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A transfer-matrix formalism is developed to study the eff'ects of spatial dispersion in the optical
properties of a superlattice made up by alternating an excitonic semiconductor with an insulator.
We obtain the dispersion relation of the electromagnetic normal modes of an infinite superlattice
and the reflectance for p-polarized light incident on a semi-infinite superlattice in the vicinity of an
excitonic transition. Calculations are presented for the semiconductor CdS, and the results ob-
tained with different choices of the additional boundary conditions and with the classical local mod-
el are compared. They display a very rich structure which is interpreted in terms of the different
guided and surface waves supported by the semiconductor layers.

I. INTRODUCTION

The study of electromagnetic wave propagation in
periodic superlattices has received considerable attention.
Yeh et al. ' first employed a diagonalization of the unit-
cell translation operator to obtain the electromagnetic
band structure of periodically stratified media made up of
dispersionless dielectrics. Later, Camley and Mills stud-
ied the collective excitations of superlattices made up of
conducting layers with a frequency-dependent dielectric
function alternating with dispersionless dielectrics. Sur-
face plasmons on adjacent interfaces were found to cou-
ple through their evanescent electric fields to form bands
of collective excitations of the whole structure. These
modes are capable of transporting energy in the direction
normal to the interfaces at frequencies for which each
conductor is opaque.

The collective excitations of spatially dispersive sys-
tems are richer due to the presence of further energy-
transport mechanisms. The modes arising from the cou-
pling among guided and evanescent plasmons in nonlocal
conducting superlattices were studied in the nonretarded
limit by Eliasson et al. and Mochan et al. , who have re-
cently developed a transfer-matrix formalism for study-
ing the normal modes and the reflectance of nonlocal
conductor-insulator superlattices. Spatial dispersion and
retardation were accounted for within a hydrodynamic
model for the conducting layers. A variety of modes con-
sisting of coupled transverse, longitudinal, and surface
waves were obtained. The formalism was later general-
ized to local-nonlocal and nonlocal-nonlocal conductor
superlattices and to incorporate the excitation of
electron-hole pairs. The transfer-matrix formalism to
study nonlocal heterostructures within the hydrodynamic
model has also been developed by Abraham et al.

In this paper we focus our attention on superlattices
made up of nonlocal excitonic semiconductor layers al-
ternating with dispersionless insulators. When light is in-
cident on the semiconductors, it may create electron-hole
pairs. These may form either large (Wannier-Mott) or
small (Frenkel) excitons, i.e., bound pairs that can propa-
gate in the crystal. Since the pioneering works of Pekar,
Hopfield, ' and Hopfield and Thomas, " spatial disper-
sion has been included iri the study of the optical proper-
ties of semiconductors near an excitonic transition. This
can be done using a single oscillator model for the wave-
vector- and frequency-dependent dielectric function

COp

e, (q, co) =co+
co T +D

i q i

—co —l cov

where eo is the background dielectric constant, AcuT is the
energy required to create the exciton, ~ is a measure of
the oscillator strength of the excitonic transition, v is a
damping factor, and D ~q ~

relates to the kinetic energy of
the exciton, with D =AcoT/(m, +mh), and m, and mz
the masses of the electron and hole, respectively.
Maxwell's equations, together with Eq. (l), yield longitu-
dinal bulk normal modes and additional transverse
modes, beyond those appearing in local theories. These
modes propagate in the bulk unaffected by each other,
but they may couple among themselves at surfaces, where
translational symmetry is reduced. It is important to ac-
count for this coupling in superlattices due to their large
interfacial area to volume ratio; the purpose of this paper
is to develop a theory to calculate the optical properties
of excitonic semiconductor superlattices taking this cou-
pling into account.

