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Diffuse scattering of x rays at grazing angles from near-surface defects in crystals
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We derive the cross section for the intensity of diffuse x-ray scattering under conditions of grazing
incidence and exit in the vicinity of Bragg reflections induced by near-surface defects. The theoreti-
cal results for a simple model are compared with first measurements on Si single crystals implanted
with 80-keV As ions. Reasonable agreement is obtained for a profile of a defect distribution corre-
sponding to that of the collision energy deposited by the implanted ions.

I. INTRODUCTION

Lattice distortions caused by impurities, vacancies, and
interstitials in real crystals give rise to a diffuse scattering
of x rays which carries detailed information on the loca-
tion, symmetry, and strength of such defects. In particu-
lar, the long-ranged part of the static displacements leads
to a strongly enhanced diffuse intensity in the vicinity of
the Bragg peaks which is called Huang scattering.

In the past, measurements of the Huang scattering
have been made primarily on simple systems with ran-
domly distributed defects at low concentration to study
lattice distortions in the bulk of materials.! In this paper
we extend the method to investigate defect configurations
near the surface of crystals.

The confinement of x-ray scattering to a subsurface
layer is achieved by employing grazing incidence or exit
angles. In this diffraction scheme the width of the il-
luminated layer is controlled by the penetration depth of
the interior evanescent wave associated with total
reflection.? Following first experiments,>* several experi-
mental investigations of the near-surface structure of
solids have been reported (e.g., Refs. 5-7), where Bragg
diffraction under condition of grazing incidence and exit
was observed. In Sec. II the expression for the cross sec-
tion of the surface-specific Huang scattering is derived.
In Sec. III we describe a first experiment on a Si crystal
implanted with As ions and in Sec. IV we compare the re-
sult with the theoretical predictions.

This investigation demonstrates that surface Huang
scattering can be employed to yield depth-resolved infor-
mation on the near-surface defect distribution in a non-
destructive way.

II. THE CROSS SECTION
OF SURFACE DIFFUSE HUANG SCATTERING

We consider a plane electromagnetic wave
E;(R,?1)=E;exp[i (K;-R —wt)] incident upon the plane
surface of a crystalline material with an average index of
refraction n =1—(27r25/K}?), where r,=e?/mc? and p
denotes the spatially averaged electronic density in the
pure crystal. The sample occupies the half-space z > 0.
The refracted wave E;(R,?) propagates in the sample
with a wave vector K;, |K;|=K;=nK;, and is scattered
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by the inhomogeneity 5(R)=p(R)—p in the electronic
density p(R).

In a perfect crystal the lattice periodicity of p(R) leads
to a dynamic coupling among interior beams having wave
vectors which differ by a reciprocal-lattice vector. Ac-
cording to the dynamic diffraction theory this coupling is
only effective in a narrow angular region (Darwin region)
where it describes the structure of the Bragg-reflected in-
tensity.>® Here we are concerned with the diffuse
scattering induced by randomly distributed impurities
which arises in the vicinity of the Bragg reflections but
well outside of the Darwin regime. Therefore, a kinemat-
ical description employing the first Born approximation
for the scattering of a single incident albeit refracted
beam should be sufficiently accurate. In this approach
the scattering cross section is given by?

do =

?6=rezaf,-<|l“(Q)f2) s (1)
where Q=K —Kf and

Q)= [d°R e QRp(R) . )

The average of I'(Q) in (1) is a thermal average as well
as an average over the distribution of the defects.. The
geometrical factor ay; will be specified later; it depends
on the polarization of the incident beam and includes
transmission coefficients arising from the refraction of the
incoming and the elastically scattered outgoing waves at
the sample surface. The scattering geometry is shown in
Fig. 1. We split vectors into their two-component lateral
part and their z component perpendicular to the surface
so that R=(r,z) and 6=(k,-—kf,x) with the vertical
component

K=[(Kn)Z—kf2]1/2+[(Kn)2—k}]l/2
=K [(sin’a; —sin’a, )1/2+(sin2af—sin2ac 12y, (3)

where K =w/c. In (3), a, denotes the critical angle for

total external reflection as determined by sin’a, =1—n2.

