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Excitons in one-phonon resonant Raman scattering: Deformation-potential interaction
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A theory of one-phonon resonant Raman scattering in diamond and zinc-blende-type semicon-
ductors which includes excitonic effects has been developed. The theory can be applied at frequen-
cies below and above the band gap. W'e have considered the deformation-potential interaction for
the electron —one-phonon coupling, and discrete and continuous exciton states have been taken as
intermediate states in the process. The interband transitions between different valence bands (heavy
and light holes and split-off bands) included in the calculation of the Raman tensor are character-
ized by excitonic states with different Bohr radii. General analytical expressions of the matrix ele-
ments corresponding to different transitions between excitonic states (discrete-discrete, discrete-
continuous, and continuous-continuous) are reported as a function of the Bohr-radius ratio. A
simplified expression of the Raman tensor obtained under the assumption of the same Bohr radii for
both excitonic transitions is given. These results are used to calculate the absolute value of the Ra-
man efBciency in the Eo and Eo+ 60 absorption edge of III-V compound semiconductors. Compar-
ison with the electron-hole uncorrelated theory and with the corresponding experimental data re-
cently reported for GaP, GaAs, and InP explains these spectra and emphasizes the decisive role of
excitons in the one-phonon resonant Raman scattering.

I. Im'aODUCnOX

Raman scattering has proved to be a powerful tech-
nique in the study of elementary excitations in semicon-
ductors as well as their interactions. ' In particular, the
study of excitons and their interactions with phonons has
received some theoretical attention in the past.

Since the work of Loudon, only few papers have ap-
peared on the theory of one-phonon Raman scattering in-
cluding excitonic effects. Ganguly and Birman calculat-
ed the Raman tensor including excitons as intermediate
states (weak exciton-photon coupling) for deformation-
potential (DP) and Frohlich electron-phonon interac-
tions, giving an explicit equation for the DP case. Mar-
tin repeated the calculations of Gang uly with the
Green-function formalism, whereby he studied only the
region below the band gap. Zeyher et al. calculated the
first-order Raman tensor considering only one valence
band and the corresponding continuum excitonic state.
Later, in a similar way, Karajamaki et al. developed the
theory of resonant Brillouin scattering for a three-band
process, considering exciton states for the conduction,
valence, and split-off bands. Trallero and Sotolongo
treated the hot-exciton problem, and then they studied
the region above the band gap.

Recently, Raman experiments were performed in the
proximity of the critical points (CP s) Eo and Eo+b,o in
several III-V compound semiconductors ' as well as in
ternary alloys such as AI„Ga, „As (Refs. 13 and 14) and
absolute values of Raman efficiency were obtained. The
Raman theory considering uncorrelated elec(ron-hole
pairs (free —electron-hole —pair theory, PET) explains
quantitatively the observed resonances in CiaAs near the
Ep +Ap CP. ' Nevertheless, the resonant enhancement

observed at Ep in GaAs" and at Ep and Ep+6p in GaP
(Ref. 9) in scattering configurations corresponding to DP
interaction (both TO and LO phonons) is much stronger
than the values reported by the FET. In the same way,
unsatisfactory attempts to fit the experimental profile for
resonant Raman scattering by LO phonons at Eo+bo
have been made in InP. '

These discrepancies were attributed to exciton effects
and, in fact, some attempts were made to adapt (renor-
malize) Martin's calculations to the cases at hand and
good agreement with the slope of the exciton peak in the
region below the band gap was obtained. " However, it
has not been possible, up to now, to explain the absolute
values of resonant Raman eSciencies with a reliable
theoretical model.

As already mentioned, the calculations of resonance
effects including exciton interaction found in the litera-
ture are not suSciently complete to allow generalization
to other materials and critical points for which absolute
values of Raman efficiencies have been measured. Hence
the need for comprehensive studies of the Raman polar-
izability including excitonic effects. Here we perform
such studies for the case in which deformation-potential
interaction determines the scattering mechanism.

