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Asymptotic forms of electrostatic potentials in zero-band-gap semiconductors:
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In this paper we calculate the asymptotic forms of the screened electrostatic potentials in both
bulk and semi-infinite zero-band-gap semiconductors, which are described with the help of a
random-phase approximation dielectric function. We consider the efFective potential of a point
charge as well as the screening of a uniform electric field. We show how, in comparison with the
free-electron-gas case, the amplitudes of Friedel oscillations of the efective potentials are consider-
ably reduced due to the specific band structure of the gapless materials. To analyze the surface
screening, we use the specular electron reAection model. The long- and short-range forms of the po-
tentials obtained in the framework of various asymptotic methods agree with the results of comput-
er calculations.

I. INTRODUCTION
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where eo is the static dielectric constant, kF and kT& are
the Fermi and the Thomas-Fermi wave numbers, respec-
tively. If the concentration of the electrons is n, then
kt;=(3m n)' . kT„=(4k~/mao)', where aRo/me
is the Bohr radius.

Integral (I) with e(q) given by (2) and with

The shape of the screened electrostatic potential in
both bulk and semi-infinite solids plays an important role
in various physical problems such as impurity levels, ad-
atom interaction, and field emission to mention only a
few. In the bulk material this potential is given by the
Fourier integral

d'q
V(r) = exp(iq r),(2~)' e(q)

where V,„, is an external potential. V,„,(q)=4mg, „,q
for a point charge g,„, inserted into the system. e(q) is
the longitudinal dielectric function. This function can be
obtained in the random-phase approximation (RPA)
which in the case of degenerate free-electron gas leads to
the well-known Lindhard formula'

v,„,(q) =4m.g,„,q is too difficult to be performed
analytically; however, its asyptotic form for large ~r can
be derived from the algebraico-logarithmic singularity of
e(q) at 2k~. Finally, as it was shown by Langer and
Vosko, V(r) oscillates as cos2k~r/r (Friedel oscilla-
tions ).

The results for nonspherical Fermi surfaces were given
by Roth, Zeiger, and Kaplan and by Gabovich et al.
Horing studied the inhuence of the magnetic field on
Friedel oscillations in an electron gas.

Friedel oscillations of the screened uniform electrostat-
ic field in a semi-infinite metal were studied comprehen-
sively by Balkarei and Sandomirsky. Dielectric response
of a semi-infinite metal was also investigated by Newns
and Beck et al. ' and Sidyakin" and Rudnick. '

Recently the measurement of the adatoms interaction
on a metal surface by Tsong and Casanova' ' has
highlighted again the importance of the screening in
semi-infinite solids. Oscillatory behavior of the interac-
tion energy between adatoms was investigated theoreti-
cally by Grimley and Walker, ' Einstein and Schrieffer, '

Lau and Kohn, ' Kravtsov, ' and by Braun and Il'chenko
and Pashitskii. ' Electron potential energy near the sur-
face of a ferromagnetic metal was calculated by Gabovich
and Voitenko.

Whereas the majority of the papers mentioned above
deal with the metals, we wish to focus our attention on
semiconductors. It is the purpose of this paper to investi-
gate the inAuence of the electronic band structure on
asymptotic forms of the effective Coulomb potential and
of the screened uniform electric field in both bulk and
semi-infinite zero-gap semiconductors. The calculations
of the potential in a semi-infinite semiconductor are based
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on the so-called specular electron refiection model (see,
for example, Ref. 21) which is described in detail in Ref.
22.

The long- and short-range forms of the potentials ob-
tained with the help of various asymptotic methods are
confirmed by computer calculations.

II. SCREENING IN THE BULK

Usually RPA longitudinal dielectric function e(q) of a
semiconductor is written as a sum of eo, e'"'"(q), and
e'"'"'(q), where the last- two terms are due to the transi-

I

tions between valence and conduction bands and within
conduction bands, respectively. All other contributions
to e(q), including lattice polarizability, are approximated
by the dielectric constant eo.