Since n <1, the z component x becomes complex with

- Imk>0if a; <a, or ay <a.. In such cases the z integra-

tion in I' is practically confined to a surface layer of
depth mo(ImK)*1 which is typically of the order of
50-100 A. As long as Q5£0, p(R) may be replaced by
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FIG. 1. Diffraction geometry. Incident (K;) and diffracted
(K ;) beam wave vector. The specular beam is not shown. The
reciprocal-lattice vector H is perpendicular to the (220) planes
of a single crystal. The (220) planes make an tilt angle ¥ with
the normal surface vector. W is defined by sin¥=H, /|H]|.

p(R) which is a superposition of localized electronic
charge densities

p(R)=%p, (R—R, —8U,). 4)

The displacements 8U,, =U,, —(U,, ) from the equilib-
rium lattice positions R, in the reference lattice are due
to thermal phonons and static fluctuations of the internal
stress caused by the defects.
With p(R) from (4) we have
iQ(R,, +8U, )

Q)= F,,(Q)e , (5)
m

where F,,(Q) is the atomic scattering factor. We assume
that the thermal average and the average over the defect
distribution factorize, which holds strictly in a harmonic
lattice. The former yields thermal Debye-Waller factors
which we absorb in F,,(Q) and a thermal diffuse scatter-
ing. Since we focus attention on distortion scattering, we
may eliminate the thermal contribution by subtracting
the diffuse intensity of a defect-free sample. For the
defect-induced displacements, denoted by U2, we employ
the usual linear superposition

U2=3G)r, , ®)

where the sum runs over defect sites R, and 7,=0,1 are
occupation numbers with {7,) =c,, the local concentra-
tion of defects. Similarly, we have

F,(Q)=F2(Q) [1+§f;:,73] 7)

for the dependence of F,, upon defects. The form factors
F? of the defect-free lattice will also be inhomogeneous
because of the near-surface relaxation in the lattice posi-
tions.

Our basic assumption is that the defects are distributed
independently with a small concentration ¢, <<1. The
average on the configurations {7} can then be carried
out straightforwardly, as for bulk scattering,”!® with the
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TP —=KT)P=F ¢l 4,1,
iQR S—M = iQR ®)
A, =FPe "+ e ""(F,)iQG}, —V5)e "
m
with the static Debye-Waller exponent
Q= ¢, [f5+V(Q),] 9)
and
Vi (Q)=1+iQ-G3, — (14 £ )exp(iQ-G3, ) . (10)

For the sake of completeness the direct (Laue-) scatter-
ing from defects with amplitudes FSD has been introduced,
although its contribution is negligible if ¢, <<1. Like-
wise, the Debye-Waller factor exp(—»M,,) may be re-
placed by unity, provided the sum in (9) converges, which
holds for pointlike defects and compact clusters but ex-
cludes extended line defects.!”

We specialize now for diffuse scattering near a Bragg
reflection with reciprocal-lattice vector H=(h,0) lying
parallel to the surface. Thus Q=(h+q,x)=Q+h. If
H,-~0, then k must by replaced by k —H,.

The leading singular term in the cross section for q—0
arises from the long-distance behavior of G,
~|R,,—R|7% This contribution is subtracted in
V3 (Q), which only contains short-range parts. As a fur-
ther simplification we neglect surface effects in F,, and
M,, by setting (F,,(Q))exp[ —M,,(Q)]=F(h). Hence,
for small g values and after neglecting the Laue term we
arrive at

iqr, F(h) 2, = iqer i
~ s d . 12,2, IqQ'r,IiKz
A, =e ch fdrfo z1Q-Gl(r,z,z,)e'%e

s

=eiq"£l()—ll—)i(j-é(Q|zs) ) (11)
c
In (11) we employed the translational symmetry in lateral
directions and the continuum approximation for lattice
sums, with v, denoting the volume of the unit cell. A fur-
ther discussion of this approximation is given later [fol-
lowing Eq. 21)].
Substituting (11) into (8) we obtain ultimately

2
S| A2 ~F fowdz’ﬁD(z’)i(_)-G(le’)P , (12

F
vC

with the illuminated surface area ¥ and the density of de-
fects pp(z)={pp(R)). Equation (12) corresponds to the
well-known expression for the Huang scattering in the
bulk case.""!® The modifications arise solely from the bro-
ken translational symmetry in the z direction perpendicu-
lar to the sample surface. In (12), pp(z) describes the
density profile of the defects. Likewise, the kernel
G(Q)|z) varies with the depth z because of boundary con-
ditions for the displacements at the surface z =0.