In the III-V compound semiconductors the fourfold-
degenerate valence-band Inaximum leads to the existence
of light and heavy holes and its twofold-degenerate spin-
orbit-split component to split-off holes. The inclusion of
Coulomb interaction between electrons and holes thus
generates several exciton branches, in general with
different Bohr radii. Here heavy, light, and split-off exci-
tons will be taken into account using the Wannier-Mott
exciton model (efective-mass approximation). In the al-
lowed Raman scattering by LO and TO phonons several
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excitonic intermediate states will thus be included. These
aspects are discussed in Sec. II of this paper, where the
Raman polarizability is calculated. Section III is devoted
to the comparison of our calculations with experimental
data of several III-V compounds. In Sec. IV the con-
clusions are summarized.

&flHFRlq &&qlHELlp &&plHERli &

(A'co& E—+i I )(A'co, E—~+i I )

&flH«lp &&plH«lq &&qlH«li &+
(ficoi+E +iI )(h'co, +E +i I )

II. THKGRY

The scattering efficiency per unit crystal length, and
solid angle can be written as

3

[N(coo)+ I]g la, R; aildQ c 2V, M*mp nI

where V, is the volume of the primitive cell, M* the re-
duced mass of the atoms contributing to the optical
mode, N(coo) the Bose-Einstein factor of the phonon, c
the speed of light, and mp the phonon frequency. In Eq.
(1) n, co, and a are the refractive index and the frequency
and polarization vector of the light. The indices l and s
refer always to laser and scattered light, respectively. R;
are the three components of the Raman tensor for the
zone-center optical phonons, in the case of zinc-blende
and assuming propagation along the Cartesian axes:
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0

0
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The Raman polarizability a corresponding to a process
of scattering of a photon by a phonon from initial state i
to final state f is given by

n, n, V,
u = Wf;(co„e, ;co&, Ei ),

up

where relative displacement up is defined as
1/2

Cup=
2 VM*cop

and V is the volume of the crystal. W&, is the amplitude
probability corresponding to the scattering of a photon
with the emission of an optical phonon.

For one-phonon resonant Raman scattering (OPRRS),
the Raman efficiency is obtained from third-order pertur-
bation theory. In the case in which excitons are taken as
virtual intermediate states, and neglecting polariton
effects, the matrix element 8'f; can be written as a func-
tion of exciton-radiation (HER ) and exciton-lattice (HEL )

interaction Hamiltonians as

HEi. = X ~qi, (Q)DqK. DpK(bq, +b q, —
Q, v,

pi/i
K, K'

where D tt (D it), a„, (a „,), and b & (b& „)are an-
nihilation (creation) operators for excitons, photons, and
phonons, respectively, ic is the wave vector of the light, Q
the quasimomentum of the phonon, v represents the pho-
non branch, and K is the center-of-mass momentum of
the exciton. The exciton-photon coupling constants T
are given, for allowed transitions, by'

]. /2

T~, (K)= — e &clplu &P (0)5K „,
con

&clplu& being the matrix element of the momentum
operator and P„(r) the internal exciton wave function.

The exciton-phonon coupling constant can be ex-
pressed, for DP interaction, as

u, &3
S~~ (Q)= [D;(r)I~~(Q) DI", (r)I' (

—Q—)]
2ap

X6K K+Q (8)

D (r) (a=e, h) being the DP as defined by Bir and
Pikus' and ao is the lattice constant. I~&(Q) (a=e, h)
are equal to

I (Q)= f d r i|i*(r)exp i —Q r P (r),
m, +m&

m, and m& being the effective masses for electrons and
holes.

In an one-phonon process Q=O and Eq. (9) can be
simplified to

I =fd rg*(r)f (r). (10)

Introducing expressions (5)—(8) into Eq. (2) and consid-
ering two excitonic bands p and q, i.e., a set of bands
cU, cu, the contribution to the Raman polarizability can
be written as

The indices p and q refer to excitonic intermediate states;
E and I (a =p, q ) are their respective energies and life-
time broadenings.

The exciton-radiation and exciton-lattice interaction
Hamiltonians can be expressed as

I T~, (K)Dpi'(a„, +a „,)
K,p,
E, K

+[Ti', (K)]"D~K(a„,+a „,)],
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a 0 R Ha H i/3 1(lq(0)Iq g (0)
&c~p E, iu, )&u, ~D„~u, )&u, ~p c., ~c)

2m e~, (~~,g~ )»2 ' ~ ' " » ' (e~, —E, +iI;)(r~, —E, +ir, )

gp (0)Ipqgq(0)

where R H and QH are the rydberg and Bohr radius of the
hydrogen atom.