Due to the multitude of scattered waves at each
semiconductor-insulator interface, the independent
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boundary conditions of electromagnetic origin, namely,
the continuity of the tangential projections of the electric
E and magnetic H fields, ' are insufhcient to completely
determine the problem. Therefore, additional boundary
conditions (ABC' s) are required. In the past few years,
several papers have addressed the ABC problem; Halevi
and Fuchs' developed a generalized ABC formalism
which includes surface scattering of the exciton through
phenomenological parameters, and they applied it to cal-
culations on semi-infinite semiconductors. Agranovich
et al. ' used a similar generalized ABC to study the
reAectivity of semiconducting films deposited on metal
substrates. Comparison between theory and experiment,
pursuing the determination of the appropriate ABC, has
been carried out by Halevi and Hernandez-Cocoletzi'
and by Ruppin and Engleman. ' In Ref. 15, the results
favor the Pekar ABC (Ref. 9) and in Ref. 16 the results
are ABC independent. It seems to us that the ABC prob-
lem is still open.

In this paper we develop a 2X2 transfer-matrix formu-
lation similar to that reported in Ref. 4 to calculate the
dispersion relation of the electromagnetic normal modes
of infinite superlattices and the reAectance of semi-infinite
superlattices made up of alternating insulator layers and
excitonic semiconductor layers. Spatial dispersion effects
are introduced through an excitonic dielectric function
[Eq. (I)) and two well-known ABC's are employed, allow-
ing for the coupling of the transverse normal modes of
the insulator with the excitonic normal modes of the
semiconductor. The organization of the paper is as fol-
lows: in Sec. II we construct the transfer matrix of the
semiconductor layers, and we show how it can be em-
ployed to calculate the normal modes and the optical
properties of the superlattice, in Sec. III we present re-
sults for an insulator-CdS superlattice, and we devote
Sec. IV to conclusions.

II. THEORY

We consider here the superlattice shown in Fig. 1. The
insulating layers I have dielectric constant e; and thick-
ness d;, while the excitonic semiconductor layers S have a
wave-vector and frequency-dependent dielectric function
e, (q, co) and thickness d, . The I Sinterfaces are -parallel
to the X-Y plane. We only take into account waves prop-
agating along the X-Z plane whose electric fields lie on
the same plane, that is, p-polarized and longitudinal
waves. These are uncoupled to s-polarized waves, whose
treatment is similar and somewhat simpler.

We start our calculation by constructing the transfer
matrix of a semiconductor layer following a procedure
similar to that of Refs. 4—6 and 8. As usual in optics, we
confine our attention to waves with the same frequency co

and wave-vector projection Q=(Q, O, O) unto the X-Y'
plane. Given co and Q, there are four P-polarized normal
modes with wave vectors (Q, O, +q~); j=1,2, where +q~
are the solutions of the transverse wave dispersion rela-
tion qj +Q = e(g, qcjo)co /c . There are: also two lon-
gitudinal modes with wave vector (Q, O, +q3), where q3

zL
I

l

Zs
zR

I

zR

FIG. 1. Superlattice made up of excitonic semiconductor lay-
ers (5) of width d, alternating with dispersionless insulator lay-
ers (I) of width d;. The wave vectors of the two transverse (Q
waves that may propagate in the insulators and those of the four
transverse and two longitudinal (L) waves that may propagate in
the semiconductors, as well as that of the light incident from
vacuum (V) at the angle 8 and that of the light reflected by the
system, are shown schematically. The positions of the left and
right boundaries of an insulator (z; and z;") and a semiconduc-
tor (z, and z,") layer are indicated as well as the coordinate sys-
tem.

