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M. De Crescenzi, L. Lozzi, P. Picozzi, and S. Santucci
Dipartimento di Fisica, Uni Uersita dell'Aquila, 67100 l'Aquila, Italy

M. Benfatto and C. R. Natoli
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, I'.O. Box 13, 00044 Frascati, Italy

(Received 13 July 1988; revised manuscript received 21 December 1988)

We present recent structural results obtained through extended energy-loss fine-structure
(EELFS) spectroscopy in the reAection mode above the silicon E edge. Although the electron-
energy-loss technique is one of the most ancient tools for surface investigation, only recently has it
been proved also to give local structural information. Thanks to an increased amount of experimen-
tal evidence, the physical process underlying the EELFS features, described in terms of a final-state
interference effect similar to what happens in extended x-ray-absorption fine-structure (EXAFS)
spectroscopy, seems to be well accepted now, although a deeper theoretical analysis is required. In
this paper we compare EELFS and EXAFS features detected above the same edge in order to
demonstrate that the dipole approximation can be applied with confidence even for a deep edge of
ionization energy comparable with the primary beam energy. The good agreement between the
structural parameters obtained by means of x rays and by low-energy primary electrons is theoreti-
cally explained in terms of a complete calculation of the inelastic-electron-scattering cross section.
The most important result of this approach, based on the distorted-wave Born approximation, is the
strong predominance of the dipole channel over the monopole and quadrupole contributions, at
least for nodeless core initial wave functions. The present theory allows one to include in a manage-
able way multiple scattering and exchange effects.

INTRODUCTION

In the past few years EELFS (extended energy-loss
fine-structure) technique has been proved to be a valuable
tool for local structural investigation of clean surfaces
and chemisorbed species. ' The most attractive aspect
of this technique is that the data analysis follows the pro-
cedure used for EXAFS (extended x-ray-absorption fine-
structure) spectroscopy. The great advantage and
usefulness of the EXAFS technique lies in the simplicity
of the theoretical formula for determining neighbor dis-
tances and structural parameters.

The oscillatory structure in an x-ray absorption spec-
trum )M(E) from a core level [schematically shown in Fig.
1(a)] is caused by a final-state interference effect between
the excited electronic wave coming out from the absorb-
ing atom and the backscattered part of this wave due to
the presence of the surrounding atoms. Sayers, Stern,
and Lytle in order to fit this structure have suggested the
following equation:

(k )
~~ [2kR +y(k )) 2cr k —2R/k—(k)

kR

where k is the photoelectron wave vector, R is the
neighbor-shell distance with coordination number X and
backscattering amplitude A (k, m ), P( k ) is the phase shift
experienced by the photoelectron in the emission-

backscattering process, o. is related to the thermal and
static disorder, and A,(k ) is the mean free path of the ex-
cited core electron. For simplicity in Eq. (1) summation
over different shells has been omitted.

Because the EXAFS spectroscopy needs mainly high-
Aux synchrotron radiation facilities, our purpose has been
to demonstrate that an alternative similar structural tech-
nique is possible if one looks at the extended features
present in the inelastic cross section X(E) of the scat-
tered electrons from a solid surface [Fig. 1(b)].
Numerous works have been published to demonstrate the
applicability of the EELFS technique in the determina-
tion of the structure of different compounds ' and
different metals deposited on clear surfaces. "

The focal point underlying the EELFS analysis is the
assumption of the validity of the dipole approximation
because it reduces the complexity of the functional form
used to fit the experimental data. This approximation is
generally well accepted for transmission energy-loss spec-
tra' ' while its applicability for spectra carried out in
the reflection mode should be in principle questionable
because the primary beam has energy comparable with
the energy losses.

In this work we report a complete study performed on
a clean silicon surface using the EELFS technique in a
reflection mode. We have chosen silicon because it is one
of the most interesting elements from the point of view of
both electronic properties and the technological applica-
tions. Moreover a fairly large amount of EXAFS and
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surface EXAFS data of crystalline and amorphous silicon
have been reported in the literature. '

The aim of our work can be summarized as follows: (a)
to make a comparison between the EELFS structural in-
formation (radial distribution function, backscattering
amplitude, and phase shift) and the one obtained by
means of the EXAFS technique, (b) to evaluate the con-
tribution of multiple plasmons on EELFS spectra which
should be important when an electron probe is used to
excite inner shell electrons, and (c) to compute the
differential scattering cross section (above the silicon E
edge) in such a way as to assess the relative weights of the
various angular-momentum final-state channels.

These calculations, originally suggested by Leapmann
et a/. for the case of transmission energy-loss spectra
for a wide variety of inner shells of different atoms, are of
crucial importance to show whether the dipole approxi-
mation is a valid and correct method of analysis of the
extended energy-loss fine structure in the reflection mode.

In this latter mode however, as will be shown in Sec.

I
.io-'

P

EXAFS

(a)
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FIG. 1. Schematic pictures of (a) EXAFS and (b) EELFS
processes. The modulation observed in the x-ray absorption
coefficient p,(E) should correspond to the features observed in
the yield X(E) due to the back diffused electrons from a solid
sample. In the EXAFS spectroscopy the different final states of
the excited core electron above EF may be filled by varying the
energy Ace of the x-ray probe. In the EELFS spectroscopy the
same features are detected in X(E) measuring different energy
losses hE of the primary electron beam E~ which rejects the
same final states of the core electron excited in the medium.

IV of the paper, the va1idity of the Born approximation is
highly questionable, since for intensity reason, the in-
cident electron energy should be as low as 2—3 keV. The
price to be paid is therefore a more complex theory, due
to the much stronger elastic scattering of the incident
beam of electrons at these energies and due to exchange
effects between the projectile and the localized electrons
of the system under study.

The first attempt at such a theory was that of Mila and
Noguera ' who treated the exchange and elastic scatter-
ing in what substantially is a distorted-wave Born ap-
proximation (DWBA), but taking the single-scattering
approximation for the initial- and final-state electron
wave functions.

