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Transient optical re8ectivity from bounded nonlocal media: Normal incidence
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The reAection of a finite-duration optical pulse from a semi-infinite nonlocal medium for various

additional boundary conditions (ABC s) is investigated theoretically. We have obtained explicit ex-

pressions for the amplitude and phase of the transient reflected field (local and nonlocal) and evalu-

ated them numerically for difFerent ABC' s. We predict a damped oscillatory decay in transient

reAectivity (after the pulse is cut off) due to relaxation processes which cause dephasing of emitted

light on a scale longer than the cutofF time of the pulse. The eFects of spatial dispersion for the
reAected transients associated with the light pulse are important for the laser frequency at the vicin-

ity of an exciton-polariton resonance. For various ABC' s, for the cases of CdS and CuC1 semicon-

ductors, we find quantitative diFerences in the magnitude of the amplitude of the transient. This
can be used to analyze diFerent ABC's experimentally.

I. INTRODUCTION
Propagation of an electromagnetic (EM) wave in a

bounded nonlocal dielectric medium has attracted much
attention in recent years. ' Because of spatial dispersion,
the dielectric function e(co, k) has wave-vector depen-
dence. This leads to more than one plane wave propaga-
ting inside the medium when a single plane wave is in-
cident. One thus needs additional boundary conditions
(ABC' s) in addition to Maxwell boundary conditions in
order to solve the reAection and transmission problem
from a nonlocal medium. In semiconductors, such as
CdS, CuC1, GaSe, GaS, etc. , the effects of spatial disper-
sion become very important near the exciton resonance
co, . Their study in various optical processes, such as
reAection and transmission or Raman and Brillouin
scattering, may thus provide valuable information about
exciton parameters.

Instead of steady-state wave, finite pulses can give ad-
ditional information about spatial dispersion. For exam-
ple, for EM pulses of finite duration the transient effects
give rise to precursors in the transmission regime. For
the local medium, the well-known Sommerfeld and Bril-
louin precursors are present, while spatial dispersion
gives rise to a third precursor, namely the exciton precur-
sor. Transient optical transmission has been investigat-
ed only when the light pulse has well-defined boun-
daries. Reflection from -a nonlocal interface has only
been studied in the steady-state regime for various angles
of incident light and for various additional boundary con-
ditions (ABC' s). " Transient reAectivity from a local
frequency-dispersive dielectric was considered by Elert
more than 50 years ago, and more recently by Eilbeck,
Fauchet, and Branis, ' while generalization to nonlocal
media was reported for the first time for normal light in-
cidence in the case of Pekar's ABC. '

The purpose of this paper is to provide a detailed
analysis of the effects of spatial dispersion on transient
reAectivity, for various ABC' s. When an electromagnetic
pulse of finite duration T is incident on a nonlocal inter-

face, the reAected field consists of the steady-state signal
(of duration T) and transients arising from both the lead-
ing and the trailing pulse edges. Experimentally, it may
be more convenient to look for trailing-edge transient
reAectivity, since steady-state reAectivity wi11 then not in-
terfere with measurements. For long pulses (T greater
than a few psec), transients from the two edges will be
essentially decoupled and can be measured independent-
ly. In our case, we consider an incident square pulse and
obtain expressions for steady-state and transient
reAectivity for various ABC' s. The results show that the
transient reAectivity consists of a "local" part and a
"nonlocal" part. We obtain expressions for local and
nonlocal parts, respectively, to show the differences
among the ABC' s, especially close to the exciton-
polariton resonance frequency ~I, where spatial-
dispersion effects are enhanced. We propose that by
measuring the total transient reAectivity, it is possible to
decide about the "true" ABC for the material. The local
part is on the average larger than the nonlocal part at
fixed time, especially close to longitudinal frequency co&,

while the nonlocal part is enhanced at ~, . The time oscil-
latory decay of both parts is also obtained, at fixed fre-
quency. We show different oscillatory decay rates for
both parts and for different ABC' s. The magnitude of
transient intensities should permit an experimental mea-
surement.

