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Semiconductor-quasimetal transition of heavily doped trans-polyacetylene
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Within the continuum models of Takayama, Lin-Liu, and Maki and of Brazovskii and Kirova, a
new doping-induced superlattice form has been found to exist on chains of conducting polymers
with zero confinement. It has smaller total energy than the soliton lattice of Horovitz and has prop-
erties which can help remove existing discrepancies between theory and experiment. The depen-
dence of electronic band energies, density of states, and static magnetic susceptibility on dopant
concentration is shown. Results are compared to those from the soliton lattice. In the quasimetal-
lic state delocalized band states coexist with localized charges in absence of a band gap.

I. INTRODUCTION

Interest in conducting polymers has grown in recent
years, in part due to their novel features in form of non-
linear excitations, which have become known under the
names solitons, ' polarons, ' and bipolarons. ' Two
theoretical microscopic models have successfully been ap-
plied in this context. The discrete coupled equations of
Su, Schrieffer, and Heeger (SSH) (Ref. 7) or their continu-
um counterpart of Takayama, Lin-Liu, and Maki
(TLM), and the model of Brazovskii and Kirova (BK),
which lifts the twofold degeneracy of the ground state so
that it can be used for a wider class of polymers, of which
cis-polyacetylene, polyparaphenylene, polyp yr role, and
polythiophene are well-known examples. Results for low
concentration are comparable to those of numerical
work. ' '"

With growing dopant concentration the distance be-
tween these excitations decreases and they interact to
form superlattices. Experiment supports this point of
view. Spectroscopic methods reveal that at least in the
crystalline part of the material doping proceeds in steps
accompanied by three-dimensional structural reordering.
Columns of dopant ions with regular spacing between the
ions intercalate with host polymer chains, on which the
transferred excess charges are localized in a pattern fol-
lowing the dopant array. ' ' Within the framework of
the one-dimensional TLM and BK models, theory pre-
dicts soliton' ' and (bi)polaron lattices. ' ' Many ex-
periments, for example, electron-spin resonance and elec-
tromagnetic absorption, can be interpreted in terms of
spinless solitons or bipolarons depending on whether the
material's confinement parameter 6 is zero or not. At
still larger concentrations of dopants many polymers
more and more become metalliclike. The difficult prob-
lem of the high electrical dc conductivity set aside, phe-
nomena such as an enhanced Pauli spin susceptibility
must be understood, ' and the narrowing or vanishing
of the band gap in optical absorption"' ' has to be ex-
plained, as well as the persistance of doping-induced
infrared-active vibrations characteristic of localized

charges to highest dopant levels. ' To this end Kivel-
son and Heeger proposed a crossover from a soliton (or
bipolaron) lattice to a polaron lattice with half-filled
upper (or lower) localization band at a critical concentra-
tion, where the separation between solitons becomes com-
parable to their width. However, apart from the sensibil-
ity of such a transition towards small energy contribu-
tions from interchain hopping, electron correlation,
quantum fluctuations, and disorder, it has been shown
in a one-dimensional calculation that infrared modes
should be unobservable in a polaronlike lattice at high
concentration, contradictory to experiment. "'

In view of the complexity of the problem many ques-
tions arise, one of wich is whether the solutions of the
TLM and BK equations known to date are sufficiently
general to help explain all known experiments. It will be
shown in this paper that this is, in fact, not the case, with
an example for zero confinement. Reference 26 relies on
the soliton lattice having the lowest total energy for small
and intermediate doping. But there exists another lattice
form with even smaller energy and with properties that
could remove discrepancies with experiment. This solu-
tion is encountered when studying the self-consistency
equations of Ref. 20 for partially filled localization bands
in the limit 6=0. These equations allow for a wide
variety of occupying gap states on finite polymer chains
at any doping level. We explore the particular but obvi-
ous case of a fractionally filled band, thus generalizing
the details of Ref. 26. The dependence on confinement
energy 5 shall be investigated in another paper. Al-
though we are here concerned with 6=0 aiming at a
description of trans-polyacetylene, we first establish the
equations for the general case. This will be done in Sec.
II. Section III is devoted to the derivation of formulas
for the dependence of electronic band structure and den-
sity of states on dopant concentration. Results for 6=0
will be found in Sec. IV, which compares the new super-
lattice to the soliton lattice with respect to shape, wave
function, density of states, band structure, and suscepti-
bility. Discussion of the results and further conclusions
follow in Sec. V.
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II. SUPERLATTICE WITH PARTIALLY FILLED
LOCALIZATION BAND

