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The reflection of a finite-duration optical pulse from a semi-infinite nonlocal medium for various
additional boundary conditions (ABC’s) is investigated theoretically. We have obtained explicit ex-
pressions for the amplitude and phase of the transient reflected field (local and nonlocal) and evalu-
ated them numerically for different ABC’s. We predict a damped oscillatory decay in transient
reflectivity (after the pulse is cut off) due to relaxation processes which cause dephasing of emitted
light on a scale longer than the cutoff time of the pulse. The effects of spatial dispersion for the
reflected transients associated with the light pulse are important for the laser frequency at the vicin-
ity of an exciton-polariton resonance. For various ABC’s, for the cases of CdS and CuCl semicon-
ductors, we find quantitative differences in the magnitude of the amplitude of the transient. This
can be used to analyze different ABC’s experimentally.

I. INTRODUCTION

Propagation of an electromagnetic (EM) wave in a
bounded nonlocal dielectric medium has attracted much
attention in recent years.! Because of spatial dispersion,
the dielectric function €(w,k) has wave-vector depen-
dence. This leads to more than one plane wave propaga-
ting inside the medium when a single plane wave is in-
cident. One thus needs additional boundary conditions
(ABC’s) in addition to Maxwell boundary conditions in
order to solve the reflection and transmission problem
from a nonlocal medium. In semiconductors, such as
CdS, CuCl, GaSe, GaS, etc., the effects of spatial disper-
sion become very important near the exciton resonance
,. Their study in various optical processes, such as
reflection and transmission or Raman and Brillouin
scattering, may thus provide valuable information about
exciton parameters.?

Instead of steady-state wave, finite pulses can give ad-
ditional information about spatial dispersion. For exam-
ple, for EM pulses of finite duration the transient effects
give rise to precursors in the transmission regime. For
the local medium, the well-known Sommerfeld® and Bril-
louin* precursors are present, while spatial dispersion
gives rise to a third precursor, namely the exciton precur-
sor.> Transient optical transmission has been investigat-
ed only when the light pulse has well-defined boun-
daries.”® Reflection from a nonlocal interface has only
been studied in the steady-state regime for various angles
of incident light and for various additional boundary con-
ditions (ABC’s).>~!! Transient reflectivity from a local
frequency-dispersive dielectric was considered by Elert
more than 50 years ago, and more recently by Eilbeck,
Fauchet, and Branis,!?> while generalization to nonlocal
media was reported for the first time for normal light in-
cidence in the case of Pekar’s ABC.!"3

The purpose of this paper is to provide a detailed
analysis of the effects of spatial dispersion on transient
reflectivity, for various ABC’s. When an electromagnetic
pulse of finite duration T is incident on a nonlocal inter-
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face, the reflected field consists of the steady-state signal
(of duration T) and transients arising from both the lead-
ing and the trailing pulse edges. Experimentally, it may
be more convenient to look for trailing-edge transient
reflectivity, since steady-state reflectivity will then not in-
terfere with measurements. For long pulses (T greater
than a few psec), transients from the two edges will be
essentially decoupled and can be measured independent-
ly. In our case, we consider an incident square pulse and
obtain expressions for steady-state and transient
reflectivity for various ABC’s. The results show that the
transient reflectivity consists of a “local” part and a
“nonlocal” part. We obtain expressions for local and
nonlocal parts, respectively, to show the differences
among the ABC’s, especially close to the exciton-
polariton resonance frequency ;, where spatial-
dispersion effects are enhanced. We propose that by
measuring the total transient reflectivity, it is possible to
decide about the “true” ABC for the material. The local
part is on the average larger than the nonlocal part at
fixed time, especially close to longitudinal frequency w,,
while the nonlocal part is enhanced at w,. The time oscil-
latory decay of both parts is also obtained, at fixed fre-
quency. We show different oscillatory decay rates for
both parts and for different ABC’s. The magnitude of
transient intensities should permit an experimental mea-
surement.

The plan of the paper is as follows. In Sec. II, a review
of the different ABC’s is given with a discussion of the
basic assumptions that underlie them. In Sec. III, an in-
tegral representation for the reflected field is obtained, by
using Fourier analysis in the time domain, for semi-
infinite nonlocal medium. Using a contour-integration
method, expressions for the steady-state and transient
parts of the reflectivity are obtained in Sec. IV. Sections
V and VI deal with the “nonlocal” and ‘“local” parts of
transient reflectivity, respectively. Detailed numerical re-
sults are presented for parameters appropriate to CdS
and CuCl crystals. The results for total transient
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reflectivity are discussed in Sec. VII, while in Sec. VIII
we summarize our results. Necessary mathematical de-
tails are presented in the Appendix.

II. REVIEW OF DIFFERENT ABC’S (REF. 14)

Simultaneously with the prediction of the existence of
additional waves in spatially dispersive media, the need
for more than the usual Maxwell boundary conditions
was realized.

In his first paper, Pekar!’ discussed a quantum-
mechanical approach to obtain an ABC. He proposed
that in the nonlocal medium the exciton polarization
P.,.(r,?) satisfies the equation of motion

—m2+-"’~2—+bvz+ri P, (r,1)=aE(r,1)
0 atz ot exc\ ’ ’

2.1

with —a)(z), b,T",a being coefficients and the macroscopic
field E(r,?) acting as a driving force on the exciton polar-
ization. For harmonic plane-wave propagation in the
medium in -2z direction (normal incidence), Eq. (2.1)
leads to a macroscopic constitutive relation for P, (r,7):

P, .k, 0)=X. k,0)E(k,0) (2.2)
with
(k,0)= = , (2.3)
e bk — w0’ iT®)
or by adding a background term:
XK, 0)=Xo+ Xexc(k, @) . (2.4)

Equation (2.1) was solved subject to a boundary condi-
tion:

P..(r,1)|s=0 (2.5)

exc
or

(n?—€)E,+(n3—¢€y)E,=0, (2.6)

since the polarization vanishes outside the medium, while
3 is the boundary of the medium at z=0. In Eq. (2.6),
n,,n, are the complex indices of refraction for the two
propagating modes while €, is the dielectric constant of
the background. The boundary condition in Eq. (2.5) is
not a mathematical consequence of the assumed suscepti-
bility, but an assertion imposed by Pekar to complete the
solution of Maxwell equations in the presence of spatial
dispersion.