Equation (11) is quite general, the only approximation
being that involved in the choice of the envelope func-
tion. In the case in which it is taken to be a hydrogenic
function one should keep in mind in Eq. (11) that the vir-
tual exciton transitions take place from a p to a q band,
with diferent Bohr radii. Thus it is necessary to know
the tensorial component of the DP for the corresponding
Bohr functions together with the matrix elements I

A. Matrix elements

The Wannier-Mott exciton wave functions for the
discrete spectrum are taken to be (for the angular
momentum 1=0)'

(p)= 3 3, e i' F(1—m22p/m ),
(n.m 'a„')'"

with E =E —R /m, a being -the Bohr radius of exci-
ton p, p=r/a, F(a, b, z) the conlluent hypergeometric
function, E the corresponding gap, and R the exciton
rydberg. For the continuum states we have'

g k(p)= ke ~
~I (1 i/k)~e—1

&~V

1. Discrete-discrete matrix element

I „(fqp')=I„(fqp) . (16)

Figure 1 shows the matrix element as a function of the
parameter f for m, n from 1 to 3. The value of I „ for
f larger than 1 can be obtained through Eq. (16). As
we can see from Fig. 1, the matrix elements I „, in the
special case when fqz

= 1, are given by

I „(1)=5
The matrix elements I „(m&n) can be larger than

I for same range of values off ~ (see Fig. 1).

The matrix elements corresponding to a discrete-
discrete transition are obtained by substituting Eq. (12) in
Eq. (10) and using the expression (A2) of Appendix A:

)m +n —3

I =8( —1) (nm)' f (f —1)
qp qp

( + f )m+n+i
P7l

qp

XF(1 rn,—1 n, 2,—4nmfqp/—(n mfa)—),
where f =a /a is the ratio of Bohr radii of final and
initial states.

The matrix element between m and n states satisfies the
property:

XF(1+i /k, 2, 2ikp), (13) 2. Discrete-continuous matrix element

f g~„(r)f „.(r)d r=2qr5(k —k') . (14)

with Ek =E +8k, I (z) the gamma function, and

p '=m, '+mi, '. The functions of Eq. (13) are normal-
ized as follows:

The continuous-discrete and discrete-continuous ma-
trix elements are complex conjugates of each other, thus
we only calculate one of them.

By applying to Eq. (10) relation (A2), with the wave
functions given by Eqs. (12) and (13), we obtain

1/2

I k(f )= 8&2~( —1) (f —1)m ~ i/k
exp ——tan (mkf )

2

( 1
—2n/k )1/2( 1 +. 2k 2f 2 )m + 1

G(m, k),
e'

(18)

where the function G (m, k) is real (see Appendix A) and it is defined as

G(m, k)=(1 imkf z) F(1——m, 1+i/k, 2, —4imkf /(1 imkf ) ) . — (19)

Hence, the matrix element for the continuous-discrete
and discrete-continuous transitions are the same. The
following relations hold:

(f,p)=I k(f,p')=Ik (f,p) .

In the trivial case in which fqz
= 1, the matrix element

Ik (1)=0 as follows from the orthogonality of the con-

tinuous and the discrete spectra.
We have plotted in Fig. 2 the matrix elements I k [in

units of (aq/V)'~ ] as a function of k for two diFerent
values of f . Only the cases m = 1,2 have been con-
sidered in order to simplify the figure. The matrix ele-
ments are seen to decay rapidly with increasing m. We
can also,observe that of fq &0, a ~ V '~ I k increases
with f for a fixed value of k, obtaining the limiting case
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for f =0:

v g( 1)m +1(2 k )
I/2

mk
( I

—2n/k)I/2I (0)=
Qq

(21)

I I I I I 1 I l
I I I I I ~ I I I

l
I I I I I 1 I I

3. Continuous-continuous matrix element

-0.05

The matrix elements for the continuous-continuous
case are also found to be, by using Eq. (A2),

aq 16qr&kk'( fq~
—1)e

( 1
—2vr/k)1/2( 1

—2m/k')I/2

-0.10

I I I I I I I I I I I I I I I I I I I I I I I I I I I Ix,G(k, k'), (22)
1

(k'f —k)(k'f +k)
I

where, as in the continuous-discrete case, G(k, k') is a
real function (see Appendix A), in this case defined as

K

FIG. 2. Matrix elements I I,. (Vaq )' as a function of k for
m =1,2 and two different values of f ~: f =1.1, dashed lines;

f,p
=1.5, solid lines.