Without loss of general validity the discussion can be
restricted to the case of n-type doping, where the valence
and lower localization band are full by assumption, but
the upper band of localized states is only partially filled.
We introduce a filling factor Q with Q ~ l. Under neglec-
tion of even-odd eft'ects considered in Eq. (16) of Ref. 20,
the set of quantum states v (generalized wave numbers)
decomposes into localized states n—/2 ~ v~ n/2 and ex-.
tended states v=+n/2, . . . , +N/2. Here n denotes the
number of superlattice dips and N the number of mono-
mers on the chain. Figure 1 makes the meaning of Q
concise. Evidently, n ' =ng is the number of electron
pairs transferred upon doping. Let us define two vari-
ables: c =n/X, the fraction of superlattice wells on the
chain with 0 ~ c & 1, and y = n'IN, the fraction of charge
pairs. An immediate consequence is the relation y=gc
with 0 ~y ~ Q. At y )Q either the filled fraction Q of the

I

old superlattice increases, or there is a phase transition to
a superlattice with larger n. y is proportional to the
dopant concentration yD, the total number of excess
charges divided by the total number of carbon atoms on
the chain. Polyacetylene, for example, has y =2yD. At
constant y one can envision phase transitions between
diFerent c with Q —1/c, from a full band (Q = 1) with a
minimal number of superlattice cells to Q =y with a max-
imal cell number. Their relative stability remains to be
studied.

The function n+ —n is substantial for the self-
consistency conditions, Eqs. (18), of Ref. 20. Here n+„
are occupation numbers of quantum state v in the upper
(lower) localization bands. The present paper deals with
twofold occupied levels, which means n+ —n =0 for
0 )v[ (Qn/2 and n+, n —= —2 for Qn/2~ )v)
(n /2. For not too small n and N, the v sums of Ref. 20
can be converted to integrals. Both self-consistency equa-
tions then read

N/2 k +(k/a, )1— dv
[(1+k /a )K E][M +—k + ( k /a ) ] ' 2

n/2 (k/P )
—k+ dv

Q«~ [E —(1 k IP, )K—][M+k (k/P ) ]—'~

1 ~ x/2 1

G M n n/2 [( 1+k~/a~)K E][M +k2+(k/a )2]1/2

——j""dv
[E—(1 k IP )K][—M+k (k/P ) ]'—

(M +k )(M +k —1)/M = 6
2UFK

where A, is the dimensionless electron-phonon coupling
constant (for polyacetylene A, =0.38, for polydiacetylene
A, =0.43), and b, is the confinement parameter, which is
zero for trans-polyacetylene, 0.12 eV for cis-
polyacetylene, and 0.19 for polydiacetylene, for example.
The function M has been introduced in Eq. (9) of Ref. 20.
It can be put into a more practical form,

n+v =o
n'=n Q

n+v= 2

E~O

)y)= N/2

conduc tion

band

jvI= n/2

)y)= n/2
upper

localization band

[yl= 0

a6
2ScK (k) (2)

The special choice of M reproduces all superlattice solu-
tions known today as the soliton, ' polaron, ' and bipo-
laron. ' The auxiliary functions a and p are explained
in Eqs. (17) of Ref. 20. They are generalized phase shifts
of wave functions. The gap parameter 6 is not a con-
stant, but depends on c, and is implicitly determined by
Eqs. (1). So is the modulus k (0 + k ~ 1), which is respon-
sible for the shape of the superlattice. The total band-
width S=2~UF/a is about 10 eV for polyacetylene and
8.4 eV for polydiacetylene. sc measures gradients and
n =2nK(k)INa, as has been found in Eq. (12) of Ref. 20
from the requirement of periodicity. UF and a are Fermi
velocity and monomer length, respectively. Results from
the continuum models (TLM, BK) are valid as long as

E&0
]yl= o

lover

locali zat'ion band

[yf = n/2

)y) = n/2

valence

band

)y)= N/2

FIG. 1. Occupation of band states. Localized states:
—n/2 ~ v ~ n /2. Delocalized states: v=+n/2, . . . , +N/2. N
number of monomers on chain. n number of superlattice dips.
2n' number of excess charges. Q = n '/n ~ 1 fraction of possible
localized states occupied by excess charges, shown here for the
case of doping with negative charges.