A few years later, Hopfield and Thomas'® took up the
ABC problem. Following somewhat along the lines of
Pekar’s paper they introduced the equation of motion as
in Eq. (2.1) and analyzed a quantum-mechanical model
which would give a Schrodinger eigenfunction for the ex-
citon. From this eigenfunction they deduced the needed
ABC (imposing a restriction that the exciton wave func-
tion should vanish on the surface of the medium) using a
classical correspondence. The new ABC had the form
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oP,, (r,7)

P..(r,1)+ A-—eig;—— =0,
where Pekar’s ABC is a particular case (4 =0). Fuchs
and Kliewer'? derived a similar result for the optical
properties of a semi-infinite electron gas; the connection
between their approach and that of ABC’s was elucidated
by Johnson and Rimbey.!® Kiselev!'® gave a more explicit
expression for A =yc/w, where y is some phenomeno-
logical constant or function of frequency. In terms of
electric fields, Eq. (2.7) is written as follows:

(2.7)

(1+iyn(n?—€)E, +(1+iyn,)(n—e))E,=0 .
(2.8)

Birman and Sein,®® Maradudin and Mills,2! and
Agrawal et al.? independently used Maxwell equations in
a phenomenological way to propose a different ABC.
Their contribution was based on the fact that by choosing
a nonlocal susceptibility model, an ABC can be derived
through either an integral or differential equation formal-
ism of electrodynamics for nonlocal media, without any
additional assumption. By using Eq. (2.4) (dielectric ap-
proximation) the result for an ABC is

P, (r,1)
T+zk+Pexc(r,t) 2=0 (2.9)
or
E, E,
+ =0 (2.10)
ny—n4 Hy—hn_
with
o’ _m*
k% =n%—= (0*—o?+iol), (2.11)

where m* is the effective exciton-polariton mass, o, is
the transverse exciton angular frequency, I is a phenom-
enological damping constant, and n . is the refractive in-
dex for the lower polariton mode for w >>w,. This ap-
proach is totally macroscopic.

Zeyher et al.?® gave a microscopic determination of
ABC’s. The fundamental assumption about the physics
of exciton-polariton reflection at the crystal surface de-
cides for the different ABC’s. The wave function for the
exciton-polariton center-of-mass motion is approximated
as follows:

Y, (r,0)=0©(z)[ explik,z)+ R, exp( —ik,z)]

X exp(ikr), (2.12)

where R, is the exciton reflection coefficient. For
R.,.=0, one obtains exactly the Birman-Sein ABC Eq.
(2.10). The physical meaning of the zero exciton
reflection coefficient corresponds to the translationally in-
variant susceptibility or dielectric approximation. For
R.,.= —1, this corresponds to Frenkel or tight-binding
excitons, which are totally reflected by the crystal sur-
face. In this case, the relative electron-hole motion is not
affected by the process. One can obtain Pekar’s ABC Eq.
(2.5) for x,=0. The last case, R.,.= =+ 1, corresponds to
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Wannier excitons case. This case was treated first by
Ting et al. (1975) (Ref. 24) and one obtains a new ABC
(Ting’s ABC):

oP,, (r,?)

. z=0 (2.13)

or

nl(n%—eo-)Evl+n2(n%-—eo)E2=0 . (2.14)

III. INTEGRAL REPRESENTATION
FOR THE REFLECTED FIELD

We consider a semi-infinite nonlocal medium occupy-
ing the half-space z >L with z <L being vacuum (see
Fig. 1). A detector is placed at z=0. We assume that a
normally incident laser pulse corresponds to a linearly,
polarized, monochromatic plane-wave field. For a square
pulse of unit intensity and duration T at frequency «,,
the electric field at the plane z =0'is given by

E[(0,2)= sin(owgt)[O(t)—O(t —T)] , (3.1)

where ©O(¢) is the Heaviside step function.

For laser frequency near the exciton resonance, the
coupling of an exciton state to a photon produces an exci-
ton polariton. Spatial dispersion or the nonlocality of the
medium corresponds to the center-of-mass motion of the
exciton polariton. A generalized classical Lorenz oscilla-
tor model takes for dielectric function

elk,0)=¢€;+4mx(k,w)
draw?

0! —o’—iol +(fiw, /m*)k? "’

=€+ 3.2)

where €, is the backround dielectric constant, a; is the
oscillator strength, m* is the effective exciton-polariton
mass, o, is the transverse exciton-polariton frequency,
while I'" is a phenomenological damping constant which
has been taken constant in the vicinity of ©,. In reality,
for CdS (Refs. 25 and 26) and CuCl (Ref. 27) crystals, T’
depends on the frequency. Expression (3.2) produces a
translationally invariant real-space dielectric function
e€(r—r',w) after Fourier transformation.

For normal incidence, the amplitude reflection
coefficient is given by?%2°
plo)= 1-n(w) , (3.3)
1+7(w)

where 7i(w) is the effective refractive index of the nonlo-
cal medium and for different ABC’s has the following
forms.
For Pekar,
nyn,+eg

Alo)=——"—,

4
n,+n, (3.42)

ER(0,t,09)= 1irrBRe 3177-_ f+wdw—M——{l— expli(o—wy)T]} exp
n—>

— oo Wg—w—Iin

g

VACUUM N NONLOCAL
MEDIUM
—_—
D >

z=0 —

INTENSITY
z=L

-» TIME

2l/c 2l/c+T

FIG. 1. Schematic illustration of the geometry and the nota-
tion used. At time ¢t =0, a square pulse of duration T is emitted
from the plane z =0 where a detector is placed to monitor the
reflectivity. For 2L /¢ <t <(2L /c +T) the steady-state signal
is detected and for 7=t —2L /c —T =0 the transient signal is
detected.

for Birman,

nlw)=n,+n,—n, , (3.4b)
for Ting,
niny(n,+n,)
Alo)=—— a2 (3.4¢)
(n{+n3+nn,)—¢,
for Kiselev,
etnny,+iyn ny(n,+n,)
)= 0 1‘2 27/ 122 1 2 ’ (3.4d)
ny+n,tiy(ni+ns+nn,—e¢;)
and ny,n, are the solutions of the implicit relation
n;=+[elk;,0)]'? k;=njw/c, j=12. 3.5

Because of the linearity of the problem, we may time
Fourier analyze Eq. (3.1) and treat each frequency com-
ponent by dispersion theory. The reflected field is ob-
tained as a superposition of the reflected components and
can be written as the frequency integral

2L

t——

c

—iw

) (3.6)
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where the time delay 2L /c corresponds to a round trip
between z =0 and z = L.

IV. STEADY-STATE AND TRANSIENT
REFLECTIVITY

The reflected field, in Eq. (3.6), can be separated into
steady-state and transient parts, after removing the har-
monic time dependence exp(—iwt). The steady-state part
gives rise to a reflected pulse (of duration 7) whose lead-
ing and trailing edges contain the rapidly-time-varying
transient contributions. The integral in Eq. (3.6) is evalu-
ated in the complex w plane using the method of contour
integration. Using Eq. (3.3) in Eq. (3.6), the integrand is
found to have the following singularities which are the
same for all four ABC’s: (i) a simple pole at wy—in, (ii)
four branch points ; (j=1,4) in the lower half-plane,
(iii) two branch points w5 and wg in the upper half-plane.
All six branch points correspond to branch-point singu-
larities of the complex functions n(w),n,(w). (iv) For
Birman’s ABC, there are two additional branch points w-
and wg in the lower half-plane, corresponding to the
branch-point singularities of the complex function
n(w).