As in the bulk case, the behavior of G(Q|z) for values
of q which are small compared to inverse lattice distances
may be obtained from continuum elasticity, whereby the
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defects are represented by force dipoles. The internal

stress tensor reads [U(R)=U?(R)]
UaB:CaﬁysayUa 5 (13)

with the elastic constants Cg,5. The mechanical equilib-
rium conditions are

aBO'aB(R):PaBaﬂOD(R), ReV
A5(R)o4(R)=0, REIV

(14)

where we assume the surface (i.e., “boundary”) of the
sample, AV, with unit vector . to be stress free. We take
the defects to be pure dilation centers. Then the force-
dipole tensor is diagonal, P,z =P85 The displacements
obeying Eq. (14) may then be written in the continuum

J
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version of (6):
UR)= [d°R'G(R;R")pp(R) . (15)

From (13) and (14) we infer that in the semi-infinite
system

395Cap,5G, (R;R)=P3,8(R—R’), R,R'EV "o
95C3,5G, (r,0;R")=0, R'EIV .

In order to proceed analytically we finally simplify to
an elastically isotropic material so that C,gs
=A8,58,5 T (84,0551 8,585,). The solution of Egs. (16)
for the partial Fourier transform G(q|z,z') can be ob-
tained by standard methods and reads

2 ~ 1 —glz—2 3utA 3uti _ .
Z(rA+2 N= |jG—2— glz—z'l 4 |5 |24 _o | 2K q(z+z)
P(k w)G(qlz,z')= |iG zqaz e iq [ Ao 2zq | —2 Ao +2zq | |e 17)

The first term on the right-hand side of (17) gives G, for the infinite medium, and the second term arises from the
boundary condition of a stress-free plane surface at z=0. For Eq. (12) we need the additional Fourier-Laplace trans-

form with respect to z, which is found as

A2p = ~ ’ ikz' -~ —gqz' -~
—-—P‘lizQ-G(le)=e h-qqzj_Kz—Fl —e ¥ |hg

After collection of terms, the final result for the scatter-
ing cross section, which is proportional to the experimen-
tally observed diffuse scattered intensity I, is

do |F(h)|?

L8 =2, S(Q
dQ .7reaf, Ucz (Q),

S(@= [ "dz' | 6(Qlz)pp") -

For an incident wave with electric field polarized perpen-
dicularly to the plane of incidence, the factor ay; is given

by?

(19)

ay=|TH(|TF? cos?26+|T}|?sin’20 sin’a,) , (20)
where 0052(9:/1;,- -/lEf and
Tl — 2sinq; s
b sina; ,+n sind; , ’ on
Tl= 2sinay

sin@, +n sina,

The glancing angles are related through Snell’s law,
cosa; r=n cosq; ;.

Let us go back for a moment to Eq. (11), where we in-
troduced a continuum approximation for lattice sums.
Thereby we tacitly assumed the reference lattice to be
homogeneous. This is not quite correct, since the lateral-
ly averaged defect distribution varies with depth z. The
averaged displacement (U(R)) arising from p,(z) may
be estimated from Egs. (13) and (14) for dilatation clus-

q +,u(ix—q)+i:c(y+k) 2ikpu+Alik—q)

q2+K2

(u+A)ik—q)? (u+A)ik—q)

(18)

f

ters and with isotropic elastic constants. If we ignore
stresses at the lateral edges of the sample we find
(U(R))=(0, 0, u,(z)) and

P
A+2u

In principle this lattice distortion leads to an inhomo-
geneous index of refraction n(z) in the surface layer,
where pp(z)5£0. However, the deviation of n(z) from
its bulk value n is numerically negligible: With
ppz>1p)=0, Ip=0(10"° cm), P/(A+2u)=0(10"%
cm?), and np =0(10" cm™?) for the number of defects
per unit area as typical values for point defects in Si pro-
duced by ion implantation to a medium dose, we obtain
u,(1,)=0 (107! cm) for the maximum displacement and
average strain €,=0(107°), yielding |n(z)—n|
=|n—1|g,=0(1077).