The dielectric function for gapless semiconductors
with nonvanishing concentration of free carriers was
known in the form of an infinite series since the 70s.
Recently it was shown that one can express e(q) for
zero-gap materials in a compact form by using Euler's di-
logarithms (see, for example, Ref. 27), i.e.,
L 2(z) = —J Od((1/g) ln(1 —g). Finally, in the limit

m& /m, ~~, the result is as follows:
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The source of singularities in e(q) given by (3) are the
terms with the logarithmic function and with Euler s di-
logarithms. We checked that the position of these singu-
larities (q =+2k~) and theory type (algebraico-
logarithmic) are the same as those of Lindhard dielectric
function (2). Generally, the behavior of the dielectric
functions (2) and (3) near the singularity at q =2kF is

e(q)-=e(2k~) 1+DF(2kF) —2 ln —2
F F

(4)

where

e(2kF ) =co+ ,'(kTF /kF )—
'2
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E( 2kF ) —Eo+ —( 1 + 31T /16 )( kTF / (7)

for free electrons characterized with the Lindhard dielec-
tric function. In the case of the gapless semiconductor
one has

+D e(2k~)(g —2) ln ~(
—2~+

The final result for kFr ))1 is

cos(2kF r)
Vb(r) —=Q,„,kF D

(kFr)
—4D e(2kF)[ 1n(kFr)+itj(2)]

sin(2k~r)
X +

(kFr)
(10)

where e(2kF ) and D are given by (5) and (6) for free elec-
trons and by (7) and (8) for zero-gap semiconductors.

This integral is too difficult to be performed analytically
when e is given by (2) or (3). To find its asymptotic form
for kF r ))1, we employ the technique presented by
Lighthill. The leading terms in the asymptotic expan-
sion of (9) can be obtained from the singularity of the in-
tegrand at /=2, where 1/e' can be simplified to

1/e(2kF ) D(g —2) 1n—~g
—2~
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(8) III. SURFACE SCREENING

2 1 exp(igkFr )
Vb(r)= —Q,„,k„ lm I dgH($) (9)

We turn now to the screened potential Vb (r ) of a point
charge Q,„, located in the bulk at r=0. According to (1)
Vb may be written as (( = q/kF, where H is the step func-
tion)

A. Model

We assume here that the semiconductor occupies the
z (0 region and that the interface vacuum semiconduc-
tor is the z =0 plane. To find the screened potential
V(r) of an extra point charge in the system semiconduc-
tor vacuum, we make use of the specular electron
refiection model (see, for example, Ref. 21 where this
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model is named classical infinite barrier model although
it is not classical). If the positions of the observer and the
extra point charge Q,„, are r=(g, z) and ro=(g=O, zo),
respectively, then (see, for example, Ref. 22)

ooV(r)= 2' 0

where

2a (q~~, zo) exp( —
q~~z) 2a (qll'z) exp( qllzp )+H (z)H (
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Here e(q) is the dielectric function that characterizes the
bulk semiconductor. In determining the properties of the
function a (qi, z) it is convenient to write (13) as

cos[(q —
q~~

)'~ z]
qi f dq 2 p i/I(q —
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as q, qII
~ ~ ~

Small q limit form of e(q) (Thomas-Fermi approxima-
tion) is e (q)=co+(k»/q)', wh««0=&0 (kTF/
kF)2/12 for free electrons and F0=so+17(k»/k~) /12
for gapless semiconductors. In this case the analytical
form of a is known as