39 SEMICONDUCTOR-QUASIMETAL TRANSITION OF HEAVILY. . . 8425

a~&&a or, equivalently, cK(k) &&m/2. The integrals of
Eqs. (1) are calculated in Appendix A, leading to a cou-
pled system of equations (A8), which determine the pa-
rameters k and G in terms of c and Q.

We still are in need of an expression for the total ener-

gy 8, which can serve as a criterion for relative stability,
and which in our case comprises electronic and lattice
contributions. It is given in Eq. (19) of Ref. 20. Its in-
tegral approximation reads

(3)

Xa /2

—xa /2 SA.Q

—2u~~ f d v[M +k + ( k la ) ]'
n/2

—2vF~ J dv[M+k' (k—/P )')'i' .
Qn /2

The lattice configuration function 6 can be found from
Eqs. (7) and (8) of Ref. 20 by use of the Jacobian elliptic
functions sn, cn, and dn:

MG/2+uFzk sgn(xo)sn[v(x —xo), k]cn[K(x xo), k]dn[&(x xo) k]
b, (x) =

M+k cn [K(x xo), k]
(4)

2~x0 =F sin
1

2 &/2'(M+k )'~ (5)

for xo yields the bipolaron solution Eq. (11) of Ref. 20.
Inserting b, into the first integral of Eq. (3) above and
shifting x ~x+x0, which does not change the integra-
tion boundaries on account of periodicity, we obtain

It describes the atomic displacement along the polymer
chain. This solution of the nonlinear continuum model is

sufficiently general to reproduce all superlattice forms
known to date. The special choice

wan (Q —Q)~
dx—Na/2 SXQ

kS M+k' K(k)
b, —GA II(k /(M + k ), k )

+(uFa) [M+1 2E(—k)/K(k)]

Application of operations Eqs. (A2) —(A5) to the other in-
tegrals of Eq. (3) gives the following result for the total
energy per monomer:

b,2+ —,'Gb, —Gb, II(k /(M+k ), k)X AS ' M+k' M+k' K(k)

G' 1/2

+ . E(sin 'X, k'(1+k /M)'~ ) Esin-
4S M+k —1 M+k 1 —k

[X2( 1 X2)[ 1 ( k i )2X2( 1 +k 2/M) ) j
1/2

1 —(1+k /M)X

[(I P)(f3 k)[—P (1+k—IM) k IM)) '—
P (1+k /M)

, k'(1+ k'/M )
'"

W implicitly varies with c and Q. The chemical potential
for the addition of a single charge can be received from
the slope of 8"via

(2Q)
—] d ( W/X)

dc

III. ELECTRONIC DENSITY OF STATES
AND ENERGY BANDS

The density of states per eV and carbon atom is com-
puted in the usual way,

4 d/v/ 4
dg, dlEl/dP,

Here Nc is the number of carbon atoms on the chain and
the factor 4 takes account of spin and both signs of v.

According to Eqs. (17) of Ref. 20 there are di(ferent for-
mulas which describe localized and extended states:

/v/ =—"A sin0
f3 —k

P(1 —k )
, k

~E~=uF~[M+k —(k/p ) ]'~

for localized states and

(1+a )(k +a, )
II( —a, k),

7T CX~

[E[= ~u[M +k'+(k la„)']'"
for extended states. Z(E) consequently decomposes into
contributions from the two localized and the two extend-
ed bands
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c Z&oc(E)
4X

E (k)/K (k)+M + k —1 —c.

[(M+k —E )(M —E )(E —M —k +1)]'
(10)

Xc Zext(E)
4X

E M —k2+—1 —E (k)/K (k)
[(c. —M —k )(E —M)(e —M —k +1)]'

for the lower boundary of the conduction band,

E„"=u~~&M =—— M
[(M+k )(M+k —1)]'

for the upper boundary of the band of antibonding local-
ized states, and

E'"=u a(M+k —1)' G M
M+k

1 j2

for the lower boundary of the latter.
Use has been made of Eq. (2). The upper edge of the

conduction band does not sensitively depend on doping
and has been left out. The energies of lower localized and
valence bands are mirror images of those given in Eqs.
(11). Below we shall sketch the variation of band-edge
energies with dopant concentration instead of showing
the wave-vector dependence of E on the whole.