G(k, k')= ktf k
' I/O I'/k

F(1 i/'k, —1+i jk', 2, 4kk'f l(k'f „+k) ) .k' +k (23)

When f ~1, the matrix element of Eq. (22) tends to
the normalization condition given by Eq. (14). That can
be shown by taking the assymptotic expansion of the
wave function (Ref. 17 makes an exhaustive analysis of
this problem).

Figure 3 shows the magnitude of ~Ikk (fqz )I in units of
a V ', for several values of f [in order to obtain a
graphic representation of Eq. (22) we added a small imag-
inary component to f, i.e., f „+iE, with E —+0]. As can
be seen from Fig. 3, the matrix element is practically zero
except in a small interval around k = k'f ~. In fact, when

f =1 it is a delta function [see Eq. (14)]. We approxi-
mate in our calculations Ikk by a delta function with the

corresponding normalization factor:
' I/2—2n. /k' f

1 —e
3

aq
kk V I/2 2~5(k k'f ) . —

200

(24)

Figure 4 shows the strength of the matrix element as a
function of k' for a ftxed value of f (f =1.1). The

1.0

0.8

0.6

150—

f =1.7
f 1.9

f =2.1

f = 2.5

0.2

0

100—

-0.2
50—

-0.6
-0.8

0.2 0.6 O.S 1.0
0

0

FIG. 1. Matrix elements I „as a function off ~ for different
values of m and n (from I to 3).

FIG. 3. The magnitude ~I&,. ~ Va, ' (k'=2) as a function of k
for several values off ~ (from 1.1 to 2.5).
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limiting values are

a~ 167i(f —1)e
kk' —y k 7/2( 1 e 2m k)

for k'~0 (it tends to zero as 3/k') and

a,' 163/irk (f„—1)
Ikk ———

3/2f 4
( 1

—2n/k)1/2 (k r )3
qp

for k'~oc (it tends to zero as e /" ). When both k and
k' are zero, Ikk. is obviously zero.

B. The Raman polarizability

The component wpq of the Raman polarizability can be
obtained by introducing the calculated matrix elements
into Eq. (11):

=1 (nm) " [ri, 1 ln'+ y, (n)][71,—ri„+1/m2+ y, (m)]

+ g j dk
&27r

&k I „(f )(Va ')'/

(1 —e ' ')' '
[7i k'+i—y (k)][7i, —ri, +I/m +iy (m)]

(f —1 )( I/g
—3

)
1/2

[7)z+ I/m +iy (m)][71 —
7IO

—k2+iy (k)]

f3/2
qp

[7)~ k+i—y~(k)][74 —
7)o

—k f +iy (k)]

where rip =(ficoi Es~ )/A~—, Eg being the gap related to
exciton p and pop %coo/Rp and the lifetime broadening

yz
=I" /8 . The factor E given in Eq. (27) is

g0 +H aH
K

2iim R R (g g )3/2
p q p q

& c
I p s, I

u & & u
l Dk l u~ & & u~ l p Ei l

c &.
X

fico( (fico(fico, )
' (28)

The first term on the right-hand side in Eq. (27) corre-
sponds to the discrete-discrete excitonic transition, the
second and the third to continuous-discrete and discrete-

l

I

continuous contributions, and the last one to the
continuous-continuous contribution. The integration
over k in the continuous-continuous case can be per-
formed as in Ref. 18.

The f factor in the denominator of the continuous-
continuous case arises from the simplification mentioned
before. If the exact calculation is made, kf must be
substituted by k', the integrand multiplied by Ikk [Eq.
(22)], and the integration extended to k'. Equation (27)
was used in our calculations.