In particular, a (qi, O) for large
q~~

can be obtained by in-
serting in (14) the asymptotic form of e(q) when q tends
to infinity. Noting the Lindhard dielectric function

q
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Let us note that Vb given by (9), i.e. , the screened
point-charge potential in the bulk can be expressed by
(11) with u~ qll'z, zo)=2vrQ, „&a qll' qll' This suggests
[see also Eqs. (11) and (12)] that deep inside semi-infinite
solid (z, zp (0)
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B. The case where both the observer

and Q,„, are in the vacuum
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and

as qII ~ ao. The corresponding results for gapless semi-
conductors are

In this case z, zp ~0. We wish to calculate the induced
potential V,„d(r,z„), so we skip in (12) the term propor-
tional to exp( —

q~~ Iz —zo I ) which corresponds to the pure
Coulomb potential. The remaining term is proportional
to exp[ —qi(z —zo)] and integral (11) may be interpreted
as a Laplace transform

1 —a (qi, O)
d(r 0)= —Q.. I qi Jo(q ~~K), +0 1+a qi, 0

X exp[ —q~~~(z+zp)] . (21)
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kF(z +zo)+2,„,kF
[(k g) +k (z+z ) ]

a (qi], 0)
X + ~ ~ ~

qII /k~ q =p
(22)

The leading term in the expansion is nothing more than
the image-force potential of the classical metal. The
remaining part is the quantum correction.

V;„d(r,z]]) is divergent when r, z]]=0 which follows
from the long-range behavior of the integrand in (21).
From (16) and (18) it can be deduced that when qi is

large, then

eo —1 '1
+01+a (qadi, O) e]]+ I q4~i

(23)

for free electrons and

1 —a (q„,o) e,—1 3 kTF /kF+1+a (q~i, O) co+1 2 e]]+ I

kF 1

Asymptotic expansion of V;„d(r,z]]) for large z+zo is

given by (21) with the integrand simplified to its small-q
limit form. Hence it follows that for kF(z +zo) )) 1

1

[(k„g) +k (z+z ) ]'

for gapless semiconductors. To extract the singular term
in V;„d when r, zp =0 let us write for free electrons
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In contrast to (25) in the zero-gap semiconductor case
we subtract and add to (1—a)/(1+a) two terms:

(eo —1)/(e]]+ I )+ (3m/2)[(kTF /kF )/(eo+ I ) ]

X ( kF /q
ii

) exp( bkF /q'I—),
which are the source of the divergent parts in V;„d (b is
an arbitrary strictly positive constant introduced in order
to make the appropriate integral finite). Finally, keeping
only singular terms for r, zp —+0, we get the following re-
sult for the gapless semiconductors:

Now one can see that the only source of the divergency in
(21) when r, z]] tend to zero is the last term in (25). Final-
ly, in the free-electron-gas case when r, zp tend to zero we
get

(&o—I ) /(e]]+ 1) + ~ ~ ~

[(kF() +k (z+z ) ]'

(26)

(24)
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In both situations [Eqs. (26) and (27)] the leading terms
are equal to the results for the classical dielectric. In the
zero-gap semiconductor case there is an additional,
singular term of logarithmic type.

Figures 1 and 2 show V;„d((=O,z, zo=z) i.e., V;„d at
the external point-charge site for CdS (co=9.38) and for
the gapless semiconductor HgTe (e]]=21), respectively.
Conduction-band electrons in open-gap material CdS are
represented by free-electron gas with appropriate
effective mass of the carriers. V;„d(/=0, z, z]]=z)/2 can
be interpreted as the potential felt, say, by an electron
(Q,„,=e) that left the solid. As it follows from our con-
siderations this potential is equal to a classical dielectric
close to the semiconductor surface and tends to equal the
classical metal at large distances.

C. The case where the observer and Q,„, are separated
by the semiconductor surface

I

is of the form discussed by Lighthill. When
kFIzI, kFIzoI))1, the final result for V(r) appears as

V(r, zo ) —= V] (g, z, z]] ) + V] (g, zo, z),
where

kFz

[(k,g)'+(k, z)']'"
sin(2kF

I zo I
)

X M(z)H( —z]]) .
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(28)

D. The case where both the observer and Q,„,
are on the surface

Now z =zo =0. According to (11) the potential V is

D is given by (6) or (8). Note that to get this result we
evaluated the Laplace transform first.