IV. RESULTS FOR ZERO CONFINEMENT 5=0

Because of the immense amount of work on trans-
polyacetylene and its importance, the present discussion
is restricted to the particular case 6=0. The investiga-
tion of AWO is deferred to another paper. Above equa-
tions are considerably simplified in the case of 6=0. The
objection of why not use this condition right from the be-
ginning and avoid the complications associated with Eqs.
(A8) is not justified because that way a new superlattice
solution could easily escape notice. The fourth of Eqs.
(A8) reveals the existence of two solutions in the case of
b, =0. One has G =0; the other X= [(1—P )/(1
—k )]' . The first is related to the well-known soliton
lattice widely discussed in the literature. ' ' The second
is completely new and, as shown below, important.

Case (a): G =0. We conclude from the fifth of Eqs.
(A8)

M=1 —k

where s=E/uF~ As. is to be expected, Van Hove singu-
larities mark the band edges. Obviously the latter are

1/2
E""=u~ir(M+k )' G M

M+k —1

sn[x(x —xo ), k]en[a(x —xo ), k ]
h(x) =uFlrk ~

k=uFIr, sn[(1+k')a(x —xo ), (1 —k') /(1+ k') ],1+k'
(13)

For later purposes we need the electronic density of
states. M =(k') reduces Eqs. (10) to

E (k)/K (k) —E

[ ( 1 82)[(k I )2 e2] I
1/2

S Z'"'(E)= fo
~ ~ 1,

4N I(E2 1)[E2 (k&)2]] i/2

and zero elsewhere. See Fig. 2. Z is normalized to 1:

S Z"'(E)=c
4X

c f dEZ(E)=1 .
4X —S/2

(16)

As is evident from Eq. (13), b, vanishes near gap closure
in the limit k=0; Z becomes a constant for all E:
(N& /4N) Z (E)= 1/S. From Eq. (16), we compute

k'

(Nc/4N) I dE Z'"(E) =y/2 .

That is to say that the Fermi energy
EF =k'uFa=Syk'K(k) I~ coincides with E„"'for all k, as

I

I

I

I

1

I

I

I

I

/

5--

0-- ————————1.

I

I

I

I

0.0 I

I

I
/

/

-1,0 -0.5 0.5 1.0 E/v„x

electronic density of states

using Landen's transformation. This is the soliton lat-
tice known from the literature. ' From Appendix B we
infer Q=1 to yield the most stable state. In this case
modulus k and total energy 8'/X are related to concen-
tration y via

(m /2)tanh(1/A. )3'=
[1+& sinh ( I/A, )]'/ Il( —1/sinh (I/X), k)

8'/N = ——
~ 2

—tanh(1/A, )
S k sinh (1/A, )

1+k sinh (I/A, )
2

K(k)
II( —1/sinh ( I/k), k )

Equation (4) yields the lattice function 5 for that case. It
is even in x, if xQ=&a/4n, and odd, if xQ=O, where
without loss of general validity we may assume xQ )0,

FIG. 2. Electronic density of states for soliton lattice with

Q =1. Two values for modulus k. k =0.4 (dashed line); k =0.8

(solid line).
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is to be expected for Q = l.
Case (b): X=[(1—P )/(1 —k )]' . We insert X=[(1—P )/(1 —k )]' into the second of Eqs. (A8) and make

use of additional formulas for the elliptic integral of the
third kind to be found on p. 13 of Ref. 28. We thus
derive

k
M =(k /P) (1—P ) 1+ coth (1/1, ) . (17)

P —k

In Appendix C we find once more that Q =1 is the most
stable state of all Q. Figure 3 demonstrates that, in addi-
tion to this, it is even more stable than the soliton lattice
of case (a) with Q =1. Thus a new superlattice solution
with a completely (n or p) filled localization band has
been found. It is characterized by p=l, M=0, and
G =0 for 0~y ~ 1/cosh(1/A, ). In spite of Q = 1 it would
probably not have been found without the expedient in-
vestigation of partially filled bands. From Eqs. (Cl) and
(C2) we infer

sn[~(x —x o ),k ]dn[ir(x —xo ), k ]
A(x) = UFa-

cn[ir(x —xo), k]
(19)

for i' P. . . ,[—3K, —2K], [—K,O], [K,2K],
[3K,4K], . . . , and xo«= —K(k)/2. It does not ap-
proach zero, but stays finite in the limit k =0.