With the help of Eqs. (14) and (17), and the orthonor-
mality of the discrete and continuous matrix elements in
the case fqz

= 1, Eq. (27) is then simplified to

1 1

[7i„+I/n +iy (n)][71 —
bio +1/n +iyz(n)]

1

2

1 1

n [ri +1/n +iyp(k)][7iq 7)oq+1/n +iyq(k)]
1 1+—
4 71 7), +71,+i[—y (k) —y, (k)]

ii —rio +iy (k)
X ~ln +iy (k)

7T+~i coth
[71 +iy (k)]'

—coth
[ri —ri +iy (k)]'

(29)

with the assumption that y~(k) and y (k) are constants.
Figure 5 shows l~ z l

for different values of the parame-
ter f (f „=—,', 1, and 2) for the case 7i =7) =71 and

go =5. The squared magnitude of the different
contributions (discrete-discrete, discrete-continuous
+continuous-discrete, and continuous-continuous) are
also shown in Fig. 5. Et can be seen in Fig. 5 that transi-

tions between discrete and continuous states are impor-
tant for f %1, in such a way that the larger contribution
corresponds to frequencies close to incoming resonance
when fqz

( 1 and close to outgoing resonance when

f~~ ) 1. It can also be observed that the continuous-
continuous contribution increases when fqz increases and
it becomes even more important than the discrete-
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80

40

k'=2

discrete contribution, a consequence of the functional
dependence of Eq. (27) on the parameter f . Thus, for a
small value of fqz, ~uqz ~

is larger for outgoing resonances
than for incoming ones, and the situation reverses when

f is close to or more than 1. Nevertheless, when the in-
verse diagram is also allowed (q —+p ) and f ~ is not very
different from 1, the value of u obtained by adding both
diagrams differs very little from the one obtained multi-
plying by 2 the diagram for fq =1 (it differs only very
near resonance). In practice, if both diagrams are possi-
ble, one can use Eq. (29) instead of Eq. (27), which enor-
mously simplifies the calculations.

k =3 III. APPLICATION TO III-V COMPOUNDS

20—

0'
0

k =4

k'=5

k'=8

10

0.5—

Q4-

Q3—

JQ

Q

0.2
C3z 0.1

LU

C3
LL
LL 0.5
UJ

0 4

0, 3

0.2

-4 -2 0 2 4 6 8
Tl

FIG. 5. Raman polarizability ~~ ~
as a function of the pa-

rameter t) ={A'coI Eg )/R ~h for three different v—alues of fq~ {0.5,
1, and 2}:solid lines. Also, the different contributions, discrete-
discrete (short-dashed line}, discrete-continuous (long-dashed
line), and continuous-continuous (dot-dashed line) are shown in
the figure}.

FIG. 4. The magnitude ~IkI, ~ Vaq
'

(fq~ = 1.1) as a function of
k for several values of k' (from 2 to 8).

I (n) = I (k) —[I (k) —I ( I ) j/n (31)

In III-V compounds, in the vicinity of the Eo and
ED+ ho CP's, three different sets of excitons are going to
be formed between the conduction band and the three
valence bands g, +—,

' ), ~
—,', +—,

' ), and
~

—,', +—,
' ), corre-

sponding to hh, lh, and so. Then, eight diagrams wi11
contribute to the resonance: lh —+lh, lh~hh, 1h~s. o. ,
hh~lh, hh~hh, hh~s. o. , s.o. ~lh, and s.o. ~hh
(s.o.~s.o. is zero by symmetry). The total Raman po-
larizability will be

~= gu +b, (30)

where p, q =lh, hh, s.o. and b is due to nonresonant terms.
The I 8 bands of III-V compounds are not spherically

symmetric and the coefficients K given by Eq. (30) will

be different for the different diagrams. Instead of the ma-
trix elements &c~p e, ~uq), &u ~DI', ~u~) &alp'a1lc &

took their mean value calculated for the star of the three
fundamental directions of k space (see Appendix B).

In III-V compound semiconductors at the I 8 point the
heavy- and light-hole valence bands are degenerate and
the relative and translational motions of the exciton can-
not be separated in the Schrodinger equation when
Coulomb interaction is included in the Luttinger-Kohn
Hamiltonian. Kane' has shown that it is possible to
speak about two independent Wannier-Mott excitons
with two different Bohr radii (heavy and light excitons)
when the corresponding kinetic energy is larger than the
exciton binding energy (larger center-of-mass exciton
momentum). For calculating the matrix elements I we
need not the energy, but the wave function, for K=O. In
order to simplify the problem we assume independent ex-
citons with the same mean Bohr radius a for the lh and
hh excitons and a different one a, , for the s.o. case.