Now zz]] (0. V(r) is given by the double integral. One
of these integrals is a Laplace transform which we treat
as that in the preceding section. The remaining integral

a (qi~, O)
V(g)=2Q ] ' dqii J]](qig)

0 a qi, 0
(29)
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FIG. 1. Long- and short-range behavior of eV;„d(z,zp=z)
(i.e., the induced potential at the site of the external point
charge which is located outside the semiconductor) for CdS
when n =10"cm ' (op=9. 38,m, =0.2mp). In both groups of
the curves upper and lower solid lines show the results for the
classical dielectric and metal, respectively. Computer calcula-
tions according to Eq. (21) are represented by the dots. Arrows
indicate to which scale the groups of the curves are related.

-35

z (a.u. )

FIG. 2. Long- and short-range behavior of eV;„d(z,zp=z)
(i.e., the induced potential at the site of the external point
charge which is located outside the semiconductor) for HgTe
when n =10' cm (op=21, m, =0.03mp). On both parts of
the picture upper and lower solid lines show the results for the
classical dielectric and metal, respectively. Computer calcula-
tions according to Eq. (21) are represented by the dots. The
dashed line comes from the asymptotic form (22).

V(g) for small kF( can be obtained by adding to (26) or
(27) the pure Coulomb term Q,„,/g.

To find an asymptotic form of V(g) for kF(»1, we
follow the method used by Kravtsov' (contour integra-
tion) introducing necessary modifications due to specific
forms of the dielectric function for gapless semiconduc-
tors. As it follows from Ref. 18 the asymptotic form of
V(g) for free electrons consists of two parts V„and Vo of
nonoscillatory and oscillatory characters, respectively,
which decay as g [the result for V(g) given in Ref. 5 is
wrong]. The nonoscillatory term is

=lims +Oa(k„(2"5+it),—0), where a is given by (13).
Using the behavior of Hankel function of the first kind
Ho ' when kF(»1, we can replace A (t) in (31) by its
small t limit form which is

a+(kF(2+it), 0}—a (kF(2+it), 0}
A (t)-=

[1+a(2kF, O)]

As it follows from Ref. 18 the numerator in (32) can be
written as [see also Eq. (14)]

a+(kF(2+it), 0)—a (kF(2+it), 0)
2
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e (gkF)

and can be derived in the same way for free electrons as
well as for zero-gap semiconductors.

To find oscillatory contribution to the asymptotic form
of V(g), let us write in the expressions for the dielectric
functions that 1n~g/2+1~ =lim„o —,

' ln[(g/2+1) +g /4].
We choose 2+i@ +i g, O ~ p ( 00 as a cut in a complex g
plane for 1n(g/2 —1 ir)/2) as wel—l as for L~(g/2) which
appears in the gapless semiconductor case. As it was
shown in Ref. 18 the oscillatory part Vo(g) of the poten-
tial V(g) can be written as

Vo(g)=2Q, „,kF Rei f dt Hz~" (2kFg+ikFgt)A (t),
0

(31)
where A (t)= A+(t) —A (t) and A —(t)=a —(kF(2+it),
0)[1+a—(k~(2+it), 0)] '. Here a (kF(2+it ),0)—

I

where the contour C is 2+it', 0 ~ t' + t. For small t

1

e+(gkF)
1

e (gkF)

E (fkF ) —e (gkF )

e (2kF)
(34)

e —e+ is the difference between the values of e taken on
both sides of the contour C in (33). This difference comes
form the logarithmic term in the free-electron-gas case
and from logarithm and Euler's dilogarithm in the case of
gapless semiconductors. The difference on both sides of
the cut C in the case of the logarithm is

—,
' lim„+0 [ ln [g—(2+i')]—in+[/ —(2+i')]) = —

vari

With the help of this result we can find that (/=2+it')