However, due to the complexity of the resulting ex-
pression, the whole question of the validity of an approxi-
mate selection rule was left to a further investigation.
The problem of the calculation of the Coulomb matrix
element in the 0%'BA was taken up by Mehl and Ein-
stein with the aim to understand and analyze the ex-
tended fine structure found in the appearance potential
spectroscopy. They presented evidence of two approxi-
mate selection rules by an incident electron, over the en-

ergy range of relevance to absorption struc'ture experi-
ments. The first approximate selection rule states that
the dipole part of the Coulomb interaction dominates the
ionization process at all energies of the "scattered" elec-
tron (the one with high energy in the final state; the "ex-
cited" electron is instead fixed at the ionization edge).
The second approximate rule says that the dominant
channel of the interaction is one in which the two final-
state electrons both have angular momentum I, +1, where

l, is the angular momentum of the core electron.
Combined with the approach of Mila and Noguera, '

the result of Meh1 and Einstein would seem to ensure a
substantial predominance of the l, +1 channel, provided
it could be extrapolated to higher energies of the excited
electron. It is difficult, however, to estimate the inAuence
of all the other channels present in the final state in the
structural analysis of the data, since their percent contri-
bution can be as high as 80%.

A different approach was presented by Saldin who
treated the full multiple scattering of the projectile both
before and after the inelastic scattering in a low-energy
electron diffraction (LEED) formalism. However the
final-state wave function of the lower energy excited elec-
tron was left unspecified. This approach made possible a
convenient classification of the projectile scattering paths,
from which it was possible to deduce that under the con-
dition be/s; (( l for the primary beam, b, e being the en-

ergy loss and c,- the incident energy of the projectile, the
dominant paths involve elastic backscattering and small-
angle inelastic scattering, which offers an explanation for
the apparent dominance of the dipole-allowed channel in
the atomic excitation process.

All this is well suited for systems consisting of a disor-
dered low-Z atomic adsorbate on a crystal surface, where
the condition hc/r. ; (&1 can easily be realized. Absorp-
tion from outer shells of medium Z adsorbates is another
possible case. However, in the majority of cases, experi-
mental conditions and detectability requirements do not
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allow the realization of the condition he/e; ((1. In all
these instances the formulation of a general theory
describing both the incident and the excited electrons in
the correct and complete way would be highly useful.
Such a theory is presented here and embodies the advan-
tages of both approaches described above in a formula-
tion which is not more complicated than that given by
Saldin. By explicitly evaluating the atomic radial
transition-matrix elements M& [see Eq. (31) of the present
paper] we in fact verify a predominance of the dipole
component, at least for absorption from a K edge (node-
less function).

It is also shown that, in general, cross terms of the type
Mly'„'Ml. with diff'erent final I values, where y'„' (n & 2)
represent the n th multiple-scattering contributions in
which the final-state excited electron of lower energy
leaves the excited atom with 1 angular momentum and re-
turns to it with l, are not entirely negligible. These
terms are important if l =0 and l'= 1 and vice versa and
might significantly distort the single-scattering signal
whenever the scattering phase shifts are high (near rr/2).

Fortunately for sin~le-scattering contributions and for
K-edge absorption yz =A&6&I, so that these terms au-
tomatically drop out of the formula and the dipole-
selection rule becomes again effective. However, for tran-
sitions from an I. edge g2' is not diagonal in l and we ex-
pect substantial deviations from this rule. It shou. ld be
added, however, that in the usual experimental condi-
tions the scattered electron beam is collected by a cylin-
drical mirror analyzer (CMA) that integrates over a
spherical ring of 6' of aperture around its own axis. Due
to the orthonormality of the spherical harmonics with
respect to azimuthal integration, most of the off'-diagonal
terms cancel with the result that the validity of the dipole
selection rule is approximately restored.

Although experimental evidence of such a dipole-
selection rule has been reported by different experimental
groups using different electron analyzers CMA, Hemi-
spherical analyzer, ' and LEED analyzer, this is the erst
time that it is shown to hold also for very deep edges
which are generally more diScult to detect.

This paper is organized as follows. In Sec. II the ex-
perimental apparatus used for collecting the EELFS spec-
tra above the Si K edge is described. Data structural
analysis, following the usual EXAFS procedure, and the
inhuence of the plasmon excitations by the primary in-
cident beam, assessed through a deconvolution method,
are presented in Sec. III. Finally, IV contains the general
formulation of the electron energy-loss process in the
reAection mode.

The distorted-wave Born approximation, used for such
a formulation, allows us to incorporate in a manageable
way both the full multiple scattering of the incident
beam, before and after the collision and the complete
multiple scattering of the excited electron of lower ener-
gy. Exchange process is taken into account in the way
suggested by Saldin.

EXPERIMENT
Silicon bars (111)were cleaved in UHV conditions and

surface cleanliness was checked, before and after the

EELFS measurements, by Auger analysis. The vacuum
chamber was equipped with a Riber single-pass CMA
with a coaxial electron gun.

Excitation beams with an energy of 3000 eV and
current of 10 pA on 0.5 mm were used. The EELFS
measurements were carried out in the reAection mode at
room temperature and at normal incidence of the pri-
mary beam.

10-V peak-to-peak modulation voltage was applied to
the CMA to obtain the EELFS spectra. Signals were
detected with a lock-in amplifier recording the first
derivative of the electron yield distribution dX(E)/dE.

In these conditions the energy resolution
(b,E/E-0. 3%) was about 5 eV. Data acquisition was
performed with the help of an IBM computer interfaced
with the lock-in amplifier. The collection time was about
60 min for each run.

It is well known that in the reAection mode the silicon
energy-loss spectra show extended structures due to the
plasmons replica. In order to assess their inhuence above
the excited core edge these plasmons replica were collect-
ed close to the elastic peak with the same energy of the
primary beam as used for the EELFS measurements.
More details of the experimental apparatus have been re-
ported elsewhere. '

RESULTS AND ANALYSIS

Figure 2 shows a typical EELFS result of the silicon E
edge showing extended structure for about 300 eV
beyond the edge located at 1840 eV. The EELFS oscilla-
tions obtained after subtraction of' the smooth atomic
background from the row data with the help of a cubic-
spline procedure is shown in the lower part of Fig. 2.