The theory just described has been tested in several
III-V compounds using as adjustable parameters only the
Bohr radii and the lifetimes. The adjustment was per-
formed by using a measured absolute value of a. Unfor-
tunately, only GaP has been measured in the whole range
around Eo and Eo+50. We also tried to fit GaAs and
Inp, the first one measured around Eo and the second
around Eo+ Ao.

The following empirical relation was used for the life-
times:
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In all cases we took I ~(k) = 10 meV. A background h re-
lated to nonresonant terms was added.

TABLE I. Numerical values of the parameters used for the
theoretical fit of Fig. 6.

A. Gallium phosphide Parameter Value Ref.

Eo -Rhh GaP
(001)

z(y, ~)z

The CiaP is the only semiconductor for which absolute
values of the Raman polarizability have been measured in
a large frequency range including excitonic resonances.

Figure 6 shows the experimental data taken from Ref.
9 and the fit with Eq. (27) (solid curve). The energies
R hh, Rih, and R, , have been taken to be equal to the ex-
perimental rydbergs in Eo and Eo+Ao, respectively.
The parameters used in the fitting are summarized in
Table I.

The dashed line in Fig. 6 corresponds to the calcula-
tion for uncorrelated electrons [Eq. (2) of Ref. 11, as cal-
culated with the parameters used in Ref. 9]. The exciton
energy, 1.503 eV, was chosen to coincide with that of the
observed maximum, it agrees well with that obtained in
reflectance measurements. '

The two main peaks of Fig. 6 correspond to the incom-
ing and outgoing resonances with Eo, and the two mini-
ma (at 2.945 and 2.995 eV) to incoming and outgoing res-
onance with Eo+4~. The lifetimes were taken from ex-
perimental data for Eo and to give the best slope near
Eo+60. The background was used to fit the high-energy
region.

The absence of peaks at ED+ A~ is due to interference
between different diagrams. It is interesting to note that
the Bohr radius for the split-off exciton (54 A) is very
close to that obtained from the experimental rydberg in
Eo+ b.o (60 A), and the Bohr radius a needed in Eo (46 A)
is only about 20% away from the one obtained from R)h.
This proves that the approximation of taking only two
Bohr radii is satisfactory and a more complicated band
scheme unnecessary.

20
20
9

21
9
25
26
a

11 meV
10 meV
2.873 eV

80 meV
50 meV

5.45 A
47 eV
10.58 eV
6 meV
5 meV

10 meV
46 A
54 A
55 A

~ Ih

R, ,
Eo

%coo

ao

p /I

I", ,
a fit

fit
fit

as. o

b

'This value was calculated from the expression (Ref. 18)

p /m = '(m /m—, —1 )[Eo(ED+ho)/Eo+ —60] for m, =0.12mo

(Ref. 9).
B. Gallium arsenide

Resonant Raman experiments for GaAs were present-
ed in Ref. 11. The authors took measurements in several
backscattering configurations, obtaining the Raman po-
larizability for the case of LO and TO phonons in two
different samples.

We discuss here the results for the TO phonons, those
for LO phonons being only slightly higher due to
electro-optic contributions. As in the case of GaP, R,h

and Rhh were chosen to be equal to the experimental ryd-

berg at Eo. For the s.o. rydberg we took the calculated
one (80 A).

The theoretical fit obtained with the parameters of
Table II is presented in Fig. 7. Although the split-oA'en-

ergy is large for GaAs (340 meV), we used in the calcula-
tions all the diagrams used for GaP. The dashed line in

Fig. 7 corresponds to the best fit with the free-
electron-hole theory. " The discrepancy between a and
the one obtained from the experimental rydberg is 40%
instead of 20% found for GaP. This discrepancy may be
related to the large luminescence existing at the Eo CP

C)
2

C4

U

Eo-Rt h "~o

~o- Rso

Eo bo- Rso-»o

~ ~ ~ ~ e aa

2,8
I j

2.9 3.0

hu&I (eV)
FIG. 6. Comparison with experimental data for GaP (Ref.

28). The dots represent the experimental points, the solid line

the fit with Eq. (27), and the dashed line the best fit with a non-

correlated electron-hole —pair theory.

Parameter Value Ref.