I I

Lz ~ Lz+ ~ = — lim —,
' f —

I ln [X—(2+i')]—in+[A, —(2+i'))]]—dk=vri f , =—— t' . —
2 2 2 2 g~+0 ~

2 2 A. 2



L. R. GONZALEZ, J. KRUPSKI , AND T. SZWACKA 39

This leads (small t ') to

1

e+(gkF)
1

e (gkF
(35)

where D is given by (6) for free electr

performing the inte
ing ) into (33) and

e in egration we can find
(32) function 3 ( ) I

nd with the help of

Ho replaced b
t . ntegral (31 canan be evaluated with

I

I

I
I
I
I
I

I

I
I

I
I
I
I
I

I
I
I

5
I

I
I
I

I
I

\

2Q,„,k ( „,0)

~I ~kF . qll

Pl
500 1000

g (a. U. )

1500

D
[1+a (2kF, O) j

(36)

The rederived result h f
less than that in Ref. 18.

ere or free electronns is eight times

As can be seen from Figs. 3—5, Friedel oscillati

oscillations to th
amphtude of Friedel

o e nonoscillator term
yn b, and HgTe, respectivel

tll ot t 1 b (36)
culations rises fro 8

n y to the result of ccomputer cai-
ro ~—0 a.u. to 66% atrom o at ~= 1

Alon g with certain similarities in a ion -ran e
of V(g) i i-lfii ISb
diA'erence appears i

ni e nSb and H Teg e, an essential

these materials. I
rs in a s ort-ran e bg ehavior of V(g) in

'a s. n contrast to InSb in
difFerences betwee V j geen e (g) and t

in HgTe large
t e classical result

FIG. 4. Lon-ong- and short-range behavior
lo th f h h g, w en t e external point ch

lin

nn= cm '(@0=18 m =
ines, computer calcul t'

.02mo). Solid
u a ions according to E .q. ( ).

dielectric.
otted line, the re results for classical

2e /(e +1) can still be observed when k i

g . This is due to the logarithmic

gapless semicondu t
w ic appears in the case

~ ~

uc ors only.
o semi-infinite

. Screening of a uniform electric field

Wee wish to calculate the screened ot
th fi ldE( ) hi h 'd

(0 0E is convenient to assume that E(z is

I
I

I

I

I

QJ
I
I

0. 2 '

I
I

I

OJ I
I
I

1

01
I
I

0
10 30

0.

I

I

I

I
I
I
I

I
I
I

I

I
I

I
I
I
I
I

'I

I
\
\

0
200 500 1000

g (a.U. )
I

550 950
(a. u )

FIG. 3. Lon-g- and short-range behavi
along the surface wh

g e avior of the potential
ace, w en the external point char e

'

g

t' o d' to E (29
cm . Solid lines corn

y po o ( ).q. ~ Dashed line, as m
resu ts or classical dielectric.

FIG. 5. Lon-ong- and short-range behavior
1 h f h hen t e external oint chp g

asymptotic form (27)s." (with e

'nes correspond to
= o=o

or arge g, respectivel . So
' ', er

1 1 i d E
th"1"""1d"1"t

r ing to Eq. (29). Dott



39 ASYMPTOTIC FORMS OF ELECTROSTATIC POTENTIALS IN. . . 8441

E, a(q„,z)
q1/kF

q~~
—o

From (13) we get (see, for example, Ref. 7)

W( )
2 0 I ~

d~
cos(zE

m' kF o /zan(/k')

2 Eo - dg
rr kF o g2p(gkF)

(38)

(39)

where the second term is a constant equal to
+(EolkF)[a(q~~, O)/(qi/kF)] o and introduced in or-F

q((
—0

der to normalize W(z) in such a way that W(0) =0.
The asymptotic form of W(z) for large ~kFz~ can be

found with the help of the Lighthill method. Deep in-
side the semiconductor, when kFz~ac, W(z) takes the
form

Ep D sin(2kF lz I ) 2 Ep
W(z) —= +-

kF 2 (kFz)2 n kF o $2e(/k+)

(40)
where D is given by (6} and (8) for free electrons and for
zero-gap semiconductors, respectively.