Si K edge
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FIG. 2. Extended energy-loss fine structure above the E edge
of the Si(111). The primary beam was E~ =3 keV. The spec-
trum is collected as the first derivative of the electron yield
N(E) and a modulation of 10 V was used. The lower part
shows the extracted EELFS features after a smooth atomic
background subtraction.
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FIG.G. 3. Extended energy-loss fine structure above the K edge
of the Si(111)cl) ean surface. The spectrum, as a function of the
k vector, has been obtained by numerical integration of the
EELFS features displayed in Fig. 2. The lower part shows the
EXAFS spectrum in the same K region for crystalline silicon as
reported by Filliponi et al. (Ref. 17).

In order to compare directly our results with the EX-
AFS features, the original dX(E)/dE EELFS spectra
have been numerically integrated. The undifferentiated
electron-energy-loss spectrum is shown in thin e upper part
of Fig. 3 together with the EXAFS spectrum reported by
Filipponi et al. (lower curve). ' Both spectra are
displayed as a function of the k wave vector given bgiven

k(A
—')=[0.263(E—Eo)(eV)] ' '

0
bors at 3.8 and 4.25 A and to a double-scattering path at
R tot 2 X 4 27 A 8 54 A

The intensity ratio of these two peaks to the first one
does not agree with that reported by the different au-
t ors' ' in the EXAFS spectra. A possible origin of this
discrepancy can be ascribed to the multiple plasmon con-
tribution because the interaction betwee theen e impinging
electron and the electronic system is particularly effective
in exciting plasmons both before and after the absorption

0
Energy Loss (eV)

60 %20 %80 240

Si (111)

300

FIG. 4. Fourier transform of the EELFS data of Fig. 3. The
different peaks, displayed as a function of the real space R(A),
correspond to the different neighbors of the silicon cage. The
various features in the F(R ) are not corrected for the proper
phase shift.

where E is the photon or loss energy, Eo is the silicon K
edge binding energy (1840 eV), and (E—Eo) is the energy
loss above the edge.

A strict analogy can be observed between the fine
structure of the two spectra for what concerns the main
frequency of the oscillating signal, apart from a slight
difference in the low-k region. This discrepancy will be
analyzed in terms of a convolution between electron
single-scattering EELFS process and multiple plasmons
excitation. The radial distribution function F(R ), which
contains the structural information, has been obtained by
Fourier-transform (FT) analysis of the integrated EELFS
data.

This function, as shown in Fig. 4, displays several
peaks as a function of the real-space distance R (A)
around the absorbing atom which should be related to
the different neighbors in the crystalline Si arrangement.
The main peak, at about 1.98+0.03 A& corresponds to
the radius of the first atomic shell (2.35 A).

This difference between our experimental lattice spac-
ing and the crystallographic data, amounting to 0.37 A,
is attributed to the phase shift experienced by the excited
electron involved in the EELFS process. ' We note two
other peaks located at 3.6 and 4.1 A, respectively, which
should correspond to the second and third nearest neigh-

0 ~
'

2 . 3
R(A)

4

FIG. 5. ~a~( ) Plasmon features near the elastic peak for a
Si(111& surfa) ace. We used the same 3-keV primary beam utilized
for collecting the EELFS features. (b) Fourier transform of the
above plasmonic features.
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process.
Silicon moreover is a very good candidate for observ-

ing the multiple plasmon replica because its free-electron
plasmon (located at —17 eV) is not completely broadened
by interband transitions as actually happens for the tran-
sitions metals where this multiple interaction is strongly
screened.

In order to evaluate this contribution on the EELFS
spectra we have measured the plasmon replica near the
elastic peak using the same primary beam energy. The
observed spectrum (upper curve) together with its
Fourier transform (lower curve) is shown in Fig. 5 The
FT of the plasmon replica spectrum has been performed
in the same energy-loss range used for the EELFS FT
analysis. In this way the broadening of the structure is
comparable in both cases. The FT shown in Fig. 5(b)
displays only a very broadened structure around 3.5 A.
In the Appendix we show that the observed core-edge
spectrum I,(E) is the result of convolution of the single-
scattering profile with a measured loss spectrum It(E)
close to the elastic peak as discussed by Leapman et al.
for transmission energy-1oss spectra:

I,(E ) =I,(E ) + II(E ),
where denotes convolution. This single-scattering
profile may be then recovered by deconvoluting the ob-
served EELFS spectrum with the measured I, (E) spec-
trum using the following ratio:

I,(E ) =I,(E ) I&((E),

close correspondence between the F(R ) obtained by our
EELFS data and that obtained by EXAFS analysis' re-
ported in Fig. 6(b).

Since core excitations followed by multiple plasmon
losses are possible, we have repeated the deconvolution
process using a loss spectrum at a primary beam energy
of 1 keV. We have found substantially, the same F(R ) as
in Fig. 6(b). This is not surprising because of the satura-
tion property of the extrinsic plasmon excitation process
as described in Ref. 26.

It appears evident from the previous analysis that in-
tensities (to a certain degree +10%%uo) and positions of the
nearest neighbors are not a6'ected by the presence of the
multiple plasmons. This result allows us to extract the
backscattering amplitude A (k ) and the phase shift P(k )
following the standard EXAFS procedure. ' In Fig. 7
we show these extracted quantities as a function of the
wave vector (solid line) together with the theoretical
backscattering amplitude and phase shift reported by Teo
and Lee (dotted line) calculated in the dipole approxi-
mation (s~Ep transitions). The two phase shifts are
parallel over a wide k range suggesting the predominance
of a single final-state l channel of the excited core elec-
tron.