Since the localized wave functions of Eqs. (17) of Ref.
20 must be treated with care in the limit M =0, we
present them here. The phases of p, and q differ by
m /2; eigenvalue E„=O for all v with 0~

~ v~ & n /2:

This is to be compared to Eqs. (14).
In contrast'to Eq. (13), the lattice function of Eq. (4)

reads

sn[ir(x —xc ), k ]dn[ir(x —xo ), k ]
h(x) =uF~

cn[ir(x —x o ),k ]

for irx &. . . , [—4K, —3K], [—2K, K]—, [O,K],
[2K, 3K], . . . , with xoir=K (k)/2, and

tanh(1/A, ) rr/23'=
[k +sinh (I/1, )]'~ II( —k /sinh (I/A, ), k)

(Ig)
S sinh ( I /A, )

4 k +sinh (I/A, )

ik

&2Xq, x)=

k
&2X

x)=

cn[irx —K (k)/2, k]
[E(k)/K (k) —(k')2]'~z

cn[irx +K (k)/2, k

[Z(t )/K(k) —(k')'1'"

(20)

WiN

(eV)
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2475

total energy
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/
/

/
/

/

/
/

/

/

K(k)'
II( k /Slnh ( I /A, ), k )

Fquafions (1)-(3) of Ref. 20 can be shown to be satisfied.
Note that the jumps in the derivative of h(x) near 0,
+K/ir, . . .are without consequence, since in these equa-
tions only the continuous function 6 appears. As for
wave functions and band energies of the extended states
the limit M =0 in Eqs. (17) of Ref. 20 poses no problem.
In Fig. 4 the new superlattices is compared to the soliton
lattice. The zeros of 6 coincide with the maxima of the
localized charge distribution functions, which also do not
vanish in the limit k =0.

The boundaries of conduction and valence bands read
[cf. Eq. (11)]

VpX

cOf) figuf'ation

I

0.'t0
l

0.15 y

FIG. 3. Comparison between both superlattices. 8 /X vs y
for Q =1. Soliton lattice (dashed line). New lattice (solid line).
Proof that there exists a lattice more stable than the soljton lat-
tice.

FIG. 4. Comparison between both superlattices. Lattice
configuration function b, depending on space coordinate x [cf.
Eqs. (13) and (19)]. k =0.7. Distribution functions of localized
charges (not shown) have maxima at zeros of Q. Soliton lattice
(dashed line). New lattice (solid line). For clearness dotted lines
show whole functions of Eq. (19), only parts of which are real.
UF is the Fermi velocity. For parameter a.=2nK(k)/Xa, see
text.
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Z loc( E)— 5(E),
cosh(1/A, )

S (E +1)'i ' 2cosh(1/A, )

(23)

Evidently for 0 ~y ~ 1/cosh(1/A, ) the Fermi energy
EF =0. For larger y there is the equation

y = 1/cosh(1/A, )+(2/S) dE 2,&2(E +1)

localized charge distribution functions, which also do not
vanish in the limit k =0.

The boundaries of conduction and valence bands read
[cf. Eq. (11)]

E"" '""'= + u Irk= + yk—K(k) .S
(21)I (14) UF

In addition to these two bands there also exists a localiza-
tion "band" in form of a 5 function. From Eq. (10) we
derive

Nc Z"'(E)=y 5(E)
4N

S I(e' —k')["+(k )']]'"
Again Z(E) is normalized to 1 as in Eq. (16) above. Fig-
ure s ow5 hows Z. It is clearly distinguished from Fig. 2.