IV. SUMMARIES

produced by uniformly charged plate (co = —Ep /4m )

parallel to the semiconductor surface and located at
zp~+ ao. Now W(z) for z ~0 can be deduced from (11)
and (12) by employing the superposition rule which gives

W(z)= f d(k~g)kF(V(g, z, zo, Q,„,= Ep—/2k~),
0

(37)

where V is the potential for z ~ 0 due to the point charge
Q,„,= Ep /—2kF located at zp )0. Thanks to the
definition of Hankel transform: F(t) = f sf (s)Jp(st)ds,
f (s) = f p" tF(t)Jo(st)dt, W(z) given by (37) can be inter-
preted as a Hankel transform of V when qua=0, i.e., [see
Eqs. (11)and (12)]

W(z}= lim v, (q~~, z, zp)kF/2~
qll-0

gapless materials compared to those in open-gap semi-
conductors, where the conduction-band carriers can be
represented approximately by a free-electron gas. For ex-
ample, in HgTe when the electron concentration n is
10' cm the amplitudes of the Friedel oscillations in
the case of the screened Coulomb potential in the bulk
are 41% less than those predicted by the theory for free
electrons. One gets the same result for the screened uni-
form electric field in a semi-infinite medium.

When an external point charge is located at the surface
of the gapless semiconductor, then at large distances
along this surface the oscillatory part of the effective po-
tential is very small compared to the nonoscillatory term
(approximately 20 times less in the case of HgTe when
n = 10' cm ). The shape of the potential on a surface is
of great importance when calculating the interaction of
adatoms' ' and the heat of adsorption. '

We investigated also the form of the induced potential
along z axis (normal to the semiconductor surface) when
an external charge Q,„, is located at /=0, zo. The curve
V;„d versus z lies between that of a classical dielectric and
that of a classical metal. It turns out that the induced po-
tential at the site of the external point charge [it is V;„d
(/=0, z, zp =z)] tends to Q,„,[(eo—1)/(eo+ 1)](2z)
(i.e., to the result for classical dielectric) ad kFz~O+.
This means that in the case mentioned above free carriers
in a semiconductor do not play a significant role in the
process of screening near the surface (see, for example,
Refs. 29—33 for comparison with the situation in the in-
trinsic semiconductors). The form of V;„d (/=0, z, zp
=z)/2 (image-force potential) close to the surface plays
an important role, for instance, in the description of the
tunneling of electrons through the surface barrier in the
field emission experiments.

An interesting consequence of the specific band struc-
ture of the gapless semiconductors is that in the presence
of a surface V;„d(g,z, zo) contains an additional part of
logarithmic type which diverges when g +(z+zp) ~0
and which does not appear in the free-electron-gas case.

ACKNOWLEDGMENTS

We studied the inAuence of the electronic band struc-
ture of a zero-gap semiconductor on the asymptotic
forms of the screened electrostatic potentials in both bulk
and semi-infinite medium. Special emphasis was laid on
Friedel oscillations which are considerably weaker in

This work was supported by Consejo de Desarrollo
Cientifico, Humanistico y Tecnologico de la Universidad
de Los Andes, Merida, Venezuela and by the Institute of
Physics, Polish Academy of Sciences, Grant No. CPBP-
01-04-0-I-2-3.

J. Lindhard, K. Dan. Vidensk. Selsk. Mat. —Fys. Medd. 28, No.
8 (1954); see, for example, N. W. Ashcroft and N. D. Mer-
min, Solid State Physics (Holt, Rinehart, and Winston, New
York, 1976).

J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
(1959); see, for example, N. H. March, W. H. Young, and S.
Sampanthar, The Many Body Problem in Qu-antum Mechanics
(Cambridge University Press, Cambridge, England, 1967).

