As ions. For each de-
fect density the theoretical spectra for all three different
cx; were scaled by one unique factor. It was chosen by a
least-squares fit of the theoretical spectra to the experi-
mental distributions for u; =0.73o,

The theoretical curves are given in Figs. 7 and 8 along
with the experimental results, cz&-integrated theoretical
curves were obtained by numerically integrating theoreti-
cal distributions in the range of 0&a&~2. 5o;, . Agree-
ment is best for defect density II. In the a&-integrated
mode the functional dependence of ID on q, and its
characteristic changes with o.&, are reproduced satisfacto-
rily. Small but significant deviations occur at the smallest
q values —probably caused by Bragg contributions, and
at 1arge q for o.; ~a, . The scaled intensities disagree at
a, =0.98m, . This may be due to the fact that near
a; =a„ intensities vary sensitively with o.;, so that the ex-
perimental error in the absolute determination of o.;
(b,a, =0.04a, for this particular measurement) may have
appreciable infiuence. In the aI-resolved mode we find
satisfactory agreement at all angles a;, except for small
deviations in the dependence of ID on a& at u;, a& & o,

Results for defect densities I and III are inferior. For
defect density I at a;=1.23'„calculated intensities are
clearly too high [Figs. 7(c) and 8(c)]. Results for defect
density III disagree with experiment with respect to the
dependence of ID on q and on o.; at o.;=0.98', and at
o.'; =1.23m, . The observed deviations may be understood
in a qualitative way. Defect density I is too high at large
z, and thus causes too high a diffuse intensity at o.; &o,
Defect density III is too small at small z, and produces
only small diffuse intensity at o,'; &o,', . Since intensities
were scaled for the measurement at a, =0.73o;„overly
high scaled intensities result for o.; ~ o,

The satisfactory agreement of experiment with theory
encourages us to conclude that implantation produces

lattice defects that cause appreciable distortion of the
host lattice. Their distribution coincides approximately
with the distribution of deposited collisional energy.

The theoretical treatment is based on some major as-
sumptions: (i) the defects act as pure dilation centers; (ii)
the scattered intensity can be described within the
Huang-scattering approximation, and (iii) the defects are
arranged in space in an uncorrelated way. The degree to
which these assumptions are fulfilled in our real situation
will now be brieAy discussed.

(i) The single measurement along the path in reciprocal
space (q scan, see Fig. 2)—which roughly coincides with
a direction parallel to the reciprocal-lattice vector —is
not sensitive to the presence of nondiagonal terms in the
dipole-force tensor of the defects. Future measurements
will explore several different paths in reciprocal space
(e.g. , will realize

q~~
or qi scans), and thus will enable us to

identify the symmetry of the displacement field of the de-
fects, as well as allow a more detailed verification of
theoretical predictions.

(ii) The Huang approximation is applicable as long as
the condition Q u«1 is fulfilled. That is the case for
most kinds of defects at small enough ~Q~. Mayer and
Peisl' measured defect-induced diffuse scattering after
fast-neutron irradiation at room temperature in bulk Si
single crystals. Since the mean damage energy due to fast
reactor neutrons is comparable to that due to 80-keV As
ions, the resulting damage pattern should be comparable.
The authors observed Huang scattering —with the
characteristic bulk 1/q dependence —up to qa /2m
=6X 10 near the (440) reAection, and deviations from
this behavior at larger q. The discrepancy between our
experimental spectra and theory for qa /2vr ) 5 X 10 [cf.
Figs. 7(b) and 7(c)] possibly arises in the same way from
the inAuence of strong distortions in the vicinity of the
defects. These distortions may also cause the small an-
tisymmetric contributions to the defect-induced diffuse
intensity.

(iii) Since defects are produced by ion irradiation in a
correlated way (in defect "cascades"), one expects them
to be arranged in agglomerates, possibly in the form of
dislocation loops. After reactor-neutron irradiation, '

evidence for the presence of small agglomerates of inter-
stitials and vacancies was found. This correlation will re-
sult in an enhancement of IL, by a constant factor at
small enough q, where the condition qR, &1 is fulfilled
(R, is the spatial extent of the correlation). Since in this
q range the functional dependence of ID on q remains un-
changed, the neglect of defect correlations appears to be
justified.

The theoretical treatment contains some further
simplifications, e.g., an isotropic medium is assumed, and
the change of elastic constants near the surface is neglect-
ed. The comparison with experimental results shows that
within these approximations the gross features of the ex-
perimental data for small values of q are reproduced sat-
isfactorily.

The investigation of near-surface defects by measure-
ment of diffuse scattering under conditions of grazing in-
cidence and exit promises to be of considerable practical
importance. The method is nondestructive, and allows



39 DIFFUSE SCATTERING OF X RAYS AT GRAZING ANGLES. . . 8457

the study of structure, symmetry, and strength of various
types of defects, as well as of their distribution with the
distance from the surface. Defect correlations and
changes in the defect structure during thermal annealing
treatment can be observed. Only in some instances are
there complementary methods which can give compara-
ble information, as cross-sectional TEM (a destructive
method) for the study of two-dimensional defect struc-
tures, or channeling for low concentrations of single de-
fects.

In order to fully exploit the potentialities of the
method, future measurements will improve and expand
these first experiments. The structure and symmetry of
defects will be studied by determining several different
appropriate combinations of components of the dipole-
force tensor. To this end, measurements in different
directions in reciprocal space are necessary. The dipole-
force tensor in absolute units can be determined by nor-
malization of scattered intensities in terms of the incident
intensity.

Detailed information on the defect distribution is con-
tained in the dependence of ID(q) on ct, and tzf. In this
context the apparent insensitivity of the functional
dependence of ID(q) on ctf should be considered. It is
caused by the fact that the defect density present (com-
pare Fig. 9) varies slowly with z compared to the ex-
ponential damping of the fields. In this case detailed in-
formation on pD(z) can be extracted only by careful
analysis of high-resolution data. The significant enhance-
ment of the experimental above the theoretical curve at
ct, and af larger than a, [see Fig. 8(c)] can be explained
by a higher actual defect density at large z compared to

density II. In view of the limited amount of experimental
information, however, we yet refrain from an indepen-
dent determination of pD(z): more experimental data at
cz, )n„where the behavior of ID with q and 0.'f depends
sensitively on pz(z), are required.

The scope of the theoretical treatment will be expand-
ed to include also strong distortions in the vicinity of de-
fects. A significant improvement of the agreement with
experiment is expected concerning the behavior at large q
and the antisymmetric contributions. The elastic anisot-
ropy of the host crystal can be taken into account explic-
itly in numerical calculations.

V. SUMMARY

We have presented the theory of Huang diffuse scatter-
ing under conditions of grazing incidence and exit. The
first experiments essentially confirm the predictions of
theory. They allow the determination of the depth distri-
bution of defects, induced in Si single crystal by implan-
tation with 80-keV As ions. The method applied prom-
ises to be of considerable importance for the study of the
real structure of solids near their surface.
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