8, ,

bo
AMp

ap
dp

p /m
~lh

~hh

r, .
a

4.2 meV
3.8 meV
1.506 eV

340 meV
33.7 meV
5.65 A

44 eV
12.9 eV
2.5 meV
2.5 meV
5 rneV

68 A
80 A

—670 A

27
calc.

11
11
11
11
26
11

11
fit

calc.
fit

TABLE II. Numerical values of the parameters used for the
theoretical fit of Fig. 7.
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FIG. 7. ~FIG. . Comparison of the theory with the e

for GaAs (Ref. 28). Th
ry wit t e experimental data

from Ref. 11, the solid lin
e . . e dots corres ondp to the data as taken

e so i ine to our theory [E . (27
ashed line was calculat d

'
h E .

q. )], and the
cu a e with Eq. (2) of Ref. 11.

Parameter Value Ref.

R
R, ,
Eo
6o
Acg)o

ao
do

p /rn

I
r, .
a

5.1 meV
4.6 meV
1.415 eV

108 meV
43 meV

5.87 A
35 eV
8.8 eV
5 meV
5 meV

10 meV
115 A
130 A
20 A

12
calc.

12
12
12
12
12
12
12
12

calc.
calc.

fit

lower ener gy in the region near the E
(irtcoi & l. 55 eV for I P d fi
to exeitonie e8'ects

or n and A~ &2.95d fi i . eV for GaP) is due

TABLE II .I . umerica1 values of the ara
theoretical fit of Fig. 8.

o e parameters used for the

due to the fact that GaAs is a dire
uc or. e large background needed to fit the ex eri-

mental data also points in this dirin is irection. The lifetimes
grea er ( ess broadening) than for GaP the 1

indirect-band-gap s-gap semiconductor and direct exc t
have plenty of channels tne s o scatter into.

iree excltons

10

t
f I l I i i i I

(
4 I I I 7 I 1 I f

0

C. Indium phosphide

Indium phosphide has been measured' in the s
scattering configuration as GaP in
E +A. Th

n as a in the region around

the fit wa
ere are onl a few ey experimental points; hence

e t was done with the calculated Bohr ra
"

a 0 I radii adding a

tained with th
e ae ground. Fi ure 8g shows the fit ob-

for th DP
e parameters of Table

e constant d is 35 eV
ble III. The value used

, namely that calculat d
y t e empirical pseudopotential method (EPM) A

the case of GaP hGaP, the strong resonance tail observed at

IV. CONCLUSIONS

Raman polarizability for OPRRS is
interaction in ludin elinc u ing electron-hole correlation i
do ' oi ' . S excitons related toa ion. everal e

s are introduced, takin ag

pression valid to describe RRS

R n o ariza i ity. A sim lifi
h i h h hw ic t e exciton Bohr

A comparison of our calculations with recwi recent measure-

InP. The good agre
, in a so ute units, for GaPa, GaAs, and
agreement etween the t

perimental dat d
t eoretical and ex-

a a, an t e corn arison
uncorrelated elect

p son with the theory for
e e ectron-hole pairs clarify the ro

p o pcompoun s and explain the

case of InP, in which h

'n a, aAs, and InP. Thee particular

lows us to use a d =35 V f
w ic on y the broadenin s ag are fitted, al-

The theory can als b
e for the DP o ticalp

'
constant.

sitions in other sem
~ ~ ~

an a so e extended to direct a
semicon uctors.

c allowed ti an-

APPENDIX A

C)

Q

All tt e matrix elements between di
inuous, an continuous-contin

states are integr 1 f ha so t etype
tinuous exciton

g(a a~ ) e
—(A. +A.')r/2 2Fe r F a, 2, Ar)

0
1.50 1.55 1.60 1.65

ai((eV )
FICr. 8. Comparison with the experiment f

pon to the data from Ref. 12 and
toth 1 l 1td '' Ea e with Eq. (27}.

XF(a', 2, A, 'r)dr .
The evaluatiation of these integrals yields' '

J(a, a')=16( —1) [A,(1— )——a —
A, '( I —a')]

X-(x+x') +'-'
pi )a+a'+ i

(a,a, 2, —4A, A, /(A, —
A, ') )

(Al)
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where a is either 1 —n or 1+i lk and X=2jk (or 2f jk)
or 2ik (or 2ikf) in the discrete and continuous cases, re-
spectively.