3

E,(z)= g (E„+e " +a„E„e " ),
n=1

2

HY(z)= g Y~(E&+e ~ +E e ~ )
j=1

C02 3
(z)= g X„(E„+e " +a„E„e " ),

n —
1

(2)

COp

P, (z)= g X„D„( E„+e " +a„E„—e " ),ma

obeys the longitudinal dispersion relation e(Q, q 3')=0.
We assume that the electromagnetic field is given by a su-
perposition of these six waves, even near the surfaces of
the semiconducting layer (the inclusion of a dead layer at
the surfaces will be discussed below). Then the field
everywhere inside the layer is determined by six indepen-
dent field quantities at one point. We chose as indepen-
dent quantities the tangential components of the electric
and magnetic field, E and H, the excitonic polarization
field P„and P„and its normal derivative B,P„and B,P, .
These are related to the amplitudes E„+—on the right- (+)
and left- ( —) moving transverse (n = 1,2) and longitudinal
(n =3) modes through
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where we have used Eq. (28) of Ref. 13 and Maxwell's
equations. Here a, =a2 = —a 3

= —1 Yj 1/Zj,
ZJ =(qjc)/(ejco) is the surface impedance for transverse
wave propagating with wave vector q, e.=e, (Q, q. , co),

DJ=Q/q, , D3= q3/Q, &„=(q„—l ) ', l =(co +icov
co&—)/D —Q, and we let j take the values 1,2 and

n =1,2, 3.
We write Eqs. (2) as the block equation

P

a,p,
=G A2

A3

(3)

where F=(E,H ) (T denotes transpose), P =(P,P, ),

Y1 Y2 Y2

1

0

L,
—D1X1

lq 1X1

q, D,L

—X1

—D1L1

lq1X1

iq1D1X1

X2
—D2L2

iq2X2
—iq2D2X2

—X2 X3 X3

lq2X2

iq2D2L2

lq3X3

iq3D3X3

—iq3X3

iq3D3L3

—D2X2 D3X3 D3X3
(4)

P =N, P
ap, ; ap .; (5)

Since (Ai, A2, A3), =T(z —z')(A&, A2, A3), , where

~1
—~i ~2 ~2 1~3 &3T(z)=diag(e ', e ', e ', e ', e ', e '

)

and diag(. . . ) is a diagonal matrix constructor, the fields
at the left boundary of the layer z, are linearly related to
the fields at the right boundary z, =z, +d, through

N„N, 2 N, 3

N, — N2, N22 N23

31 N32 N33

where N„are 2 X 2 blocks, Eqs. (5) and (7) yield

P(z, ) =Nz, F(z, )+N2zP(z, )+N23aP(z, ),
—aP(z, )=N3, F(z, )+N32P(z, )+N33aP(z, ),

(8)

where we introduced the semiconductors's 6 X 6 transfer
matrix N, given by

N, =GT(d, )G

The field components E, H, P, P„"r),P, and B,P„
constitute a set of six independent field components in an
infinite semiconductor. However, they are related among
themselves by the ABC's imposed at the surfaces of a
thin film. These ABC's may be employed to collapse the
6 X 6 transfer matrix N, to a 2 X 2 matrix such as those
appearing in classical optics, but which has embedded in-
formation on the multitude of modes which exist in the
semiconductor near the excitonic transition due to the
spatial dispersion of the system. Following Agranovich
et al. ,

'" we write the two ABC's required at each inter-
face as

~P+a„P=0, (7)

where o,' is a 2X2 matrix with complex components in
general and 8„ is the derivative along the outward normal
direction 8'=+z. Equation (7) can be cast into the so-
called generalized ABC form' by letting
a = —il (1—U )/(1+U ), v=x, z, and a, =a,„=0,
where U is the surface scattering parameter.

Writing the transfer matrix N, as

which may be solved for P(z, ) in terms of F(z, ), and sub-
stituted back together with B,P(z, ) =aP(z, ) at the r.h.s.
of Eq. (5) to obtain a relation between F(z, ) and F(z, ).
We write this relation as

F(z, )=M, F(z, ), (10)

S=aN22+ aNz3a+ N3z+ N33a . (12)

Notice that in order to calculate the 2 X 2 transfer matrix
of the semiconductor we only need to invert the 2 X 2 ma-
trix S, which is simply made up of submatrices of the full
6X6 transfer matrix. The information on the ABC's is
incorporated in M, through the parameters a. From here
on the calculation proceeds as in the local case.