The explicit expressions for the location of these
branch points are obtained using Eqgs. (3.2) and (3.5) and
are given by (see details in the Appendix)

) 172
1+ B , 4.1)
€o

w34=(1—8%y) '{—i(iI'+Bdw,)

= ;1 2 —172
(01’2_ l?r\i @y TF

Hw(1—86%,)

—(Bdw, +i0V1'%, (4.2
ws.¢=(1—8%,) " '{i(Bdw,—iT")
+w?(1—8%,)
—(—Bdw, +1ir?1'?}, 4.3)
wr,5= =i @ =472, (4.4)
where
172
fiw
B=(4may)'?, 8= |—5 4.5)
m-c

Note that the dimensionless parameter 8 is a measure of
the extent of nonlocality of the medium (spatial-
dispersion coefficient). We also assume I <2B8w,, i.e.,
we exclude very heavily damped exciton polaritons.

One can simplify Egs. (4.1)-(4.4) by noting the fact
that for most materials like CdS, CuCl, GaSe, and GaS,
the parameters 8= (%o, /m*c?)'/%, p =B?/2¢€y, and T /o,
are small (<1073), so that it is sufficient to retain only

lower order terms in 8, p and I' /w,. Thus we obtain
w,=—itTtw,(1+p), 4.6)

@3 4=—i(1T+B0,) %o, , 4.7)
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(4.8)
4.9)

w5‘6=i(ﬂ8w,~%r)iw, ,
607’8: —l%l‘:\‘:(ot .

For t <2L /c we close the contour in the upper half-
plane which is chosen so as to exclude the branch-cut line
joining ws and wg. An evaluation of the integral in Eq.
(3.6) shows that the branch points w5 and wg contribute in
such a manner that Ej(z <2L /c)=0 as required by
causality.

For t 22L /¢, we close the contour in the lower half-
plane. The four branch points w, ,,w;, for the case of
the ABC’s of Pekar, Ting, and Kiselev and the six branch
points @, ,,w3 4,75 for Birman’s ABC are joined by
branch-cut lines and the resulting contour for both cases
is shown in Figs. 2(a) and 2(b). Evaluation of the integral
in Eq. (3.6) is lengthy, although straightforward. Alge-
braic details are presented in the Appendix. Here we
note that the reflected field is found to consist of three
parts [see Eq. (A20)]:

ER(O,t,(Do)= Re[Es(t)+EL(t)+ENL(t)] . (4.10)

The simple pole at wy-in contributes to the steady-state
reflected field Eg(z). The four branch points (or the six
ones for Birman’s ABC) contribute to the transient
reflected field which consists of a local part E; (¢) and a
nonlocal part Ey; (). Although Eg(z) and E, () both
are affected by spatial dispersion, Ey;(t) arises solely
from it and vanishes as §—0 (m*— ). Further, in the
limit of §—0, E‘S(t) and E () reduce to the previously
obtained results.!? We now consider the steady-state and
transient parts of the reflected field separately.

A. Steady-state reflectivity
Using Eq. (A21) from the Appendix, E¢(t) is given by
2L

t——

Eg(t)=—iplwy) exp | —iw, (4.11)

for all ABC’s for 2L /c <t <(2L /¢ +T) and zero other-
wise. After an initial delay, a reflected square pulse of
duration T arrives at the plane z =0. In Figs. 3 and 4 we
have shown the reflectivity |Ro|?>=|p(w,)|? as a function
of wy/w, in the vicinity of exciton-polariton resonance
for parameters appropriate to CdS (Ref. 13) and CuCl
(Ref. 27) crystals, for all ABC’s, respectively. Reflectivity
for a local medium (6=0) is shown by a solid line for
comparison. We notice that the main effect of spatial
dispersion is to reduce the reflectivity peak height for all
ABC’s but more drastically for Pekar’s and Birman’s
ABC.

B. Transient reflectivity

Transient reflectivity consists of a “local” part and a

“nonlocal” part:
Er()=E ()+Ey.(1), (4.12)

where the “local” part is what remains in E;(7) when
6—0, and from Eq. (A22)
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Ep(t)=[E;(t —2L /¢)©(t —2L /c)
— exp(—iwgTE;(t —2L /c—T)

X O(t —2L /c —T)] (4.13)

for j=L and NL and E;(7) and Ey(7) are given by
Egs. (A16)-(A19). The two terms in Eq. (4.13) corre-
spond to transients arising from the leading and trailing
pulse edges, respectively. If the pulse duration T is
longer than the effective time during which transients
significantly contribute, leading-and trailing-edge tran-
sients will not interfere and can be considered indepen-
dently. Up to a constant phase factor, transients from
both edges are identical in form and magnitude and are
governed by E;(7). Experimentally, it may be more con-
venient to look for trailing-edge transients which appear
just after the reflected pulse is cut off at t =2L /c +T.
Using Egs. (A3) and (A12) in Eq. (A23), the local part of
the transient reflectivity is found to be given by

y42n

E;(1)= Y.

exp(—iw,7)exp(—1I'7)

x fl [p(ny,ny)—p(—ny,n,)]
0 (0,—wytpleo,|u—ill)
(4.14)

for the ABC’s of Pekar, Ting, and Kiselev, and by using
Egs. (A3) and (A14) in Eq. (A25),

X exp(—ipow,7u)du+ - - -

E;(7)=exp(—iw,7)exp(—{I'7)

% fl [p(nl,nz,n+) p(_nl,nz,n+)]
(0, —wyt+plo|u—ill)

(4.15)

for Birman’s ABC where the ellipsis represents a similar
expression obtained by w,— —w,. Here, dependence of
plw) on the refractive indices n, and n, plus its depen-
dence on n for Birman’s ABC is explicitly shown and
n;, n,, and n, are to be evaluated at frequency
o=, +po,u—i;I'. As a reminder, p=2may/¢,
=(0,—w,)/o,.

It is easy to verify that Eqgs. (4.13) and (4.14) reduce to
Elert’s result'? in the limit of infinite exciton mass 8—0.
This follows by noting that when 8—0, 7=n, for all
ABC’s and the term in square brackets in Egs. (4.13) and
(4.14) reduces to —4n, /(1—n?).

The nonlocal part is given by Eq. (A24) which together
with (A3) and (A12) becomes

X exp(—ipw,ru)du+ - -

iBdw,
Enp(T)= exp(—iw,7)exp(—iI'7) .
1 [p(ny,ny)—p(—ny,n,)]
. fo (0, —wy—iB8le,|u —ill’) expl
o [plny,ny)—p(—ny,n;)]
+ fl (0, —wy—iB8lo,|u —ill") exp(

—Bd|w,|Tu)du + - - -
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alm (o)
(a)
Re(w )
v
Im(w)
4
(b)
Re(w )

v

FIG. 2. (a) Schematic illustration of the contour in the com-
plex ® needed to evaluate the reflected for Pekar, Ting, and
Kiselev’s ABC. A pole at w—in and six branch-point singulari-
ties w;, j=1 to 6 give rise to the steady-state and transient
reflectivity, respectively. (b) Schematic illustration of the con-
tour in the complex o plane needed to evaluate the reflected for
Birman’s ABC. A pole at w—i7 and eight branch-point singu-
larities w;, j =1 to 8, give rise to the steady-state and transient
reflectivity, respectively.