For the discrete-continuous case [Eq. (19)] the follow-
ing function is obtained:

G(m, k ) =(1 im—kf )

XF(1—m, 1+i/k, 2, 4i—mkf /(1 —imkf ) ),
(A3)

which is real, as can be shown by means of the first
Kummer's relation

F(a, b, c;z)=(l —z) 'F(a, c b,—c,zl(z —1)) . (A4)

From (A4) follows

(1—imkf )
' "F(1—m, 1+ilk, 2, 4im—kf l(1 imkf )—)

=(1+imkf) ' "F(1—m, 1 i lk—, 2, 4imkf /(1+imkf ) ), (A5)
then G(m, k) =6*(m, k) and G (m, k) is a real function.

The function G(k, k ) appearing in the continuous-continuous matrix element [Eq. (23)] is also real. The first solu-
tion of the hypergeometric equation also yields

F(a, b, c;z)=(1—z)' ' "F(c—a, c b, c;z)—.

k'f —k
k'f +k

k'f —k
k'f +k

Applying (A6) to Eq. (23),
; i ik' —i ik

F(1 ilk—, 1+i /k', 2, 4kk'f l(k'f +0) )

i lk —i /k'

(A6)

F(1 i jk—', 1+i /k, 2, 4kk'f /(k'f +k ) ), (A7)

G (k, k') =G*(k,k') being real.

APPENDIX 8

The valence bands are not spherically symmetric
around I 8 in the III-V compounds and the quantity

zero. In (82), do is the DP optical constant. The wave
functions can be represented as

uhh =
I
3,—'& = —(x +iy) 1',1

hh

& c lp'e, lu & & u IDg, lu & & u Ip el lc & (81) u„„=l3,—', &= —(x —iy)L,

depends on the direction of the k vector. In order to esti-
mate the mean value of this quantity we made the calcu-
lation for a specific polarization direction z(xy)z, without
loss of generality. In that case, the matrix representation
of Dh 1S

0 1 0
Dh =do 1 0 0

0 0 0

and only the p„and p~ components are diA'erent from

= 1
u,+„=

I
—', —'

&
= —(x +iy ) J,

—( —', ) z T,

v, h =I —,', —
—,
' &= (x iy) 1+(—,')—' 'zl,3 I

u,+, =
I —,', —,

'
&
= (x +iy ) $+ —z 1,+, , 1 . 1

s.o.
3

v, , = P, —
—,
'

&
= —(x iy ) 1 — ——z J, .

1 . 1
2~ 2 3

(83)

TABLE IV. Mean values of C~ q
in the mean directions of the {BZ) in the transitions involved in

the vicinity of Eo and ED+ ho CP's.

on lh ~1h lh ~hh lh ~s.o. hh ~hh hh —+1h hh ~s.o. s.o.~1h s.o.~hh

[001]
[100]
[010]
[110]
[011]
[101]
[111] 1

9
17
18 5

1

12
1

6
1

2
2
9

61 4
78 5

2
3
1

3
1

2
1

6
1

3
1

3
1

9
17 1

78 5

2
3
1

12
1

2
1

6
2
9

61 4
78 5

1

3
1

6
1

2
1

3
1

3

1

3
2
3
1

2
1

3
1

6
1

3

1

6
1

3
1

2
1

3
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In order to perform the k average we evaluated the con-
tribution to the scattering of electrons along the "princi-
pal" directions of the Brillouin zone (BZ), namely, A, h, ,
and X. We define P=(sip lx &.

Table IV shows the mean values:

C, , —= IPI (clp lv &(v IDhlv &&v Ip, lc&= 3

slightly different result due to the fact that we did not in-
tegrate over the whole BZ, but only took the A, 5, and X
directions. The values obtained in that case are 3JQ

for
the intraband terms and —",„' for interband (in the 1 s
bands) terms, there being a 2% dig'erence between the
LO and TO values, a fact which con6rms the correctness
of taking only principal directions.

for the different diagrams in the region about Eo and
Eo+ 60 calculated in the principal directions. As we can
see, these Incan values are different from 1 only when
transitions inside I 8 bands are considered. If a
configuration in which a TO phonon is allowed is con-
sidered, we can repeat the calculations and obtain a
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