It is instructive to evaluate (19) in the angular regime
of total reflection (a; <a, or a,<a,) for a constant den-
sity pp(z)=pp and to compare with the intensity for bulk
Huang scattering. As we pointed out before, the scat-
tered intensity in the case of Imk >0 comes from a sur-
face layer whose depth can be controlled by variation of
a; and a;. The leading term in S(Q) for g —0, Imx >0,
is

u,(z)= fozdz’ﬁD(z’) . (22)

P

2
P | PF a2
A lh-g+ix)*, (23)

FS(Q)~
@ 2q|x|?

1

which predicts a ¢ ~° singularity. This is in contrast to
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the ¢ 2 behavior of the bulk Huang scattering. The
latter may also be obtained from (19) for angles
a;=—a;>a, ie., k=0, which formally yields an
infinite penetration depth. Of course, we have to take
into account absorption, which can be done simply by
keeping a finite value of (Imx) ™! as determined by the ab-
sorption length. We then find for Rek—0 and small g
values that

2

PN, Ling+12, (24)
g

FS(Q)~ m

where Np=3pp/Imk is the number of defects in the
scattering volume.

In order to illustrate the angular dependence of the
scattered diffuse intensity as given by (19) we discuss
some q scans chosen in view of the experimental situa-
tion. Let us consider the projections k; and k of the ex-
terior wave vectors K; and K, starting in the Bragg po-
sition with a; =a, <a, (see Fig. 2). After rotation of k,
by the angle @ with fixed a, the resulting deviation from
the Bragg reflection is q (“q scan”). Simultaneous rota-
tions of k; and k; by —¢ at fixed a; =a, yields q,, being
practically perpendicular to the reciprocal-lattice vector
H=(h,0) for small values of |p| (“q, scan” or “w scan”).
Alternatively, k;—k;" and k,—k) gives q; which is
strictly parallel to h (“q scan” or “6-26 scan”). If a, is
now varied, then the tails of q, q;, and q, move slightly
along the directions of k'f and k'f', as indicated schemati-
cally by the heavy marks.

To exhibit the purely geometric features of the cross
section, we take a homogeneous defect concentration
pp(z)=pp within the sample. The later comparison with
experimental data will be based on a more realistic defect
distribution. We choose the relevant ratio of the Lamé
constants u/(A+p)=0.5 and to include absorption we
replace sin’a, by sina, +if in k with B=—2.5X 107"

Figure 3 shows the dependence of the diffuse intensity
on a;/a, for fixed || and a;/a, <1 near the (220)
reflection in Si with a wavelength of 1.32 A: curve (a) is

FIG. 2. Scattering geometry in the surface. For further in-
formation see text.
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FIG. 3. a; profiles of the diffuse intensity at the Bragg point
(q=0 if a;=a,); (a), (b), and (c) for deviation angle ¢=0.1°
along two different paths in reciprocal space.

for =0. The strong peak at a,=a; occurs in the vicini-
ty of the Bragg reflection, whereas the second lower max-
imum arises from the strong variation of the penetration
depth when a;~a,. The a, profiles for q, and q, with
|| =0.1° are displayed by the curves (b) and (c), respec-
tively. Because of q,-h=~0 there is a strong reduction of
the intensity in the q, scan relative to the q; scan. In Fig.
4 the g dependence for the q scan is plotted for different
fixed values of a,. It is noteworthy that the crossover
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FIG. 4. g dependence of the diffuse intensity in the g-scan
mode, with the lattice constant of Si, @ =5.43 A. a;=1.26a..
Solid line, a;=0.7a.; dashed line, a,;=1.0a,; dotted line,
a,=1.26c,.
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from the asymptotic 1/g regime to the bulk 1/g? behav-
ior is nonmonotonic if both a;,a, > ..

III. EXPERIMENTAL DETAILS AND RESULTS

The samples were perfect Si single crystals of high pur-
ity, their surfaces were polished to industrial standard.
The normal to the (100) lattice planes formed small an-
gles W with the physical surface of the samples: for sam-
ple no. Si-1, ¥ was 0.8 mrad, for sample no. Si-2, ¥ was
1.8 mrad.

Sample no. Si-1 was implanted at ambient temperature
with As ions of 80-keV energy to a total dose of 6X 10!3
cm 2. Sample no. Si-2 was the unimplanted reference
sample.