—B8low, | Tu)du + - - -

(4.16)
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for the ABC’s of Pekar, Ting, and Kiselev, and from Eq. (A24) with (A14) and (A3)

iBéw,
2w

Eny(7)= exp(—iw,7)exp(—1'7)

x fl[P(”l’”z”“r)—P("”nnz’—”nt)]
0 (a),——a)o—-i36|w,|u —iill)

© [p(nl,nz,n+ )'—p(——nz,nl, —n4 )]
+ fx (

o, —wy—iBdlo,|lu —iil)

for Birman’s ABC where the ellipses represent a similar
expression obtained by w,— —w,. Here, dependence of
p(w) on the refractive indices n; and n, plus its depen-
dence on n for Birman’s ABC is explicitly shown and
n;, n,, and n, are evaluated at frequency
o=w,—iB8w,u —iil'. Note that Ey (¢) is proportional
to the spatial-dispersion parameter 8 and vanishes for the
case of local medium in the limit of infinite exciton mass
(6=0).

Equations (4.13)-(4.17) give the total transient
reflected field associated with a square pulse of duration
T. In the following, we focus our attention on transients
arising from the trailing pulse edge and set
7=t —2L/c —T. For T > a few psec, leading-edge tran-
sients would die out before the trailing edge of the pulse
arrives and therefore

E;(1)=— exp(—iw,T)E;(7) ,

(4.18)

where 7>0 and j =L and NL.

Since the transient effects are expected to be important
only in the immediate vicinity of an exciton-polariton res-
onance, we shall assume that the laser frequency wy~w,.
Under near-resonance conditions, the second term in Egs.

SIGNAL REFLECTIVITY [Rof?

.
1.00 1.005

LASER FREQUENCY —2
)

0.995

FIG. 3. Resonance enhancement of steady-state reflectivity
|R,|? which persists for 2L /c <t(2L /c +T). The parameters
are chosen appropriate to a CdS crystal with €,=8, fiw, =2.55
eV, m*=0.9m,, I'/w,=5X107°% B?=0.0125, and y=10"1.
For comparison each curve is represented by an ABC as fol-
lows: Local optics, ; Pekar, . . . .; Birman, — — —;
Ting, —- —-—- ; Kiselev, — « - — -« —_

exp(—B8lo,|Tu)du+ - - -

exp(—pB8|ow, |Tu)du + - - - (4.17)

[

(4.14) and (4.15), and the last two terms in Egs. (4.16) and
(4.17) will not contribute significantly and henceforth will
be neglected. It may be noted that these terms arise from
the branch points lying in the third quadrant of the com-
plex w plane [see Figs. 2(a) and 2(b)]. In the next two sec-
tions we consider the nonlocal and local parts of transient
reflectivity separately.

V. SPATIAL-DISPERSION-INDUCED
TRANSIENT REFLECTIVITY

In this section we simplify the nonlocal part of tran-
sient reflectivity [Eqgs. (4.16) and (4.17)] and discuss vari-
ous features numerically. For this purpose we need to
evaluate n;, n,, and n, at frequency o=,
—iBdw,u —iiI'. Using Eqs. (A4)-(A6) to the leading or-
der in § we obtain

ny=+[at(a’—¢h)'?]'?, (5.1)
n,=+(2a—¢)"?, (5.2)
where
€  ifu B
a=|———"— |, b=— . (5.3)
2 & (€,8%)

SIGNAL REFLECTIVITY [Rof?

e

0.995 1.00 1.005
LASER FREQUENCY %’—

FIG. 4. Resonance enhancement of steady-state reflectivity
|R,|? which persists for 2L /¢ <t <(2L/c +T). The parame-
ters are chosen appropriate to a CuCl crystal with €,=5.59,
#iw,=3.2022 eV, m*=2.3m,, T /o,=5X107%, f2=0.0199, and
y=10""'. For comparison each curve is represented by an ABC
as follows: Local optics, ; Pekar,. . . .; Birman, — — —;
Ting, —- —- — .; Kiselev — -+ — -« — .
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Substituting Eq. (5.3) in (5.1) and (5.2) and assuming in B 172 ~
€,8/2B << 1, we obtain A(—ny,n;)=exp 2 128 (u—1)"12,  (5.9¢c)
172 )
n,=-—i % exp i9 R (5.4) for Pekar’s ABC,
2 -5 1" )
172 p a(n,ny,n, )= —SB—J exp ——%1 V1i+u —Vu),
ny= L;’, exp | = |, (5.5)
(5.10a)
for 0<u <1, where 6= sin~ !u and 28 172 i
172 a(—ny,ny;,—ny)= ry P | T
ny= B exp im exp -2 (5.6) —
s 4 2| ' X(iV1—u +Vu), (5.10b)
172
- |B _1im | Z 172
=1 exp 2 |*P |5 | (5.7) A(—nyyny,—ny )= ,Bﬁ exp ~_l_;T_
for u > 1, where u = coshz, while X(=Vu =14+V%) (5.10¢c)
172 . ,
2 i — for Birman’s ABC,
n,= _g- €Xp —iT Vu (5.8) 12 . v
a(ny,n,)= |—— - _1_+._u_, (5.11a)
for every u 0. 5 4 | Qu+l)
Using Egs. (3.4) and (5.4)—(5.8) the effective refractive
index for each ABC is found to be given by 28 172 ir | vVi—a
) 12 a(—ny,n,)= ‘—8— exp T m, (5.11b)
A(n,,n,)=exp —’—4’1 % (1+u)~172, (5.92) D
= _|2B im | Vu—1
. 172 a(—n,,n,)= Y vy m, (5.11¢)
A(—n,,n,)=exp if 2’%‘ (1—u)~172 (5.9b)
for Ting’s ABC, and
J
) ) 172
1/2 exp —% +y KB— Vi+tu
Alny,ny)= | L - , (5.122)
26 — ir || 8
V1+u +iyexp | —— 28 (1+2u)
) 28 172
i
1/2 €Xp 4 -Y ‘(‘3‘] Vi—u
ﬁ(_nl’n2)= ﬁ 172 , (5.12b)
28 i B
Vi—u tiyexp |—/— | | == (1—2u)
4 28
28 172
iT
172 exp | =~ |~ —8‘) Vu—1
a(—n,,n,)= B\ 73 , (5.12¢)
2 Vi—i—iyexp |- || & | Qu-1)
VeXP T | 28

for Kiselev’s ABC.
Equations (3.3) and (5.9)—(5.12) are used to evaluate the integrands in Egs. (4.16) and (4.17)
and using Eq. (4.18), E; (7) has the form