Since the determination of the phase shift and in gen-
eral all EXAFS analysis depend on the choice of the zero
of energy for the photoelectron k vector, it is worthwhile

where —indicates the FT. The F(R ) resulting from this
procedure is reported in Fig. 6(a). We note a lowering of
the intensities of the second and third outer coordination
shells which leads to a new ratio among the various struc-
tures. This deconvolution procedure gives now a more
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4
2 3 4 5 6 7 8 9

k(P )

FICs. 6. {a) Fourier transform of the EELFS signal reported
in Fig. 4 after deconvolution of the plasmon contribution shown
in Fig. 5. The normalization procedure between the two FT
functions is reported in the text. (b) Fourier transform of the
EXAFS signal (Ref. 17}reported in Fig. 4.

FICs. 7. Amplitude backscattering and phase shift obtained
for the silicon K edge by means of the EXAFS procedure (Refs.
5 and 7) of the first nearest neighbors of the EELFS (FT}shown
in Fig. 6(a) (solid line). The dotted lines represent the theoreti-
cal calculation of the same quantities reported by Teo and Lee
(Ref. 27) for the silicon K edge.
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spending a few words to illustrate our choice. In a
muon-tin model of the crystal, as the one usually used in
this type of analysis, k is given by k =(E—Uo)'~, where
F is the kinetic energy of the photoelectron in vacuum
(outside the system under study) and Vo is the average in-
terstitial potential referred to the same vacuum. We have
calculated Vo for a cluster of 17 Si atoms in tetrahedral
coordination with touching atomic spheres and found
Vo= —7 eV. Since the work function for Si (top of
valence band) is of the order of 5 eV taking into account
a gap of —1 eV gives zero of energy located -2 eV below
the rising edge (bottom of the conduction band). This is
the definition we have adopted throughout our analysis,
both theoretical and experimental, without making any
adjustment.

c;,=7I
which is clearly not the case for our experiment, in which
E, =3 keV and E, = l keV (I=2 keV). However in this
latter case the distorted-wave Born approximation be-
comes applicable since, following Bethe and Jackiw, the
condition for the validity of the DWBA now becomes
c, , )250 eV for any atom. For light atoms up to Z =20
the validity should start at a even lower energy.

In the distorted-wave scheme the differential cross sec-
tion for inelastic scattering of an electron of initial energy
c;=k,. and wave vector k, into a final state of energy
E, =k, and wave vector k„while the target system un-
dergoes a transition from the initial ground state Oo of
energy Eo to a final state 4, of energy E, , is given by
(0=k, )

THEORETICAL BACKGROUND

In discussing reAection electron-energy-loss fine-
structure spectroscopy we must be aware that the Born
approximation is usually not applicable, since for its va-
lidity the condition

E, (E, ) ))I
should be fulfilled both for the incident electron energy E;
and for the scattered electron energy c., for excitation of a
deep core state with ionization energy I. According to
Mott and Massey one should roughly have

4~' k,

where & I Vl &d is the direct Coulomb matrix element,
& I Vl &,„ its exchange counterpart, ' and the + sign is
for triplet states; the —sign for singlet states.

We use atomic units throughout for lengths and Ryd-
berg units for energies. For the direct matrix element in
Eq. (2) we find

N

&+.q, IVI+.q+&, = y f f «d3r
m=1

g,+(r;k, )[g, (r;k, )]*%„(r,. . . r . . .r~)%o(r, . . .r . . .r~)r —r
N

fd~%'„(r, . . .r . . .r~)% o(r, . . .r . . .r~)Td(r;k;, k, ),
m=1

(3)

where X is the total number of electrons in the target sys-
tem, and

Td(r ;k, k, )=f d r
I

p,+(r, k, )[g, (r;k, )]*
r —r (4)

Nyz 2Z po(r')d'r'
u(r)= —g +

„=, lr —R~l
(5)

is an effective transition operator. In these equations
g,+(r, k;) and g, (r, k, ) are one-particle scattering states
in the potential

(We have assumed that all nuclei in the system have the
same atomic charge Z. ) They behave asymptotically as

ik,. r

g,+. ( r, k; ) —e ' +f ( k, , k ,
'.

)

—ik, r

g, (r, k, ) —e ' +f*(k„k,')

In a reAection EELFS experiment, these states are LEED
states satisfying the conditions

P,+(r+R, k;)=e '
P,+(r,k;),

where Ak labels the position of the nuclei in the system,
and

N

po(r)= g f I+0(r, . . .r „r,r , . +. .r~)l

X +dr

[g, (r+R, k, )]*=e ' [g, (r, k, )]*,
where R are lattice vectors of the particular surface
chosen. However since in our experimental conditions
the penetration depth of the ingoing and outgoing elec-
trons is large enough that we can consider the surface a
small perturbation [at l keV this depth is several atomic
layers ( =5—7)] we can safely assume that in Eq. (7) R
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is the lattice vector of the entire crystal. The energy of I
keV is somewhat a border line for an incident and scat-
tered electron to be able to sample the full periodicity of
the crystal. At somewhat lower energy (-20—600 eV)
the periodicity of the sample along a direction perpendic-
ular to the surface (z direction) cannot be sampled, since
the electron mean free path drops down to -5 A. How-
ever, the periodicity along the surface still holds true. In
this case the full complication of LEED states should
come into play. ' ' The general treatment for this case
will be given elsewhere, although we can anticipate that
the following conclusions still keep their validity. Using
therefore the full periodicity of the system, we can find an
alternative expression for the effective transition operator
in Fig. 4. In fact, on the basis of Eq. (7) we can write for
the quantity

p;, (r;k;, k, ) =g,+(r, k; )[P, (r, k, )]'
the expansion

p;, (r, k;, k, )=exp(iq r) +exp(iG„r)p(G„, k„k, ),

(9)

where q=k, —k, is the momentum transfer and G„are
reciprocal lattice vectors of the crystal.