Since an insulating layer can only sustain two p-
polarized waves and has no longitudinal modes, it can be
characterized by the usual 2 X 2 transfer matrix

cos(q, d; ) iZ, sin(q, .d; )

M, =
i Y;sin(q;d, )cos(q;d; ). (13)

where M, is the 2X2 transfer matrix of the serniconduc-
tor and it is given by

M, =N» —(N, z+N&3a)S '(aN2, +N3, ),
where
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defined so that

F(z, )=M, F(z; ), (14)

where z, is the position of the layer's left boundary, and

z,"=z,L+d; that of its right boundary, q; =e;co /c —Q,
Z; =(q;c)/(e;co), and Y; = 1/Z;.

Finally, since E„and H„are continuous, the transfer
matrix for one full superlattice period is

M=M, M, .

CU/QJ T

1.002

1,001

1.000,

I I I II I I I I I

-T- L

—7
—6
—5

The presence of a dead layer can be easily incorporated
by multiplying its insulatorlike transfer matrix on both
sides of M, before substituting into Eq. (15). The normal
modes of the infinite superlattice are Bloch-like waves'
such that F(z+d) =e'~"F(z), where d =d;+d, is the
period and

1,0 20 5,0
Re(p) c/u)T

I I I I I I

1 0 2 0 5,0
Im (p}c/wT

1
p =arccos —-SpM

2d
(16)

is Bloch's (possibly complex) wave vector. The surface
impedance of the semi-infinite superlattice is

Z
M)2 M22 —e' "

M&&
—e' " (17)

in terms of which the reflectance is simply given by'

Z —Z
U P

Z +Z (18)

with Z, =cosO the surface impedance of vacuum and 0
the angle of incidence.

III. RESULTS

In this section we present results calculated for super-
lattices made up of dispersionless insulator layers alter-
nating with the semiconductors CdS, for frequencies in
the vicinity of its A„, excitonic transition. The dielec-
tric function employed for the semiconductor is given by
Eq. (1) with the following parameters eo =9. 1,
A'coT=2. 552 eV, co =0.11517&@&, D=5.3147X10 c,
and v=4. 857X10 coT. Being quite unimportant and
for simplicity, we set e;=1. We also disregard for the
present the presence of dead layers.

In Fig. 2 we show the dispersion relation cu versus p of
the normal modes for an infinite superlattice with
d; =d, =c /co T

=773 A, calculated using the Pekar9
boundary conditions n= ~. For each ~ we gave the
value Q =(co/c)sin60' to the parallel wave vector, so that
the dispersion relation corresponds to those modes which
may couple to light incident from vacuum at an angle
0=60'. Although the figure contains a very rich struc-
ture in the neighborhood of the excitonic transition, this
can be readily understood. For this purpose, we display
in Fig. 3 the dispersion relation co versus q of the trans-
verse and longitudinal electromagnetic modes of an
infinite CdS crystal.

At frequencies co (cuT there are no propagating longi-
tudinal waves in the semiconductor, and there is only one

FIG. 2. Dispersion relation co versus p=Re(p)+iIrn(p) of the
electromagnetic normal modes of a periodic superlattice made
up of alternating CdS and vacuum layers of width d, =d; =773
A. The parallel component of the wave vector Q is chosen so
that coupling with light incident at an angle of 0=60' is possi-
ble. The frequencies of the transverse (T) and longitudinal (L)
resonances are indicated.
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FIG. 3. Dispersion relation co vs q of the longitudinal (L}and
the two transverse (T) waves which propagate in CdS and may
couple to light incident at an angle of 0=60'. The wave vectors
n m. ld, which lead to resonant behavior in a semiconducting film
of width d, =773 A are indicated.

propagating long-wavelength transverse wave, similar to
that appearing in local optics. Above cuT its wavelength
decreases rapidly so that the resonance condition
q&=nrr/d, with n an integer is repeatedly met. These
resonances are similar to guided transverse modes whose
wavelength fits a half-integer number of times in the
semiconductor layers' thickness. However, they can leak
out of the semiconductor and into the insulator layers
since we took Q ((e;)' co/c, and therefore they are not
truly guided waves. The coupling among the transverse
resonances of nearby semiconductor layers through the
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fields induced in the insulator gives rise to most of the
structure in Fig. 2: they correspond to maxima and in
the imaginary part of Bloch's wave. vector Im(p) and to
maxima and minima in its real part Re(p).