RC[ENL(T)]lex(T)‘ Sin(w17_¢l) )
where R (7)=|R(7)| exp[i¢,(7)] is given by

. By assuming (8/6)>>1

(5.13)
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e 172 )
R (r)=iexp(—iw,7)exp(—1I'7) Bz exp 1-71]
T 4
fldu exp(—Bdw,Tu) vVi+tu +i\/m
(0, —wy—iB8w,u —iiI") 172
0 l : 23 exp |[— |(VI+u —iV1i—u)
B
+ fwdu exp(—Bdw,Tu) vu +1__\/;—__—1 5.14)
1 (0, —wo—ifdw,u —iiI) 28 172 )
1+ B exp Vu+1+Vu—1)
for Pekar’s ABC,
ﬁ53 172 .
R (r)=iexp(—iw,7)exp(—1I'7) exp LB
272 4
fldu exp( —Bdw,mu) \/——H\/T:_J
(0, —wy—iBbw,u —ill") 7z
¢ ! : %8 exp |— |(V1+u —iV1i—u +2Vu)
N fw du exp(—Bdw,Tu) \/m__‘/‘u‘?] 5.15)
1 (0, —wy—iBdw,u —iiT") 28 172 ’
1+ 5| e = |(Vu+1+Vu—1+2Vu)
for Birman’s ABC,
172 )
R (7)=i exp(-tw,T)exp( 1I'7) By exp —lf—
27
1 exp( —Béw,Tu) exp( —Béw,Tu)
F 5.1
x fo du(w —wy—iBdw,u — —F)F 1)+ f du (0, —wg—iBdw,u —iil') 2(1,‘) (5.16)
0 0 2
where
— (1+2u)V'1—u +ivV14u (1—2u)
Fl(u)_ 172
(1—u2)2+ [—2%-] exp 4 [(1+2u)V1—u —iV1+u (1—2u)]
and
_ Qu+1)0WVu—1—Vu+12u—1)
Fy(u)= 172
(W2—1)"2+ la% exp —’f [(142u)Vu —1+Vu +12u —1)]
for Ting’s ABC, and
) . iBéw,
R, (r)=exp(—iw,7)exp(—1I'7) Py
1 [P(”nnz)—P(’“”nnz)] » [plny,ny)—p(—ny,ny)]
—B6 du | ,
fo (0, —wy—iBdw,u ‘i%l“) —Bdw Tu)du + f (0, —wy—iBdw,u —t‘I‘) exp(—Bdw,Tu)du
where (5.17)
1—7(ny,n,)
plny,ny)=—H—"""—

1+"_l(nl,n2)

and
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172
12 exp 4—_%’. +y %Sﬁ Vitu
f(£n,n,)= “2%] — i 2 172 )
V1tu +iyexp ?—4— 2% (142u)
172
172 exp - - % Vu—1
n(—n,,n, )= ?Bg] - i 3 72
Vu—1—iyexp 2 |12 (2u —1)

for Kiselev’'s ABC.

We evaluate R,(7) numerically for parameters ap-
propriate to CdS and CuCl crystals. The results are
displayed in Figs. 5 and 6 for various ABC’s, for the case
of exact resonance: wy,=w,. At a time 7=0, when the
trailing edge of the reflected pulse has just passed and
steady-state reflectivity has dropped to zero, |R,(0)|? is
about 0.01-0.1 % of the incident intensity, depending on
the choice of ABC. As 7 increases, |R(7)|? begins to de-
crease exponentially, but at about 7=1 psec a crossover
from an exponential to a slow power-law decay takes
place. The resulting tail shows that the on-resonance
nonlocal transient reflectivity persists for a few psecs
after the reflected pulse is cut off. The results are qualita-
tively the same for all ABC’s, but they differ quantitative-
ly, depending on the choice of ABC and the material.

Resonant enhancement of nonlocal transient
reflectivity is another remarkable feature and is illustrat-
ed in Figs. 7 and 8 for CdS and CuCl crystals. At fixed
time 7=0.1 psec, |R(®,)| is shown as a function of the
laser frequency w, in the vicinity of the exciton-resonance
frequency ®,. Enhancement of |R;(wy)|?> by a factor

Cds
.30 " .

.20

NL LOCAL TRANSIENT REFLECTIVITY. Ri( 7 )

.00

TIME © (psec)

FIG. 5. Time decay of the nonlocal part of transient
reflectivity |R,(7)| for various ABC’s for the case of exact reso-
nance wy=w,. The parameters for CdS are the same as in Fig.
3.

2-10 for various ABC’s is observed in a narrow frequen-
cy range.

The nonlocal part of transient reflectivity decreases
when the effective exciton-polariton mass m * is increas-
ing (or when the spatial-dispersion coefficient & de-
creases). In this case, CuCl curves are quantitatively
smaller in magnitude than the curves for CdS crystals,
because of the higher effective mass for CuCl crystals.
Especially, in the limit of infinite mass (local optics §=0),
nonlocal transient reflectivity vanishes. We now consider
the local part E; (7) modified by spatial dispersion.

VI. LOCAL PART OF TRANSIENT REFLECTIVITY

In this section we simplify the local part of transient
reflectivity E; (7) [Egs. (4.14) and (4.15)] following the
procedure of Sec. V and discuss various features numeri-
cally for CdS and CuCl crystals. For this purpose we
need to evaluate n,, n,, and n, at frequency
o=w,+po,u —iil. Using Egs. (A4)-(A6) to the lead-
ing order in §, we obtain

n,=+[at(a®—ep)'*]'?, (6.1

CuCl

.20

.10

NL LOCAL TRANSIENT REFLECTIVITY Rjy(7)

.00 - . - .

TIME z (psec)

FIG. 6. Time decay of the nonlocal part of transient
reflectivity |R,(7)| for various ABC’s for the case of exact reso-
nance wy=w,. The parameters for CuCl are the same as in Fig.

4.



8380

NL LOCAL TRANSIENT REFLECTIVITY R

0.00 et T
0.996
©

LASER FREQUENCY =

FIG. 7. Resonance enhancement of the nonlocal part of tran-

sient reflectivity | R ;(w,)| for various ABC’s at fixed time 7=0.1
psec. The parameters for CdS are the same as in Fig. 3.

n,=+(2a—¢)'?, (6.2)
where

o | S0 _pu 2 B 6.3)

2 8 8 (8%,)

and p =%/2¢,.
Substituting Eq. (6.3) in (6.1) and (6.2) and assuming
€,5%/2p << 1, we obtain

| 172
= |e [1—— , 6.4
n, €p u ( )
12 2
B u 1 | 8¢
=|2]|L +— | = 6.5
"2 ls P {1 2 | Bu | |7 63
172
B u
=|=1||— 6.6
n, 5 . (6.6)

Using Egs. (3.4) and (6.4)—(6.6) the effective refractive
index for each ABC is found to be given by

) 1/2
ﬁ(nl,nz): €p 1";
8¢,
X (14 | =2 (u~1>‘“2}, (6.7a)
Bu
12 2
aln,n,)= € 1——1- 1— ﬁ 1
12782 0 u B 2+ 860
u
B
1/2 8e, 2
ﬁ(_nl,nz):— € 1— - —ﬁ““
u’+

for Ting’s ABC, and
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NL LOCAL TRANSIENT REFLECTIVITY R

1.004

LASER FREQUENCY =2
5

FIG. 8. Resonance enhancement of the nonlocal part of tran-
sient reflectivity |R (w,)| for various ABC’s at fixed time 7=0.1
psec. The parameters for CuCl are the same as in Fig. 4.