11Wh'1 the soliton midgap band is narrow only for sma yie
1and gets wider with increasing concentration, the centra

band of the new lattice is sharp for all y ~ 1/cosh(l/A, )

with weight y. At k =0 or y =1/cosh(1/A, ) the function
Z'"'(E) changes its shape. Let us apply Eq. (22) to po-
lyacetylene. Here Nc /4N = 1 and y =2yD. For
y ~ 1/cos(1/A, ) we have

2 + 1)1/2 [y cosh(1/A, )]

(25)

In the absence of any gap a tight-binding calculation in
one dimension for a half-filled band of total width S
would give N =4/(AS) for the density of states at Fermi0
level. Using yp =p~Z(EF ) for the Pauli spin susceptibil-
ity, where pz is the Bohr magneton and y =2yD, where

y is the dopant concentration, we findD

1/2
2

4 [2yDcosh(1/A, )]

1

2 cosh(1/A, )
(26)

Fi ure 6 shows yz for A, =0.38. The saturation value de-
viates from the "metallic" Nopz by a factor o 0. .f 0.8.

1.0

We have anticipated that the number of localized charges
does not increase on further doping and that more excess
charges are stored in conducting states instead. The
coexistence of localized and delocalized charges is to
some extent reminiscent of the coexistence of condensate
and excited particles in superAuid helium. For the densi-
ty of states near the Fermi level we get

1/2

or (24)
1/2

fory~
cosh (1/A, ) cosh(1/A, )

H +
0

paul magnetic

susceptibi (ity

S —Z(E)
4N
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I
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FIG. 5. Electronic density of states vs energy E for new su-
perlattice with g = l. Compare with Fig. 2. At E =0 a 5 peak
[cf. Eq. (23)]. Modulus k =0.8 (solid line); k =0.4 (dashed line);
k =0 (dotted line). Weight of 6 function taken from rest of
curve.

FIG. 6. Pauli spin susceptibility y& vs dopant concentration
O'D 3'y =y /2 for trans-polyacetylene. Electron-phonon coupling
constant A, =0.38. Xo density of states at Fermi level for one di-
mensional metal. pz is the Bohr magneton.
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V. DISCUSSION

The foregoing calculations have brought about three
main results. First, regard the Pauli spin susceptibility of
trans-polyacetylene. The observed sudden jurnp from
very small to almost metallic values by more than 2 order
of magnitude finds a simple explanation. The present
(primitive) model yields a y~ which starts from zero with
infinite slope, then gradually approaches a saturation
value, which is proportional to the reciprocal bandwidth
-0.1/eV C-atom. Besides, the critical dopant concentra-
tion depends only on the electron-phonon coupling con-
stant A, , giving about 7%%uo for A, =0.38 independently of
the dopant's nature. The soliton lattice does not show
such an abrupt onset of g~. Experimentally the critical
points scatter between 4% and 7%%uo for dopants as iodine,
sodium, C104,AsF5, etc. yz is not exactly zero before on-
set due to localized rest spins; its value is independent of
concentration. The transitional regime seems to be a lit-
tle smoothed, and the saturation value of g~ for metallic
concentrations is material dependent. These discrepan-
cies may be attributed to three-dimensional Coulomb
forces, electron-electron correlation, and disorder. Fur-
ther refinement of the picture can be reached by taking
into account possible reordering of the columns of
dopants with different geometries.

Second, there is an explanation for the band-gap clo-
sure observed at high doping level in optical-absorption
and electron-loss spectroscopy. At low concentration
the new superlattice and the soliton lattice are identical
[cf. Eqs. (13) and (19)], showing the characteristic
midgap absorption. ' At higher concentrations they
disagree. The interband gap of the soliton lattice widens,
that of the new lattice narrows. The midgap band of the
soliton lattice increased in width, that of the new lattice
stays sharp. Its gap vanishes at about 7% doping, while
for the soliton lattice the two gaps between midband and
extended bands are not closed before maximal doping.
The experimental situation is not unique insofar as evi-
dence for gap broadening has been claimed to be seen,
which would point to a soliton lattice. Since the energy
difference between both lattice forms is small, there
might be a chance to observe either of them in depen-
dence on the actual situation. In any case, the optical ab-
sorption due to the new lattice should first be computed.

Third, experimentally the infrared modes induced by
doping persist into the metallic region, remaining even at
the highest dopant concentration, which implies that the
metallic state is not a uniform bond-length polymer but
one with structural distortion. This observation favors
the new superlattice form, because this is exactly what
happens in it. At the transition point the lattice function
6 and the localized charge-distribution functions do not
vanish but survive instead, independent of how large the
dopant concentration is. We have a gapless metallic state
in combination with a distorted lattice and localized
charges. The soliton lattice has quite different features,
since lattice distortion and charge localization are gradu-
ally diminished on doping.