Substituting Eq. (9) into Eq. (4) and using the well-
known formula

exp(iq r) 4m
~

~

f'
g

one finds

p(G„;k;,k, )
Td(r;k;, k, ) =4m. g exp[i(q+G„) r]

q+ G„

(10)

The second matrix element in Eq. (2) is the exchange part
given by

N

&q;q„~V~q, q+),„= y f fdrd r,
~

P,+(r, k;)[f, (r, k, )]*
m=1 ~r rm

X+„(r,. . .r &. . .r. . .r +, . . .r~)+o(r, . . .r . . .rz) .

To estimate this term, we use the asymptotic equation:

e'"' 4m.fP(r'), d3r'= e'"'P(r)+O(k ),
fr —r'[

where P(r) is a function which varies slowly compared with e'"". By writing

g,+. ( r; k,. ) =e '
P, ( r; k,. ),

%„(r, . . .r. . .r„)=e' '@„(r,. . .r. . .r„),
i(k, —k)-r

where k =(E, +ED —E, )' =E„', in the hope that the product P;P„be smooth on the scale of variation of e ', we
find

N

&g, q'„~ V~q'og, +),„=
z g f dr/, +(r;k;)g, (r;k, )%'„(r,. . . .r . . .rz)%0(r, . . .r . . .r~) .

Remembering Eq. (9) we can finally write

M—= &q„y, Ivlq, q,'&& . )„+& . )&q;e„~v~q, @,+),„

f driP„(r, . . .r . . .r~)iPO(r, . . .r . . .r~)T(r;k;, k, ),

where

T(r;k,.k, )=4m g e
1 1

(12)

is an effective transition operator containing both the
direct and exchange contributions. Note that under the
usual experimental conditions ~k; ~

)) ~k~.

In the determinantal approximation for the many elec-
tron states Vo and 4„,Eq. (11)becomes

M= g f d r Pf,„(r)T(r;k;k, )PL (r),
m0

where, in our case, PL is the wave function of the core
0

electron with angular momentum Lo-(lo, mo) and P&„
that of the excitated electron with wave vector k relative
to band n. We assume that (tL (r) is normalized within

0

the cell at site 0 of volume vo.
The differential cross section Eq. (2) can then be writ-

ten
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, „' y y. [(y„„~T~y', ))'6(.,+., —.„„—., )
dQ 4~ k;

] k,' g —J' f Pt (r)T*(r)ImG(r, r';e)
0

X T(r')ItIt (r')d r d r',

(13)

where now co and c,k„are one-particle energies such that
Ep E„=—Ep

—
Et,„and G(r, r', E) is the Green's function

(14)

with E=Ep+E; —s, . The functions itIk„(r) are Bloch func-
tion of the crystal with energies ck„, n labeling the band
and k being the Brillouin-zone vector. They obey the
Schrodinger equation

is the multiple-scattering matrix and GL L". is the
spherical-wave propagator given by

II II I

GLL", = 4—vari gi +
CLL, h(+„(k Rm„)YL, (R~n)

I II

(22)

C,', =-f «Y, (&)Y.(&)Y, (&-),

R „=R —R„
hI+ being the Hankel function and using real-spherical
harmonics. Assuming for simplicity that there is only
one atom for unit cell, the index m on tI can be omitted.
The generalization to more atoms per unit cell is straight-
forward. Note that, because of the periodicity ~IL ~ de-
pends only on R „.

In terms of Eqs. (19) and (20) the single cell Green's
function G, (r, r') is given by

[V' +E„„—V(r)]g„„(r)=0, (15)

where V(r) is the self-consistent periodic crystal poten-
tial. It is well known and can be easily verified from Eq.
(14) and (15) that G(r, r';E) satisfies the equation

G, (r, r' )=k g R (r )~tL RL (r' )
LL'

—k QRL(r )SL(r' ), (23)

[V +E—V(r)]G(r, r';E)=5(r —r')

with periodic conditions

G(r+R, r'+R;s) =G(r„r';s)

(16)

(17)

due to Eq. (14) and the property of Bloch states

RL(r)=R&(r ) YL (r), (19)

where RI(r) is that solution of the radial Schrodinger
equation regular at the origin, that matches smoothly to

jI(kr)cotan5I nI (kr)— (20)

at the MT sphere radius. Here 51 is the Ith phase shift of
the MT sphere potential, in terms of which the atomic tI
matrix is given by t& =exp(i5I )sin6&. The quantity ~Lt", is
the scattering path operator given by

mn —(M
—1 )mn+I.L ' LL' ~

where

MLt". =(ti ) '6 „5tL.+Gt7".(I —6 „) (21)

gq„(r+R )=e

Zeller has shown that a direct space solution of Eq. (16)
with periodicity conditions given by Eq. (17) is provided
by the expression

G(r +R,r'„+R„;s)
=5 „G, (r, r„';E)—k g Rt (r )TtL Rt" (1' )

LL'

where k =(E)'~ and r„=r—R, so that r and r„' are
confined to unit cells I and n, respectively. In the
muffin-tin (MT) approximation, the function Rt (r) can
be written as

where SL (r) =Sr(r ) YL (r) and SI(r ) is that solution of the
radial Schrodinger equation, singular at the origin, that
matches smoothly to j1(kr ) at the MT sphere radius. As
shown by Zeller, the solution given by Eqs. (19) and (20)
is not restricted to MT potentials. %ith a different
prescription for RL(r) and SL (r), it can be proved to
hold in the case of general potentials. Also, if this latter
is real, Rt (r) and SL(r) can be shown to be real. There-
fore we can write in all generality

ImG(r, r', E)= —k g g RL(r )(ImiLL )RL (r„)
mn LL'

(24)

and clearly

ImG(r+R .r'+R;E)=ImG(r, r';E) . (25)

XRL.(rp)T(rp;k, .k, )

X PL (lp)d I p d I"
p (26)

Two consequences can be read out from this equation
and Eq. (12) for the transition operator. The first one is
that the total momentum transfer is given by q=k; —k,
plus any reciprocal lattice vector G„, including G„=O.
When Cx„&0 this observation substantiates the common
picture of the reflection energy-loss process as composed
of two independent steps: diffraction of the incident vec-
tor k, and subsequent energy loss or energy loss followed