) 1/2
n( — , —_ — 1___
n( n, nz) 60 ” ]l
b€
X |1— /5_0 (u—1)—‘/2] (6.7b)
for Pekar’s ABC,
) 172
n s ) = 1——
nlny,ny,n, )= |€ » ]
8¢
X 1+% —37°J<u—1>*‘/2}, (6.82)
) 172
o __ -1
al—ny,ny,n,) € ” ”
X 1—% ﬁl(u—l)*“z], (6.8b)
for Birman’s ABC,
ZI ’ (693)
S A (6.9b)
O¢€q
B
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172 2
_ _ 1 . .| %€ 1
A(ny,n,)= |€ |1—— 1+iy—iy |— 5 , (6.10a)
u B 24 8¢,
u —_9
B
12 2
_ _ 1 . . ey 1
a(—n,ny)=— | |1—— 1+iy—iy |— | ———35 | » (6.10b)
u B 24 S¢g
u 0
B
for Kiselev’s ABC.

Equations (3.3) and (6.7)—(6.10) are used to evaluate the integrands in Eqs. (4.14) and (4.15). By assuming (3/8)>>1

and using Eq. (4.18), E; (7) has the form

Re[E; (7)]=|R,(7)| sin(w,7—¢,) , (6.11)
where R,(7)=|R,(7)| exp[i¢,(7)] is given by
R, (r)=i expl —ia,r) exp(—1T7) | —22
J(r)=iexp(—iw,7)exp(—ilT req) /2
exp( —ipw,Tu) —y )12
% fldu pl —~po, . (u—u*) w |, 6.12)
0o (o, —wytpw,u—ill) (ep—1)
[
where for Kiselev’'s ABC.
2 | € 172 q Equations (6.12) show how the local part R,(7) of tran-
F(u)=1—— =2 (6.12a) sient reflectivity is affected by spatial dispersion. We first
B u 1— €1 " consider the case of exact resonance, at wy=w,. Figures
€ 9 and 10 show the time decay of |R,(7)| for parameters
, appropriate to CdS and CuCl crystals, respectively. By a
for Pekar’s ABC, solid line, we also show the corresponding curves ob-
€ 172 tained for a local medium (8§=0). A close look shows
F(u)=1-—§ il 1 (6.12b) that the effect of spatial dispersion reduces |R,(7)| and
Blu 1— €1 " damps out its variation with time faster than the local
€
for Birman’s ABC,
2
S cas
Fl=1— |2 S 050 ' ‘ ‘ '
B , . | €b ~
Rl e O
ﬁ é‘ 0.40
>
(egt+1) E
———u 2
X 2 (6.120) 5 o
(eg—1) &
1— u &
€o &
% 0.20
for Ting’s ABC, and =
€00 1 ;
F(u ) =1— it 5 § 0.10
B 2y €0
u el
B
0.00
(6, +1) 2iu
— —_— TIME 7 (psec)
x €o Y€ (6.12d) FIG. 9. Time oscillatory decay of the local part of transient
(eg—1) ’ reflectivity |R,(7)| for various ABC’s for the case of exact reso-
- c u nance wy=w,. The parameters for CdS are the same as in Fig.
0 3.
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FIG. 10. Time oscillatory decay of the local part of transient
reflectivity |R,(7)| for various ABC’s for the case of exact reso-
nance wo=w,. The parameters for CuCl are the same as in Fig.
4.

case (Elert’s result). The rate of oscillations depends on
the w;  (longitudinal-transverse) splitting of the material;
CuCl shows faster oscillatory behavior than CdS for the
same I'/w,, since for CuCl, w;t=5.7 meV, while for
CdS, o r=2 meV. When we compare Figs. 9 and 10
with Figs. 5 and 6, respectively, we note that |R,(7)|? is
larger than |R,(7)|? by about 4—10 times. Spatial disper-
sion reduces |R,(7)| for Pekar’s and Birman’s ABC (first
order in &), while |R,(7)| is almost close to local case
(6=0) for Ting’s and Kiselev’s ABC (second order in 8).
Resonant enhancement of local transient reflectivity is
shown in Figs. 11 and 12 for CdS and CuCl crystals. At
fixed time 7=0.1 psec, |R,(wg)| is shown as a function of
the laser frequency w, in the vicinity of the exciton-
resonance frequency w,. For comparison, we also show

LOCAL TRANSIENT REFLECTIVITY R;

. ] s
0.99 1.00 1.004
LASER FREQUENCY 52

Y

FIG. 11. Resonance enhancement of the local part of tran-
sient reflectivity |R,(wq)| for various ABC’s at fixed time 7=0.1
psec. The parameters for CdS are the same as in Fig. 3.
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LOCAL TRANSIENT REFLECTIVITY Rz

0.996 1.00 1.004

LASER FREQUENCY —2.
¥

FIG. 12. Resonance enhancement of the local part of tran-
sient reflectivity |R,(w,)| for various ABC’s at fixed time 7=0. 1
psec. The parameters for CuCl are the same as in Fig. 4.

the corresponding curves obtained for a local medium
(6=0). The peak of |R,(w,)| is now, at w;, instead of w,,
as it was in the case of |R(wy)|. A remarkable difference
between CdS and CuCl crystals is that the latter shows a
richer structure for |R,(w,)|; we observe in Fig. 12 that
for CuCl an additional local maximum at w, exists for all
ABC’s and local case, which cannot be detected for CdS
crystals. The difference lies in the different values of the
material parameters such as p, o,, and €,. Their com-
bination in Eq. (6.7) is more enhanced for CuCl crystals.
A physical explanation is given in Sec. VII.

VII. TOTAL TRANSIENT REFLECTIVITY

In Figs. 13 and 14 we give the time behavior of total
transient reflectivity |R;(7)+R,(7)| at resonance wo=w,
for CdS and CuCl crystals, respectively which shows the
combined effect of local and nonlocal parts. The total
reflectivity decays in a few psecs, but local part is
stronger and dominates. Oscillatory behavior is faster for
CuCl material than CdS because CuCl has larger 5 (os-
cillator strength) than CdS. Both material show damped
oscillatory behavior, but CdS has slower decay for the
same I'/w, and significant quantitative differences be-
tween different ABC’s compared to CuCl. So CdS can be
a good candidate to observe the time evolution of tran-
sient reflectivity. The oscillatory behavior in the local
part can be understood due to the fact that for small T
and fast cutoff time of the pulse, the response time of the
electric dipoles arises in a distinct way.’*~3? However, in
the case of the nonlocal part, we do not see the oscilla-
tions due to the finite effective exciton-polariton mass.
With increase of damping I' (for shorter relaxation
times), the reflected pulse energy dissipates through
damping process exponentially very fast without oscilla-
tions.