J. Friedel, Philos. Mag. 43, 153 {1952);Nuovo Cimento 7, 287

{1958).
4Laura M. Roth, H. J. Zeiger, and T. A. Kaplan, Phys. Rev.

149, 519 (1966).
5A. M. Gabovich, L. G. Il'chenko, E. A. Pashitskii, and Yu. A.

lt.omanov, Zh. Eksp. Teor. Fiz. 75, 249 (1978) [Sov. Phys. —
JETP 48, 124 (1978)];Surf. Sci. 94, 179 (1980).

N. J. Horing, Phys. Rev. 186, 434 (1969);Ann. Phys. (N.Y.) 54,
405 (1969).

7Yu. I. Balkarei and V. B. Sandomirskii, Zh. Eksp. Teor. Fiz.



8442 L. R. GONZALEZ, J. KRUPSKI, AND T. SZW'ACKA 39

54, 808 (1968) [Sov. Phys. —JETP 27, 434 (1968}].
8D. M. Newns, Phys. Rev. B 1, 3304 (1970).
D. E. Beck, V. Celli, G. Lo. Vecchio, and A. Magnaterra,

Nuovo Cimento 688, 230 (1970).
~DD. E. Beck and V. Celli, Phys. Rev. 8 2, 2955 (1970).
"A. V. Sidyakin, Zh. Eksp. Teor. Fiz. 58, 573 (1970) [Sov.

Phys. —JETP 31, 308 (1970)].
'~J. Rudnick, Phys. Rev. B 5, 2863 (1972).

T. T. Tsong, Phys. Rev. Lett. 31, 1207 (1973).
I~T. T. Tsong and R. Casanova, Phys. Rev. B 24, 3063 (1981).

T. B.Grimley and S. M. Walker, Surf. Sci. 14, 395 (1969).
~T. L. Einstein and J. R. SchrieFer, Phys. Rev. B 7, 3629

(1973).
' K. H. Lau and W. Kohn, Surf. Sci. 75, 69 (1978).
'8V. E. Kravtsov, Fiz. Tverd. Tela (Leningrad} 21, 1560 (1979)

[Sov. Phys. —Solid State 21, 899 (1979)].
' O. M. Braun, L. G. Il'chenko, and E. A. Pashitskii, Fiz.

Tverd. Tela (Leningrad) 22, 1649 (1980) [Sov. Phys. —Solid
State 22, 963 (1980)].
A. M. Gabovich and A. I. Voitenko, Phys. Status Solidi 8 133,
135 (1986).

'A. Griffin and J. Harris, Can. J. Phys. 54, 1396 (1976).
~~F. Bechstedt, R. Enderlein, and D. Reichardt, Phys. Status

Solidi B 117, 261 (1983).
L. Liu and E. Tosatti, Phys. Rev. B 2, 1926 (1970).

~4J. G. Broerman, L. Liu, and K. N. Pathak, Phys. Rev. B 4,
664 (1971).
S. Goettig, P. Inst. Phys. Pol. Acad. Sci. 65, 235 (1975).

~~W. Bardyszewski, J. Phys. Chem. Solids 44, 813 (1983)
~7K. Mitchel, Philos. Mag. 40, 351 (1949).
~8M. J. Lighthill, An Introduction to Fourier Analysis and Gen-

eralized Functions (Cambridge University Press, Cambridge,
England, 1958).

~9A. I. Voitenko, A. M. Gabovich, and L. G. Il'chenko, Fiz.
Tverd. Tela (Leningrad} 23, 1531 (1981) [Sov. Phys. —Solid
State 23, 896 (1981}].

A. M. Gabovich and A. I. Voitenko, Phys. Status Solidi B 110,
407 (1982).

~M. Cinal, R. Del Sole, J. Krupski, W. Bardyszewski, and G.
Strinati, Solid State Commun. 62, 633 (1987).
J. Krupski, J. Condensed Matter Phys. (to be published).

3 W. Bardyszewski, R. Del Sole, and J. Krupski (unpublished).