The above results only apply if dopants are uniformly
distributed, which is signaled by the sharpness of the
transition. This is important, because randomness of the

doping process has also been made responsible for a
semiconductor-metal transition. ' Hence the inAuence
of sample preparation must not be forgotten. The
Coulomb potential of dopant ions has been shown to be
of possible importance for the reduction of level spacing,
redistribution of gap states, and gap filling. Other effects
already mentioned can be taken into consideration by
way of perturbational methods. For the calculation of
thermopower and heat capacity, the above calculations
have to be modified to include temperature dependence.

It will be important to know whether the new lattice is
also present in the discrete SSH model, which until now
has not yet been shown. Since one has to proceed numer-
ically with a variational calculus, the energy difference
between both competing lattices should be sufticiently
large to ensure convergence. In Fig. 3, however, it is
shown that for small concentrations the energies of both
lattices practically agree. Hence we need large concen-
trations y near 14'. From Ref. 20 it has become clear

' that in the case of finite chain lengths the monomer nu-
mer X must exceed a certain value to guarantee a stable
solution, which in our case is between 200 and 300 mono-
mers. Thus numerical variation should be performed on
chains with more than 600 carbon atoms in contrast to
the 100 or less C atoms usually considered.

Another interesting point is the question of what hap-
pens to the new solution if the confinement parameter de-
viates somewhat from zero. This is, in fact, the case with
realistic polyacetylene. If the new lattice is not to be a
mere artifact, Eqs. (A8) should be investigated in general
with varying confinement parameters.
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APPENDIX A

For further advance, elliptic integrals of all kinds, com-
plete and incomplete, are required. To prevent
misunderstanding, we summarize here their definitions:

Il(y, a, k) = dr 1

(1—a sin r)(1 —k sin r)'
F(y, k)=II(y, a =O, k),
E(y, k)= J dr(1 —k sin r)'~

(Al)
II(a, k ) = Il( g = vr /2, a, k ),
K(k) =F(y=m/2, k),
E(k)=E(y=vr/2, k) .

These functions allow Eqs. (1) to be treated analytically.
The intermediary mathematical steps can be found in
Ref. 28. Several variable transformations are performed,
the first of which [from v to a„or P, with the help of Eqs.
(17) of Ref. 20] means a substitution of phase shifts for
wave numbers:
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cx2—f dv f(1/a )=f f(1/a )d
n n/2 a,

=f f(z )d

In the last step replace z by y via

(I+a )(k +a ) Il —a, k
CX

2 2
- 1/2

Z2 22—(1+z )(1+k z ) 2
'2

2 ~(1+k z ) —~
Z2 [(1+z )(1+k z )]'

z=(1+k /M)'/ sin(y)[1 —(1+k /M)sin y]
Evaluation of the other integral proceeds in a similar manner

(A3)

—f dv f(1/p, ) =—f f(1/p )d Ao sin
tl Qn /2 2 /3

1

z d Ao sin
2 1/P

This time make the substitution

z =[1—(1—k )sin y]

1/2
P —k

P(1—k )

1/2
z2

, k
1 —k [(z'—1)(1—k'z') ]'" (A4)

(A5)

~1=
2 c

Ao is Heuman's lambda function. The integral boundaries z&, z2, and p are determined by

(I+zl )(1+k z, )
II( —1/zi, k),

Z 1

(1+z2)(1+k z2)
11(—1/z'„k ),

Z2
(A6)

Q=AO sin P —k

P (1—k )

Solution of the first equation immediately yields z, =0. It turns out that another auxiliary parameter X is more suitable
than z2.