For fixed time 7=0.1 psec, around the vicinity of
exciton-polariton resonance w,, we plot total reflectivity
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CdS

TOTAL REFLECTIVITY [Ri(7)+R2(7)|

TIME = (psec)

FIG. 13. Time oscillatory decay of the total transient
reflectivity |R,(7)+ R,(7)| for various ABC’s for the case of ex-
act resonance wy=w,. The parameters for CdS are the same as
in Fig. 3.

[R(wq)+R,(wq)| versus laser frequency w, for CdS and
CuCl crystals, respectively (see Figs. 15 and 16). Spatial
dispersion reduces the total amplitude for all ABC’s,
while the local part still dominates. A remarkable result
for CuCl material is the combined effect of local and non-
local parts that enhances even more the double peak we
find for local transient reflectivity for all ABC’s and local
case (6=0). In contrast CdS material which does not
show any double peak for the local transient reflectivity
case now shows it only for Pekar’s ABC. Preliminary re-
sults for CdS (Ref. 33) assigned this double-peak behavior

CuCl

TOTAL REFLECTIVITY |Ry(7)+R2( )|

TIME t (psec)

FIG. 14. Time oscillatory decay of the total transient
reflectivity |R,(7)+ R,(7)| for various ABC’s for the case of ex-
act resonance wy=w,. The parameters for CuCl are the same as
in Fig. 4.
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TOTAL REFLECTIVITY [Ri+Ra|

0.00
0.996 1.00 1.004
LASER FREQUENCY :T"
FIG. 15. Resonance enhancement of the total transient

reflectivity |R(wo)+ R,(w,)| for various ABC’s at fixed time
7=0.1 psec. The parameters for CdS are the same as in Fig. 3.

to the specific form of Pekar’s ABC, but CuCl shows that
this qualitative behavior prevails for all ABC’s and even
for the local scale (§=0). A possible explanation for this
phenomenon could be the broader gap for CuCl
(wpt=5.7 meV) compared to the CdS case (wp =2 meV)
that permits one to see the richer structure of transient
reflectivity in the vicinity of w,. This structure could be
assigned to exciton-polaritons group velocity decrease in
the gap.>* Exciton polaritons are heavily damped in this
region, which slows down their motion. For this reason,
CuCl is a good candidate to investigate transient
reflectivity in the vicinity of w,.

VIII. CONCLUSIONS

We have carried out analytical and numerical calcula-
tions for the reflectivity of an EM pulse of durationT

TOTAL REFLECTIVITY |[R1+R2|

0.996 1.00 1.004

LASER FREQUENCY o2
;

FIG. 16. Resonance enhancement of the total transient
reflectivity |R(wo)+ R,(wo)| for various ABC’s at fixed time
7=0.1 psec. The parameters for CuCl are the same as in Fig. 4.
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from a spatially-dispersive semi-infinite medium for the
case of normal incidence. We investigated the role of
different ABC’s on the steady-state reflectivity and tran-
sient reflectivity. Especially, in the time domain, after
the pulse cutoff, the medium continues emitting energy in
damped oscillatory form for the case of long relaxation
times (small I'). Different ABC’s influence the decay pro-
cess in different quantitative ways, especially for laser fre-
quency w, very close to the exciton-polariton resonance
frequency w,, where spatial-dispersion effects are dom-
inant. In the frequency domain, the transient-reflectivity
amplitude shows double peak at w, and w;, for some or
all ABC’s depending on the choice of material.

Our results are obtained under certain simplifying as-
sumptions. The finite-length crystal is replaced by a
semi-infinite nonlocal medium. Furthermore, we have
simplified our calculations by assuming dimensionless pa-
rameters 8= (#iw,/m*c?)'?, p=p2/2¢, T'/w, to be
small. , For CdS and CuCl crystals each of them is
<107°.

Measurements of predicted features of transient
reflectivity can provide independently determined values
of important exciton-polariton values such as mass, life-
time, oscillator strength, w,, and w; plus an experimental
verification of the “true” ABC for CdS and CuCl crys-
tals.

In reality, experiments are designed for oblique
geometries. An extension of this analysis for oblique
transient reflectivity for various ABC’s will be presented
in a subsequent paper.*’

Note added in proof. Numerical analysis for Gauss-
ian picosecond pulses at normal incidence and at
Brewster’s angle was reported by J. Aavishoo, J. Lipmaa,
and J. Kuhl [J. Opt. Soc. Am. B 5, 1631 (1988)]. To our
knowledge, the first experimental verification for tran-
sient reflectivity of picosecond Gaussian pulses for spa-
tially dispersive media (GaAs) was reported by J. Aav-
ishoo and J. Kuhl (unpublished).
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APPENDIX: CONTOUR-INTEGRATION METHOD
TO EVALUATE THE REFLECTED FIELD
[EQ. (3.6)]

In this Appendix we outline the algebraic details to
evaluate the integral in Eq. (3.6) in the complex w plane
for t =2L /c. It is helpful to break the integral in two
parts arising from each term in the curly brackets:
{1—exp[i(w—wy)T]}. The first part contributes for
t >2L /c while the second part contributes only for
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t >2L /c +T. Equation (3.6) can therefore be written in
the form

Erp(t)=Re[E(t —2L /c)O(t —2L /c)
—exp(—iw,T)E(t —2L /¢ —T)

XO(t—2L/c—T)], (A1)
where
E(n=1im [ "7 f(n),ny)do (A22)
7—0 Y —x
for the ABC’s of Pekar, Ting, and Kiselev, and
E(m=1lim [ 7 f(n,nyn,)do (A2b)
n—0 Y —
for Birman’s ABC, while
f(ny,ny) _ 1 plw) .
flnynyn ) |7 27 wy—w—in exp(—ior), 7>0.
(A3)

For notational convenience, we have explicitly shown the
dependence of the integrands f(n,n,) and f(n,n,,n,)
on the refractive indices n,, n,, and n, [see Eq. (3.3)]
and the o dependence is implicitly understood.

The choice of the appropriate contour depends on the
singularities of f(n,n,) and f(n,n,,n ). For this pur-
pose we require an explicit form of n,, n,, and n,. Us-
ing Eq. (3.2) in (3.5), we obtain

ny=+[at(a®—eh) 7?2, (A4)
n,=+2a—¢)"?, (AS)
a =(2w%8) [ ?8*+(w?*—0?—iol)] ,
(A6)
BPw?
b =(0?8)"! [(0®*—0?—iol)— ,
€
where
20}
2 — 2 ’
—(47Ta0), 8 - m*cz

An examination of Eq. (A4) shows that the conditions
b =0 and a?=¢yb correspond to the branch-point singu-
larities in f(n,,n,). A further examination in Eq. (AS)
reveals an additional condition 2a =¢, which corre-
sponds to the branch-point singularities in f(n,n,,n ),
in addition to the two previous ones.