Above coL = (co&.+co~ /eo)' a propagating longitudinal
mode appears. Its wave vector grows rapidly with
co originating longitudinal resonances whenever
g 3 n ~/d, . The longitudinal field is confined within the
semiconductor layers since there is no longitudinal prop-
agation in local media, so the resonances may be regard-
ed as guided longitudinal modes. However, they couple
at the layers* surface to transverse waves in the insula-
tors, originating leakage and hopping between adjacent
semiconductors in the superlattice. The longitudinal res-
onances are responsible for some features such as maxi-
ma, minima, and inflection points in Fig. 2. This struc-
ture is less prominent than that due to the transverse res-
onances since the transverse-transverse coupling is
stronger than the longitudinal-transverse one.

Finally, above the critical frequency co, =[co&+co /
(eo —sin 0)]'~ a second transverse wave can propagate in
the semiconductor; it has a long wavelength and its
dispersion relation follows closely that obtained with the
local model. Recall that in the latter there is a forbidden
gap between cuz and co, . This transverse wave constitutes
another propagation mechanism whose consequences are
a global decrease in Im(p), a steady increase in Re(p), and
a reduction of the structure due to the transverse and lon-
gitudinal resonances above co, .

The description given above for the dispersion relation
of the superlattice's normal modes remains qualitatively
correct for other choices of parameters, requiring only
minor changes. If the layers' widths are reduced, the dis-
tance between consecutive resonances opens out; con-
versely, for wider layers, larger e;, or higher co there
might be transverse resonances in the insulators and new
resonances in the semiconductors due to the second,
long-wavelength, transverse mode. Increasing 0 leads to
a stronger longitudinal-transverse coupling, and if Q
grows beyond ( )e'~ co/c the modes of a single semicon-
ducting layer become true guided waves, although there
is still coupling among adjacent layers through the trans-
verse evanescent fields induced in the insulators.

In Fig. 4 we show the reflectance calculated for a
semi-infinite superlattice upon which p-polarized light is
incident at the angle 8=60, using the same parameters
as in Fig. 2. The structure displayed by the reflectance is
in close correspondence to that shown by the dispersion
relation: there is a series of peaks near the transverse res-
onance frequencies and smaller features near the longitu-
dinal resonances. For comparison, we also plot in Fig. 4
the reflectance of a single semiconductor film. For co )co,
the resonant structure is more prominent in the superlat-
tice than in the film as could be expected. However, in
the region co& & co & co, the results for the film and for the
superlattice are quite similar, since in this region each
semiconductor layer has a large absorbance and the
reflectance of the heterostructure is dominated by its first
few layers.

In order to exhibit the consequences of different
choices of ABC' s, in Fig. 5 we show the reflectance of the
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FIG. 4. ReAectance spectra of a semi-infinite superlattice
(solid) and of a single CdS film (dashed), calculated with the Pe-
kar ABC' s. The frequencies of the transverse (T) and longitudi-
nal (L) resonances are indicated, as well as coL -~, .
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FICi. 5. Reflectance spectra of a semi-infinite superlattice cal-
culated with the local model (solid), with the Pekar ABC' s
(dashed), and with the Ting et al. ABC's (dashed-dotted). The
frequencies of the transverse (Q and longitudinal (L) resonances
are indicated, as well as coL, co„and co, .

same superlattice as in Fig. 4 using both the Pekar
(a = &x ) and the Ting et al. (a =0) boundary conditions.
We also show the results of a local calculation (D =0).
While the Pekar results show maxima whenever the
transverse resonance condition is met, the Ting et al. re-
sults show minima below co, and almost no structure at
all above ~, . On the other hand, the structure due to the
transverse resonances is completely shifted to the region
co &mz. in the local calculation, since in the local case q&
has a pole at co&-. In this case there is also a new feature
which can be seen as an inflection in the reflectance
around co/co&-1. 007. This feature is unrelated to the
resonances above; it has been discussed before in connec-
tion with conducting superlattices and can be under-
stood as follows.