Due to the localization of the initial state core wave func-
tion, we actually need G(r, r') for r and r' inside cell at
site 0. Consequently Eq. (12) becomes

d~ l k. k
dQ 4~2 k,

Xg g f f PL (rp)T'(rp;k, k, )RL(rp)lm~LL
m LL'

0
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&7/7/

surfa

FIG. 8. (a) k vector diagrams showing reAection energy-loss processes. The inelastic scattering detected in the electron analyzer
can be analyzed in terms of, a two-step process: an inelastic scattering event at 8;, followed or preceded by an inelastic backscattering
with 8,~. The elastic diffraction before loss (DL) and loss before elastic diffraction (LD) have a greater probability to occur compared
to the two other processes involving a direct backscattering and a double backscattering as reported by Froitzheim (Ref. 35). (b)

Schematic vector diagram of inelastic scattering process in a DL and LD mechanism. k; is the momentum of the incoming electron,
k, is the momentum of the scattered electorn, and q is the momentum transferred. For a given loss AE the transferred momentum q
may vary from a minimum value given by q;„(A ')=(0.263E~)'~' —[0.263(E —bE)]'~' to a maximum value given by

q,„=(0.2636E)' following the argument given in the text (Refs. 35—37). In a DL or LD process the maximum value of the
diffusion angle 8 „may be m/2 when hE =E~.

by diffraction of the scattered vector k, as discussed by
Froitzheim, Avery and Nassiopulos and Cazaux.
These two processes are schematically depicted in Fig.
8(a). It is to be noted, however, that the two-step pro-
cess does not necessarily imply "small" momentum
transfer and small-angle scattering. As discussed later on
the scattering angles can be as large as n. /2. When
0„=0,we speak of one-step processes, in which the crys-
tal does not intervene in the deflection of the primary
beam.

The second one concerns the structural information
embodied in ~LL . Apart from questions of selection
rules, which we shall discuss in a moment, this is exactly
the same quantity which is measured in a photoabsorp-
tion experiment. As is well known, in the MT approxi-
mation, and for polarization averaged cross section,

1 1
00

y'(k)= . . . Imp/, :,.=I+ y ~'„(k),
2l +1

(27)

where y'„(k) is the contribution of the nth order
multiple-scattering (MS) paths beginning and ending at
site 0, for a final l state. In particular yz(k) is the usual
EXAFS signal. Equation (27) is obviously meaningful if
the MS series on the right-hand side converges. Apart
from prefactors, the expression (26) has the same struc-
ture as for a photoabsorption process. The only

"s

Mr I(q ) r dr Pi ( rj)I (q„r )RI (r ), (2g)

where r, is the MT sphere radius, we obtain

Mz I =f PL (r)T*(r;k;k, )RI (r)d r

1 1= g g 16~ + p*(Cx„,k;, k, )

&(& 'Ml &(q„)c& & Y& (q„) . (29)

This expression simplifies further if we specialize to
L0

=0, as for our experiment. Then, since CL It

=5L I I /(4rr)' we find

differences lie in the transition operator T(r). Whereas
with photons the dipole operator is effective in selecting
only two final L channels, in principle such a selection is
not effective in a EEL process.

Since, from Eq. (12) T(r;k;, k, ) is a linear combination
of plane waves with wave vector q„=q+G„, for which
the angular-momentum development is

e " =4~ +ij'~(q„r) YI (r) YL (q„),
L

by defining
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2

q„k,—k 2

Xi 'M,'(q„)Y, (q„)

&„*(q„;G„)Mi(q„)YL (q„),
n

(30)

and

r
Mi(q„)= f $0(r)j&(q„r)Ri(r)r dr

2

A„(q„;G„)= 1+ '"
2

(4~)l/2P(G, .k, k )i-i

where For a E-edge excitation we then find

do- 1 ks k—g ML Imr«, ML,
477 g

&„'(q„;G„) A„,(q„,;G„,)
Mi(q„) YL (q„)Im1-~~ M, ,(q„, ) YL,(q„,) .

i nn' LL' 'qn qn'
(32)

Due to the interference effects we expect that only the di-
agonal terms in this sum contribute to the measured sig-
nal, especially if many n and L, terms contribute. More-
over, since

q„=k, —k, +6„
we find

q.'=k Ik, —G„ I' —2k; Ik, —G. Icos8. ,

where 0„ is the angle between k; and k, —G„. Thence

q„dq„= Ik, —G„ Ik;sin8„d8„.

Therefore, taking into account that in the diffraction pro-
cess the modulus of k, is conserved ( I k, —G„ I

=
I k, I ) and

integrating over the acceptance of the CMA analyzer,
what is measured is

Svr I A„(q„;G„)Ig g f™xq„dq„~ [M,'(q„)]'—Imr« f dP„YI'(q„)+ backgro~~d
k, „L q min qn 2% 0

I ~„(q„;G„)I'g g f dq„" (2l+1)[M,(q„)] 1+ g y,'(k)
k, „L &m ~ qn v —2

&( f dP„Y~(q„) + background . (33)

Remembering the definition (27) and introducing the
atomic matrix element

] /2

M i(q„)= — sin5&Mi (q„) .
k

(34)

In Eq. (33) q;„ is given by

q;„=k;—k, ,

whereas for q „values up to

would be possible. In practice, following the argument
given in Ref. 29 (p. 301), the EEL cross section is not
negligible only for q=q „&&q „, where q „ is an
effective q,„. To find out this effective q „one observes
that q „r,))1, where ~, is the radius of the initial core
state. Therefore the integral

r exp —iq„.r RL r

occurring into Eq. (26) for the cross section is sizable only
if the continuum wave function Rl (r) varies as
exp( iq„.r) i.e., if the fin—al state of the excited atomic

electron has momentum q„. This implies that there is ap-
proximate momentum conservation between the incident
electron and the excited electron. Therefore

q .„=(~s)'"=(k,'—k,')'" .