Using Eq. (A6), the first two complex conditions yield
six branch points (in the complex » plane) w;, j =1-6,
whose location is given by Egs. (4.1)-(4.3), while all
three conditions yield eight branch points o;, j=1-38,
whose location is given by Egs. (4.1)-(4.4). So, the main
difference between f(n,,n,) and f(n,,n,,n,) is the
number of branch points for each one.

The branch points w; and w, arise from the condition
b =0. Around these points the integrands f(n,n,) and
f(ny,ny,n,) are made single valued by going to the
Riemann sheet on which n;— —n; and n,,n, remain
unchanged.

The branch points w;, w,, ws, and wg arise from the
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condition a?>=¢b; on the corresponding Riemann sheet,
n, and n, are interchanged (n, —n,) and n . remains un-
changed.

The branch points w5 and wg arise from the condition
2a =g; in this case, f(n,n,,n ) is made single valued
by going to the Riemann sheet on which n , ——n_ and

]
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n,n, remain unchanged.

The appropriate contours to evaluate Egs. (A2) and
(A3) are shown in Figs. 2(a) and 2(b) and contain only a
single pole at w =w,— i7 for both cases.

A straightforward application of Cauchy’s theorem
shows that

+ o0 @1
$ f(nyndo= [ "7 fny,npde+ [ 1f(ny,ny)=f(=nyny)ldo
Rew;—io :
+ f —nyn ) —f(n,ny)ldo+ f Lf(—np,ny)—f(n,ny)ldo
Rew4 ioo
+ f [f(ny,ny)—f(—ny,n)]ldo=2mi Res, (A7)
and
+ @1
$ fln,nyn,)do= f_ fpngndo+ [ fln,n,n )= f(=nj,ny,n ., )ldo
Rew;—iow ’
+ f —nyny,—ny)—f(n,ny,ny)lde
+ fw7 f("1,n2,n+)“f(—nl,nz,n+)]da)
g
+ f f(=npny,—ny)—f(ny,nyn,)lde
Rew4—1w
+ f [f(ny,nyn ) —f(—nyn,—n,)]ldo
+ fw [f(=ny,ny,n )= f(ny,ny,n ) ldo=2mi Res, , (A8)
8
I
where Res|,Res, represent the residues of f(n,,n,) and g'(@)=[f(—ny,n)—f(n n,)], (A13b)
f(ny,n,y,n ) at the pole w=w,— i, respectively. Using _ "
Egs. (A2) and (A7) or (A8), we formally decompose E (7) gl@)=Lf (=nyng, —n )= fny,nan )l (Alda)
into a steady state (pole contribution) and the transient g (0)=[f(—n,,nyn )—f(n,n,n,)], (A 14b)
(branch-point contribution) parts,
"(w)=[f(—ny,n,—ny)—f(n,n,,n,)]. (A14c)
E(r)=Eg(r)+Ep(r) (A9) g Lf 21 +)=f(ny,nyn )]
, We have found it useful to further decompose the tran-
where sient part E(7) into a “local” part and a ‘“nonlocal”
Eg(1)=—ip(wy) exp( —iwgT) (A10) part. This facilitates comparison .vsfith a logal mgdiun? for
which the nonlocal part, by definition, vanishes identical-
for all ABC’s and ly. Such a decomposition can be carried out by noting
@, o, for f(n,,n,) that for a local medium the branch-out line
Ep(r)= fﬂ’a glw)do— fw4 glw)de (joining @, and w3) in Fig. 2(a) is horizontal. For the case
Rewn—i ] of f(n,,n,,n, ) the branch-cut line (joining w, and )
- f 3T g'(0)do+ fRe“’4_‘°°g,(w)dw in Fig. 2(b) shrinks into the point w,;. This can be easily
@3 @ verified using Egs. (4.1), (4.2), and (4.4) with §=0. We
(A11)  then formally obtain
for the ABC’s of Pekar, Ting, and Kiselev, Er(n=EL(T)+Ex.(7) (A15)
fw, f wg for all ABC’s, while
Ep(1)= g (w)dow— g (w)do ©, o,
w = —_—
Rew;—iw Rew,—iw EL(T)— fRew3+iImwlg(w)dw fRew4+iImw1g(w)d(o ’
- f g"(w)dw+ f g w)dw (A16)
Rew;+iImo, Rew, +iImo,
+ fw7 g2(0)do— fw8 g:(0)do Aa12)  Enu(n= [ glodo— [ glo)do
for Birman’s ABC, while — fRew3_m "(w)dw+ fRew"_m g (o ,
. @y
glw)=[f(—n,ny)—f(ny,n,)], (A13a) (A17)
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for the ABC’s of Pekar, Ting, and Kiselev, and

@9 @
E (1)= (w)dow— Mo, A18
(T fw7 glw)o fws g w)do ( )
Exu(0= [ 'gi(@Mdo— [ "g (@)
(03 (04
Rew,—iwo Rew,—io
— f } g'"w)dw+ f ! g'"(w)dw
(A19)
for Birman’s ABC. We not substitute E =FE;
+E; +E\,in Eq. (A1) and obtain
ER(0,t,00)= Re[Eg(t)+E; (1) +E . ()], (A20)
where
Eg(t)=ip(wy)[O(t —2L /c)—0O(t —2L /c —T)]
Xexp[ —iwg(t —2L /c)] , (A21)

E,(r)=po, [folg(a),-f-pw,u—i%r)du-i- folg(—a)t+pa),u —igr)du] ,
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E‘T(t)=[Ej(t —2L /c)O(t —2L /c)
— exp(—iwT)E;(t —=2L /c —T)
XO(t—2L/c—T)}],

with j=NL or L.

The evaluation of Eqgs. (A16)-(A19) can be simplified
by noting that in most cases of practical interest the three
parameters 8, p, and I' /w, are much smaller than unity
(<1073). We are therefore justified in neglecting their
products and higher powers. The branch points ; given
by Egs. (4.1)—(4.5) then simplify into the Egs. (4.6)—(4.9).

Again as a reminder, we have defined p =/%/2¢,
=2may/€y and physically p =(w,—w,)/w,, where
w;—w, is the so-called longitudinal-transverse LT split-
ting.

f%m appropriate change of variables permits us to
rewrite the expressions in Egs. (A16)-(A19) in the follow-
ing simplified form:

(A22)

(A23)

Eyy(1)=iB50, [ fo‘g(w,—iﬁaw,u —i1P)du — fo‘g<—w,—ir35w,u —ilT)du

+ 780~ ifsou —itDidu — [ *g'(—o,~ifsw,u ~t}F)du} :

for the ABC’s of Pekar, Ting, and Kiselev, and

E, (1) =po, [folgz(a),—l—pa),u —iil)du + folgz(—-w,+pa),u —z'%F)du] ,

(A24)

(A25)

Eny (1) =iB80, [folgl(w,—i[)’Sw,u —i1D)du — folgl(——a),—i/}&w,u —i1T)du

+ floog"(w,—iBSa),u —ilD)du — flwg”(—wt—iﬁﬁa),u —zgr)du] ,

for Birman’s ABC.

(A26)
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