The measurements were conducted at the three-axis
diffractometer'! at Hamburger Synchrotronstrahlungsla-
bor. The experimental setup is shown in Fig. 5. The syn-
chrotron radiation from DORIS II was monochromized
at a plane Ge(111) crystal (M), reflected at a Au-coated
mirror (MI), and collimated by slits S1 and S2. The
glancing angle of incidence of the x rays onto the sample
(S) was determined by measuring the exit angle of the
specularly reflected beam in the counter C behind slit S5.
The angle a; was changed by rotation of the sample
about the (110) lattice plane normal. The divergence Aq;
was 0.3 mrad, the divergence A6; of the incident beam in
the scattering plane was 2.9 mrad. The scattered intensi-
ty at and near the (220) Bragg reflection was detected in
the position-sensitive detector (PSD).

Distributions of diffuse scattered intensity were record-
ed in two different modes.

“a,-integrated” spectra were obtained by measuring
intensities at different 6, at one time in the PSD. A slit
in front of the PSD allowed the registration of scattered
intensity in the range 0<a,=<2.5a,. The admitted
divergence A0, in this case was 1.6 mrad (PSD in posi-
tion A4 in Fig. 5).

“a,-resolved” distributions were measured at one fixed

FIG. 5. Experimental setup. M, monochromator; MI, mir-
ror; S1-S85, slits; SF, scattering foil; MC: monitor counter; S,
sample; PSD, position-sensitive detector; C, counter. For the
measurement in the o -integrated mode the PSD and S4 are ro-
tated by 90° into position A. 6;: rotation about an axis perpen-
dicular to the sample surface. a;: rotation about an axis per-
pendicular to the (220) lattice plane.
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position of 6, recording intensities at different a, be-
tween 0 <a, =12a, at one time in the PSD (PSD in posi-
tion B in Fig. 5). In this mode the divergence A0, was
2.9 mrad, limited by slits .S3 and S4.

Figure 6 shows distributions of scattered intensity in
the “a,-integrated” mode for Si-1 (O, implanted), and
for Si-2 (+, unimplanted), at a; =0.98a,. At the wings
of the (220) Bragg peak, which is broadened by the reso-
lution function of the experimental setup, diffuse scat-
tered intensity is observed. In the implanted sample it is
enhanced and shows a slight asymmetry. The diffuse
background intensity in the unimplanted sample —which
at least in part is due to thermal diffuse scattering—has
to be subtracted in order to obtain the defect-induced
diffuse intensity I,. Since the reference sample had a
different misorientation angle ¥, the correct background
intensity at each «; for the implanted sample was ob-
tained by scaling the spectrum of the unimplanted sample
to yield the same integral Bragg intensity as the implant-
ed sample. The validity of this procedure was checked by
comparison of measurements on unimplanted samples
with different angles W.

As a next step these difference spectra were separated
into their symmetric and antisymmetric parts. Here we
do not consider the small antisymmetric contribution,
but focus on the symmetric part Ij:

Ij(g):= 1[I (+q)+Ip(—q)]

which is directly comparable to the results of the theoret-
ical treatment [Eq. (19)]. Figure 7 displays the o,-
integrated distributions of I} (g) for three different values
of a;. One should note that the functional dependence of
I}(q) on g, as well as the integral intensities, change
characteristically with «;.

At ga/2m=1.7X1072, a-resolved diffuse intensity
distributions were recorded for three different values of
a;. Difference spectra were formed in the way described
above. Figure 8 shows these a,-resolved distributions.
Within the error of experimental determination of a, the

exit angle a7** of the intensity maximum was equal to .,

10° -

10*

intensity (arb. units)

-0.1 -0.05 0.0 0.05 0.1
qa / 2m

FIG. 6. Diffuse intensity distribution around the (220) Bragg
reflection in the a-integrated mode for Si-1 (O, implanted with
80-keV As ions to 6X 10" cm™2), and for Si-2 (+, unimplant-
ed), for a; =0.98a,.
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FIG. 7. Symmetric part of the defect-induced diffuse intensi-
ty Ip in the a,-integrated mode for three different angles of
grazing incidence «; as indicated. Also shown are theoretical
distributions with different defect densities pp(z) (see Fig. 9):
solid line, defect density II; dotted line, defect density I; dashed
line, defect density III.

and we shifted the experimental intensity distributions in
ay to yield af**=a, in order to facilitate the comparison
with theoretical results. While the functional dependence
of I}, on a, does not vary appreciably with «;, the peak
height clearly does.