In a local calculation there is always a gap between coz-
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and coL for which there are no propagating waves in the
semiconductor. If Q is large enough, there are no propa-
gating waves in the insulators either. In this case there
might be surface electromagnetic waves (SEW's) moving
along 'each semiconductor-insulator interface and decay-
ing exponentially away from the surface. Their frequency
in the nonretarded limit is co, =[co&.+co„/(co+@;)]'
=1.00066&@&. In a superlattice, the SEW's of nearby in-
terfaces couple among themselves through their evanes-
cent fields, giving rise to two bulk bands since there are
two interfaces per unit supercell. These bulk modes con-
stitute a mechanism which can transport energy from in-
terface to interface towards the bulk, thereby reducing
the reflectance of the superlattice. We remark that al-
though their physical origin consists of surface waves,
these modes may exist even in the region Q ((e;)'~ co/c
for which the field is no longer evanescent in the insula-
tors. However, in this retarded region the lower-
frequency mode lies so close to co& that its effect is erased
by the high dissipation and only the high-frequency mode
is apparent in the reflectance. We also remark that, as
shown in Fig. 3, in the nonlocal models there is no gap
between co& and coL, so the generation of a well-defined
SEW is precluded by the coupling of the evanescent fields
to the short-wavelength propagating transverse wave.

IV. CONCLUSIONS

In the present paper we have developed a transfer-
matrix formalism which a11ows the inclusion of spatial
dispersion in the study of the optical properties of local-
nonlocal layered heterostructures, taking into account
the manifo1d electromagnetic waves that may exist in
spatially dispersive systems and the coupling among
themselves at interfaces. We developed the theory for
longitudinal and p-polarized transverse waves in superlat-
tices made up by alternating excitonic semiconductors
with dispersionless insulators, although it is presented in
a readily generalizable form. Our approach consists of
building an XXX transfer matrix for a nonlocal layer,
where X is the number of waves which may propagate in

it, by identifying X independent field components (N =6
in the present case). Use of additional boundary condi-
tions at its two interfaces allows us to reduce the size of
the matrix to a simple 2X2 matrix such as that appearing
in classical local optics, but with information on the spa-
tial dispersion embedded in its components. Multiplying
this matrix with the 2X2 matrices of adjacent layers and
following well-known procedures, the optical properties
of the system can be calculated.

We have applied the procedure above to calculate the
6X6 transfer matrix of an excitonic semiconductor in
which two longitudinal and four p-polarized transverse
waves may propagate uncoupled to another four s-
polarized waves. The corresponding 2X2 matrix was ob-
tained using a general parametrized expression for the
ABC' s. The theory was applied to the calculation of the
dispersion relation of the normal modes of an infinite
periodic superlattice made up of layers of the excitonic
semiconductor CdS. We also calculated the reflectance
of a semi-infinite superlattice. The results show a lot of
structure around the excitonic transition frequency,
which is easily explained in terms of guided-wave-like
transverse and longitudinal resonances. A comparison
with a single film showed that the reflectance spectrum of
a superlattice has a more prominent structure outside,
but is quite similar inside the region ~~&m&io„and
that different choices of ABC's lead to very different re-
sults. Finally, a local calculation yielded shifted trans-
verse resonances, no longitudinal ones, and absorbance
due to excitation of coupled surface electromagnetic
waves which are absent in spatially dispersive models.
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