X=z2/[(1+ z2 )(1+k /M) ]'

Equations (1), (2), and (A6) ultimately lead to the following set of coupled equations, where k'=(1 —k )'/:
(A7)

Q =Ao sin
p2 I 2

P(1—k)
1/2

1/2

—=v'M F(sin 'X, k'(1+k /M)' ) Fsin ' —
2

1 —k
, k'(1+ k'/M)'"

1/2
k . , 1 —P+ —H sin

1 —k

' I/2

(k~)2 ki( 1+k2/M)1/2 F sin
—I

1 —k
, k'(1+ k /M) '

k+ II(sin 'X, 1+@ /M, k'(1+@ /M)' ),

, k'(1+ k'/M) '"1/2

(M +k —1)'/ F(sin 'X, k'(1+k /M)'/ ) Fsin—
26 1 —k

(A8)

1/2

E k
II(l —1/[X (1+k /M)], k),

, k (1+k'/M)'"

&M 1 —(k') X (1+k /M)
M+k X [1—X (1+k /M)]

1/2

F(sin 'X, k'(1+k /M)'/ ) Fsin—1 —P
1 —k

mG M
2SK(k) (M +k')(M+ k' —1)

1/2
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When solving Eqs. (AS) we do not start with the concen-
tration c, but proceed the opposite way. A, , b„S, and Q
are fixed constants. We pick a. value for k from the inter-
val (O, l), solve the first equation to get p, then the cou-
pled second and third equations for M and X. 6 and c
follow in return from the last two equations. Wave func-
tions and band energies are given by Eqs. (17) of Ref. 20
in terms of these variables. Then electronic densities of
states and transition matrix elements can be derived.

APPENDIX B

1 1=—+ln
Xp

1+(1 P z)]/z

p 2)1/2

After insertion of M=1 —k into the second of Eqs.
(A8), we get

k

1.0
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FIG. 7. Soliton lattice for confinement parameter b, =0 and electron-phonon coupling A, =0.38 with partially filled localization
band. (a) Modulus k vs concentrationy=Qn/N=n' N/= unbmer of charge pairs divided by monomer number for varying Q. k =1:
soliton lattice exists k=0: sol.iton lattice vanishes at yo=Q [1+(1—Q )exp(2/A. )] '~'. For y &yo there is k =0. (b) y dependence
of bandwidths for positive energy F.; mirror images for F. & 0. Q varies as in a. Gap between midband and conduction band closed at
the same yo as appears in (a). (c) Total energy (lattice plus electronic) per monomer W/N vs y for Q varying. Curves valid for y &yo.

Q = 1 denotes most stable lattice with full (or empty) midgap band.
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g k sinh (I/A, )0
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)
0
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k given variation of Q in the first of Eqs. (A8) yields p.
Afterwards A,o is taken from Eq. (Bl).

Figure 7 shows modification of modulus k, bandwidths,
and total energy W/lV with y=Qc, where O~y ~Q.
Note that k approaches zero at yo =Q[1+(1—Q )exp(2/1, )] ' ~Q. At this point the gap between
localization and conduction bands vanishes. From Fig.
7(c) we infer, however, that the most stable state corre-
sponds to Q =1 with AO=A, . This is not new, ' since the

midgap band of a stable charged soliton lattice is com-
pletely n or p filled. For that case yo= 1, i.e., gap closure
does not take place in our model before maximal doping.

APPENDIX C

By combination of the last three of Eqs. (AS) we get a
relationship between c and k:

C—
1/2

k (1—
/3 )+(k') P sinh (I/A, )

k +P sinh (I/A, )

(vr/2)(P —k )'~ [P(k') cosh(1/A, )]
II( —k (P —k )/[k (1—P )+(k') P sinh (I/A, )],k}

1/2
2S

k
(M+k )(M+k —1)cK k

rr M )

(C 1)

Finally, from Eq. (7),

W S [k (1 —P )+P (k') sinh (I/A, )][k"(I—/3 )+f3 (k') sinh (1/A, )]
N 4 P (k') sinh(1/A, )cosh(1/A, )[k +P sinh (I/I, )]

K(k)
II( —k (/3 —k )/[k (1 P)+P —(k') sinh (I/A, )],k)

'2

(C2)

Figure 8 shows k, 6, band edges, and W/X versus y =cQ
for various Q. k drops to zero at ye = Q /cosh(1/A, ) (Q.
Here the gap between upper localization and conduction
bands and the symmetrically positioned gap for negative

I

energy are closed. The central gap is still present and
coincides with G for k =O. It goes to zero at
Qo= I[1+exp( —2/1, )]/2I' . Again Q =1 corresponds
to the most stable state.
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