IV. DISCUSSION

Experiments were compared to results of the theoreti-
cal treatment presented in Sec. II. For three different de-
fect densities pp(z)—shown in Fig. 9—the defect-
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FIG. 8. Symmetric part of the defect-induced diffuse intensi-
ty I in the a,-resolved mode for three different angles of graz-
ing incidence a; as indicated, at ¢=0.24°. Also shown are
theoretical distributions with different defect densities pp(z) (see
Fig. 9). Solid line, defect density II; dotted line, defect density I;
dashed line, defect density III.

induced scattered intensities were calculated. Defect
density I is a constant density, densities II and III were
chosen according to the results of a TRIM (Ref. 12) Monte
Carlo simulation: density II corresponds to the depen-
dence on the depth z of the nuclear collisional energy de-
posited by the incident ion, density III to the distribution
of the implanted As ions (which are essentially immobile
at the implantation temperature). The validity of TRIM
simulations was confirmed repeatedly by Rutherford-
back- scattering (RBS) or transmission-electron-
microscopy (TEM) experiments (for a recent review see
Ref. 13) after implantation to high doses, or after implan-
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N

defect density

0 ' 500
z (&)
FIG. 9. Defect densities used in the theoretical calculations.
Dotted line: defect density I (constant density). Solid line, de-
fect density II, which corresponds to the dependence on z of the
nuclear collisional energy deposited by the incident ion; dashed
line, distribution in z of the implanted As ions. The functional
dependence of densities II and III on z was chosen according to
a TRIM Monte Carlo simulation (Ref. 12).

tation and annealing. To our knowledge no experimental
information on the defect distribution from TEM or RBS
measurements is available after low-dose (6X10"
As/cm?) implantation with 80-keV As ions. For each de-
fect density the theoretical spectra for all three different
a; were scaled by one unique factor. It was chosen by a
least-squares fit of the theoretical spectra to the experi-
mental distributions for a; =0.73«,.

The theoretical curves are given in Figs. 7 and 8 along
with the experimental results, a f-integrated theoretical
curves were obtained by numerically integrating theoreti-
cal distributions in the range of 0 <a;=2.5a.. Agree-
ment is best for defect density II. In the a,-integrated
mode the functional dependence of I}, on g, and its
characteristic changes with « r, are reproduced satisfacto-
rily. Small but significant deviations occur at the smallest
g values—probably caused by Bragg contributions, and
at large g for a; Za,. The scaled intensities disagree at
a;=0.98a,. This may be due to the fact that near
a; =a,, intensities vary sensitively with «;, so that the ex-
perimental error in the absolute determination of «;
(Aa; =0.04a, for this particular measurement) may have
appreciable influence. In the a,-resolved mode we find
satisfactory agreement at all angles «;, except for small
deviations in the dependence of I}, on a; at a;,a, > ..

Results for defect densities I and III are inferior. For
defect density I at a; =1.23«,, calculated intensities are
clearly too high [Figs. 7(c) and 8(c)]. Results for defect
density IIl disagree with experiment with respect to the
dependence of I}, on g and on «; at a;=0.98a, and at
a;=1.23a,.. The observed deviations may be understood
in a qualitative way. Defect density I is too high at large
z, and thus causes too high a diffuse intensity at a; > «a,.
Defect density III is too small at small z, and produces
only small diffuse intensity at a; <a.. Since intensities
were scaled for the measurement at a; =0.73a,, overly
high scaled intensities result for a; > a,.

The satisfactory agreement of experiment with theory
encourages us to conclude that implantation produces
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lattice defects that cause appreciable distortion of the
host lattice. Their distribution coincides approximately
with the distribution of deposited collisional energy.

The theoretical treatment is based on some major as-
sumptions: (i) the defects act as pure dilation centers; (ii)
the scattered intensity can be described within the
Huang-scattering approximation, and (iii) the defects are
arranged in space in an uncorrelated way. The degree to
which these assumptions are fulfilled in our real situation
will now be briefly discussed.

(i) The single measurement along the path in reciprocal
space (q scan, see Fig. 2)—which roughly coincides with
a direction parallel to the reciprocal-lattice vector—is
not sensitive to the presence of nondiagonal terms in the
dipole-force tensor of the defects. Future measurements
will explore several different paths in reciprocal space
(e.g., will realize q; or q, scans), and thus will enable us to
identify the symmetry of the displacement field of the de-
fects, as well as allow a more detailed verification of
theoretical predictions.