Inserting this into the relation

q. =k. +k —2k. k cosO.

for a single inelastic process without diffraction, one
obtains for 8, the limits 0 ~ 8, ~ 8;(max) with
8;(IIlax) =sill (AE/s, ) aIld tile InaxlIIluII1 of 8;(IIlax)
is Ir/2, which is reached when b.e=e; [see»g. 8(b)].
Therefore we must conclude that most of the inelastic
events occur in a "forward" half-space, i.e., in that region
of space limited by the crystal surface and lying on the
side of the positive k; direction (crystal bulk). Since the
final k, direction points in the opposite half-space, this
means that the energy losses observed during reAection
from surfaces are accompanied by elastic collision, as al-
ready noted by several authors. To this effect the
sum over n in Eq. (33) is over those G„which transfer k,
into the acceptance of the CMA. This restriction rules
out one-step momentum transfer as being significant in
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XK(I.M ((q„)M I (q„)

X f dory( kq), (36)

7.. Si Kedge

6"
5 ~ ~

tots

CV

O "
2 ~

C3
~ ~

~ 0
4 0 ~ 0 g ~

0"

0 10 20 30
q(A )

40

FICs. 9. Plot of the quantity S(q ) [Eq. (35) of the text] for the
various l components contributing to the electron scattering
cross section. Units are in kilobarns (10 ' cm ).

the loss process, both because of matrix elements order of
magnitude arguments and because of the depressing fac-
tor 1/q .

We have easily adapted a multiple-scattering program
to calculate the radial wave function RI(r ) in a mu%n-tin
potential for silicon constructed according the usual
Mattheis prescription. The results are presented in Fig.
9 and show a substantial predominance of the l =1 com-
ponent of the quantity

S(q„)= (2&+ 1)IM o((q„)l'
k,

(35)

expressed in kilobarns (10 ' cm ).
This predominance is greatly enhanced by the fact that

actually what is observed, according to Eq. (33), is the in-
tegral of the function S(q„)/q which is reported in Fig.
10, in units of 10 cm . This figure shows that the 1=1
component substantially accounts for the integrated cross
section ~„ in the whole q„range between q;„and q
This conclusion is reinforced by the fact that

l A„(q„;G„)l decreases with increasing q„.
From Figs. 9 and 10 we see that in practice only the

monopole and the dipole transitions are sizable. This is a
consequence of the behavior of j&(qr ) in the matrix ele-
ment (31). In fact since

p'ji(p)-p' '/(21+ I)!t

for p (I and qr varies between q;„r,—6( —')(1/Z) =9/Z
and q,„r,—10(—', )(1/Z)=15/Z, where r, =—', (1/Z) is
the radius of the core state, only the l=0 and l=1 ma-
trix elements in Eq. (31) turn out to be non-negligible
(Z = 14 for Si).

In this case interference effects in the various I. chan-
nels are no more operative and Eq. (33) should be re-
placed by

'Cx

g gf dq„

25..

20' ~

'ImIn

Si K edge

(=2
10 20

q(A )
30 40

FIG. 10. Plot of the quantity S(q)/q' expressed in units of
10 cm'. Upon multiplication with q„(in cm ') one would
obtain an average value, in cm, of the electron scattering cross
section.

where now

y" (k, q„)=
+II Sin5~ Sin51

X yImr, , r, (rI„)r, (q„)
mm'

= 1+ g y," ( k, q„)
v 2

and %&1. is an appropriate normalization factor.
Fortunately enough, as anticipated in the Introduction,

the main single-scattering signal yz~ (k, q„) is diagonal in I
for the E-edge absorption. Moreover the azimuthal in-
tegration eliminates the oF-diagonal terms in I, so that
Mo(q„)M, (q„) is only 25%%uo of [M, (q„)] (2l+1) even for
the higher-order multiple-scattering terms.

The above result supports the claim that oge can ana-
lyze EEI.FS as if the dipole selection rule was effective,
even in refiection mode and at relatively low incident and
scattered energies, at least for initial nodeless core states.

Note that in our experiment conditions k; =3 keV,
k, =1.2=1 keV, and the energy loss As=1.8=2 keV.
At the silicon K edge q;„=k,—k; =6 a.u. ' and r„ the
radius of the core state, is r, =

—,'1/Z =
—,', = —,

' a.u. , so that

q;„r,= 9 3
Therefore, already at the minimum

momentum transfers, the condition for the validity of the
dipole approximation (qr ((1) is violated. Moreover
many other momentum transfer q„, such that q„r, &)1,
intervene in the expression (12) for the transition opera-
tor, since the condition bE /Eo ((2(R )', where
R ( = 10 ) is a LEED refiection matrix, is not satisfied in
our case (bE/Eo= —,'). This condition would in fact in-

sure the predominance of the small-angle scattering
events followed or preceded by an elastic diffraction as
pointed out by Saldin. Therefore the predominance of
the l=1 component in the total cross section was to be
ascertained in the whole range of variation of q„.

To obtain further evidence that the dipole component
is the dominant signal we have calculated the unpolarized
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by Eq. (28) with the constraint ~10
—lf ~

~ l ~
~ lo+ lf ~.

The size of this integral clearly depends on the extension
of the core state, the relative position of the nodes of the
integrand functions and it is almost impossible to draw
general conclusions for any type of initial state. For
nodeless localized states phenomena like Cooper minima
are ruled out, and it is safer to draw general conclusions.

APPENDIX

q = —bE+2+E, q cos8 (Al)

which is derived by applying the Carnot theorem to the
vector relation q=k; —k, —G„and using ~k, —G„~ =k, .