(ii) The Huang approximation is applicable as long as
the condition Q-u<<1 is fulfilled. That is the case for
most kinds of defects at small enough |Q|. Mayer and
Peisl'* measured defect-induced diffuse scattering after
fast-neutron irradiation at room temperature in bulk Si
single crystals. Since the mean damage energy due to fast
reactor neutrons is comparable to that due to 80-keV As
ions, the resulting damage pattern should be comparable.
The authors observed Huang scattering—with the
characteristic bulk 1/g? dependence—up to ga/2m
=6X 1072 near the (440) reflection, and deviations from
this behavior at larger g. The discrepancy between our
experimental spectra and theory for ga /27> 5X 1072 [cf.
Figs. 7(b) and 7(c)] possibly arises in the same way from
the influence of strong distortions in the vicinity of the
defects. These distortions may also cause the small an-
tisymmetric contributions to the defect-induced diffuse
intensity.

(iii) Since defects are produced by ion irradiation in a
correlated way (in defect ‘“‘cascades™), one expects them
to be arranged in agglomerates, possibly in the form of
dislocation loops. After reactor-neutron irradiation,'*
evidence for the presence of small agglomerates of inter-
stitials and vacancies was found. This correlation will re-
sult in an enhancement of I, by a constant factor at
small enough g, where the condition gR, <1 is fulfilled
(R, is the spatial extent of the correlation). Since in this
g range the functional dependence of I, on q remains un-
changed, the neglect of defect correlations appears to be
justified.

The theoretical treatment contains some further
simplifications, e.g., an isotropic medium is assumed, and
the change of elastic constants near the surface is neglect-
ed. The comparison with experimental results shows that
within these approximations the gross features of the ex-
perimental data for small values of g are reproduced sat-
isfactorily.

The investigation of near-surface defects by measure-
ment of diffuse scattering under conditions of grazing in-
cidence and exit promises to be of considerable practical
importance. The method is nondestructive, and allows
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the study of structure, symmetry, and strength of various
types of defects, as well as of their distribution with the
distance from the surface. Defect correlations and
changes in the defect structure during thermal annealing
treatment can be observed. Only in some instances are
there complementary methods which can give compara-
ble information, as cross-sectional TEM (a destructive
method) for the study of two-dimensional defect struc-
tures, or channeling for low concentrations of single de-
fects.

In order to fully exploit the potentialities of the
method, future measurements will improve and expand
these first experiments. The structure and symmetry of
defects will be studied by determining several different
appropriate combinations of components of the dipole-
force tensor.. To this end, measurements in different
directions in reciprocal space are necessary. The dipole-
force tensor in absolute units can be determined by nor-
malization of scattered intensities in terms of the incident
intensity.

Detailed information on the defect distribution is con-
tained in the dependence of I}(q) on @; and a,. In this
context the apparent insensitivity of the functional
dependence of I} (g) on a, should be considered. It is
caused by the fact that the defect density present (com-
pare Fig. 9) varies slowly with z compared to the ex-
ponential damping of the fields. In this case detailed in-
formation on pp(z) can be extracted only by careful
analysis of high-resolution data. The significant enhance-
ment of the experimental above the theoretical curve at
a; and a, larger than a, [see Fig. 8(c)] can be explained
by a higher actual defect density at large z compared to
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density II. In view of the limited amount of experimental
information, however, we yet refrain from an indepen-
dent determination of p,(z): more experimental data at
a; > a,, where the behavior of I}, with g and a, depends
sensitively on g, (z), are required.

The scope of the theoretical treatment will be expand-
ed to include also strong distortions in the vicinity of de-
fects. A significant improvement of the agreement with
experiment is expected concerning the behavior at large g
and the antisymmetric contributions. The elastic anisot-
ropy of the host crystal can be taken into account explic-
itly in numerical calculations.

V. SUMMARY

We have presented the theory of Huang diffuse scatter-
ing under conditions of grazing incidence and exit. The
first experiments essentially confirm the predictions of
theory. They allow the determination of the depth distri-
bution of defects, induced in Si single crystal by implan-
tation with 80-keV As ions. The method applied prom-
ises to be of considerable importance for the study of the
real structure of solids near their surface.
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