On the basis of Eq. (36) of the text we can write
schematically

I,(bE, q„)=y(bE, q„)F(q)
(A2)

where F(q)/E; is a smooth atomic differential cross sec-
tion and y(bE, q„) is the fine-structure signal, depending
only on the polar angles 8 and P. For simplicity we
have dropped the sums over l, l', n appearing in Eq. (36)
which can be restored when needed. The integrated cross
section over the acceptance of the CMA is therefore
given by

(I,(bE,E; ) &cM~= f dq f dP y(bE, q„)

= f dq(g(bE, 8, (q))&~
q& l

(A3)

where q, and q2 are determined by the acceptance of the
CMA (8=42'+6 ) though Eq. (Al) and therefore are
functions themselves of bE and E;. In Eq. (A3) it is in
general not possible to take average (y& out of the in-
tegral due to the dependence on Oq. However, there are
cases, like ours, as we shall see below, in which there is in
fact no dependence at all following the combined effect of
the effective dipole selection rule and the averaging on P.
Moreover, as a general fact, the 0 dependence of y
comes through a Legendre polynomial P) ~(cos8q) [see

We discuss here in more detail the assumptions under-
lying the procedure to extract the single-scattering signal
I, (b,E) from the observed electron-energy-loss spectrum
I,(bE), where b,E =E, E, is—the energy loss. Since we
want to assess the inAuence of the energy dependence of
the atomic ionization cross section and the effect of
averaging over a finite solid angle (the acceptance of the
CMA analyzer) on the convolution procedure used in
Sec. III, we introduce a differential scattering signal
I, (bE,q„) choosing as an independent variable the
momentum transfer q„rather than the scattering angles 0
and P. Of the three independent variables needed to
characterize the vector q„, we shall assume that q„=q
and P =P are really independent, whereas 8, the polar
angle of q„with respect the direction of k;, will be con-
sidered a function of q„ through the relation

Eq. (36)] which is weak any way in the range of variation
of 0 determined by the CMA. Therefore we are certain-
ly allowed to write

&I,(bE, E;) &
= &y(bE, E;) & „f dq

where

= &y(bE, E;)&,(bE,E, ), (A4)

q, G(bE, E;)
oo(bE, E, )= .f dq F(q) =

ql l

(A5)

G(bE e,E; ——e e(e ))
X

E, —e e(e )

XIi(sp)de (A6)

where e(x ) is the usual step function ( = 1 for x )0 and 0
for x ~0) and positive values for the losses e~ are for the
primary electron beam, whereas negative values are for
the scattered beam. Due to the E; dependence of
(y(b, E,E, )&cM~ and oo.(b,E,E;) this integral is not a
convolution integral. However since I&(c~ ) is sizable only
for e (100 eV (see Fig. 5) we can safely neglect the
plasmon loss spreading in E; and write

&I,(bE) & „=o,(bE,E, )f" &y(bE e„E,)&, „—

XIi(e )de (A7)

In fact the variation of cosO due to the c, variation of E;
is of the order or less than e„/E, ~ 100/3000=3%, as

can be seen from Eq. (Al), but the effect of this variation
on (y(bE, E; ) &cM~ comes out to be less than 1%. More-
over in our case there is no explicit dependence of g on

8~, as already anticipated, since from Eq. (36) l and I' can
be either zero or one due to the effective dipolar selection
rule and

(y"(bE, q) &&= g Imr& &,f Y& (q) Y& .(q)dP
???, P7?.

0

m —I
Imw)00 (AS)

since in tetrahedral coordination the x, y and z direction
are equivalent (r& &

independent of m ). Note that this
relation is actually valid for any l and coincides with the
polarization averaged EXAFS signal in x-ray absorption.

Concerning the variation of o.o(b,E,E; ), we note that
at the CMA acceptance angles 42 +6', q is about
20 A, which means the region over S(q) in Fig. 9 is
nearly constant. Since F(q)=S(q)/q, it is easy to

the dependence on E, and hE in the numerator 6 coming
from q, and qz.

If we indicate by I~(c„) the p, robability for the incident
or scattered electron beam to loose energy c due to the
plasmon excitations, the observed signal (I,(bE ) &cM~ is

given by

(I,(bE)&, = f (y(bE e„E—, —s, e(c, ))&, „
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evaluate the variation of G( hE, E; ). One finds

q~(, AE, E,. )

G(AE, E, )=I dq F(q)
't~ dq S(q) '

1 1=S q
q 2 q, q2

which varies by about 1.5% on going from E, =3000 eV

to E; =2900 eV and similarly for E, . Therefore the big-

gest variation in o o(b E,E; ) comes from the denominator
1/E, in Eq. (A5) which is 3%. Altogether we can esti-
mate a total variation of about 4%. This finding has been
corroborated by actual calculation and is in keeping with
what one obtains by using the near-edge ionization for-
mula suggested by Worthington and Tomlin [see C. J.
Powell, Rev. Mod. Phys. 48, 33 (1976) Eq. (5)] putting
there E„t=Et, =1840 eV and calculating cr„t(E; ) for

E; =3000 eV (Uk =E;/Et, =1.63) and E; =2900 eV

(Ut, =1.58).
In conclusion, with the errors indicated above, the fac-

torization of the ionization cross section in Eq. (A7) is
justified even at such relatively low incident and scattered
electron energies as it is at much higher energies. This
fact then substantiates the kind of analysis we have per-

formed on our date. From Eq. (A8) we see that this pos-
sibility is due to the azimuthal average performed by the
CMA and the eff'ective dipolar selection rule.

There is one last point to be discussed, namely, the as-
sumption that the plasmon loss spectrum measured
through the CMA acceptance describes the distribution
of energies of the primary beam in the material. Since
the production of bulk plasmon is to a very good approxi-
mation isotropic, the question is whether the measured
low-loss spectrum correctly reproduces the bulk-to-
surface-plasmon ratio that is present in the high-energy-
loss spectrum. Now, neglecting the plasmon momentum,
in the first case the surface is crossed by the electron
beam at an angle of 42+6' with respect to the normal,
whereas in the second case, due to the additional momen-
tum transfer following the ionization pr'ocesses, the sur-
face crossing can occur in the same angle range plus or
minus 9 given in Eq. (Al). This latter varies from

9~ =0, for q„=k;—k„ to 0 =35'=arccos[1 —(k, /

k;) ]' for q„=(bE)'~ (k, /k;=I/+3). Therefore to a
reasonable approximation one can assume the two
plasmon-loss-energy distributions with and without ion-
ization process to be substantially similar.
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