The plan of the paper is as follows. In Sec. II, a review
of the different ABC's is given with a discussion of the
basic assumptions that underlie them. In Sec. III, an in-
tegral representation for the reAected field is obtained, by
using Fourier analysis in the time domain, for semi-
infinite nonlocal medium. Using a contour-integration
method, expressions for the steady-state and transient
parts of the reAectivity are obtained in Sec. IV. Sections
V and VI deal with the "nonlocal" and "local" parts of
transient reAectivity, respectively. Detailed numerical re-
sults are presented for parameters appropriate to CdS
and CuC1 crystals. The results for total transient
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reAectivity are discussed in Sec. VII, while in Sec. VIII
we summarize our results. Necessary mathematical de-
tails are presented in the Appendix.

II. REVIEW OF DIFFERENT ABC'S (REF. 14)

(2.1)

with —co0, b, I,a being coefficients and the macroscopic
field E(r, t) acting as a driving force on the exciton polar-
ization. For harmonic plane-wave propagation in the
medium in +z direction (normal incidence), Eq. (2.1)
leads to a macroscopic constitutive relation for P,„,(r, t):

P,„,(k, co) =y,„,(k, a))E(k, co)

with

(2.2)

Simultaneously with the prediction of the existence of
additional waves in spatially dispersive media, the need
for more than the usual Maxwell boundary conditions
was realized.

In his first paper, Pekar' discussed a quantum-
mechanica1 approach to obtain an ABC. He proposed
that in the nonlocal medium the exciton polarization
P,„,(r, t) satisfies the equation of motion

—co + +bV +I —P (r, t)=aE(r, t),2
a'

2 a
0 Bt

BP,„,(r, t)
P,„,(r, t)+ A

Bz
(2.7)

where Pekar's ABC is a particular case (A =0). Fuchs
and Kliewer' derived a similar result for the optical
properties of a semi-infinite electron gas; the connection
between their approach and that of ABC's was elucidated
by Johnson and Rimbey. ' Kiselev' gave a more explicit
expression for 3 =pc/co, where y is some phenomeno-
logical constant or function of frequency. In terms of
electric fields, Eq. (2.7) is written as follows:

BP,„,(r, t)
+ik+ P,„,(r, t) =0

az + exc (2.9)

or

(1+iyn, )(ni ep)Ei+(1+ii n2)(nz ep)E—2=0 .

(2.8)

Birman and Sein, Maradudin and Mills, ' and
Agrawal et al. independently used Maxwell equations in
a phenomenological way to propose a different ABC.
Their contribution was based on the fact that by choosing
a nonlocal susceptibility model, an ABC can be derived
through either an integral or differential equation formal-
ism of electrodynamics for nonlocal media, without any
additional assumption. By using Eq. (2.4) (dielectric ap-
proximation) the result for an ABC is

0!

(cop+ bk cu i I—cu)— (2.3) n, —n+ n2 —n+
=0 (2.10)

or by adding a background term:

y(k, co) =yp+y, „,(k, co) . (2.4)

with

CO
k =n+ + c

( co co& + l col ),
Ace,

(2.1 1)

Equation (2.1) was solved subject to a boundary condi-
tion:

P,„,(r, t) ~x=0 (2.5)

or

(n, —ep)E, +(n~ —ep)E~ =0, (2 6)

since the polarization vanishes outside the medium, while
X is the boundary of the medium at z =0. In Eq. (2.6),
n&, n2 are the complex indices of refraction for the two
propagating modes while e0 is the dielectric constant of
the background. The boundary condition in Eq. (2.5) is
not a mathematical consequence of the assumed suscepti-
bility, but an assertion imposed by Pekar to complete the
solution of Maxwell equations in the presence of spatial
dispersion.

A few years later, Hopfield and Thomas' took up the
ABC problem. Following somewhat along the lines of
Pekar's paper they introduced the equation of motion as
in Eq. (2.1) and analyzed a quantum-mechanical model
which would give a Schrodinger eigenfunction for the ex-
citon. From this eigenfunction they deduced the needed
ABC (imposing a restriction that the exciton wave func-
tion should vanish on the surface of the medium) using a
classical correspo'ndence. The new ABC had the form

%'k(r, co) =6(z)[ exp(ik, z)+R,„,exp( ik,z)]—
X exp(ik~~ r), (2.12)

where 8„, is the exciton reAection coefficient. For
R„,=O, one obtains exactly the Birman-Sein ABC Eq.
(2.10). The physical meaning of the zero exciton
reAection coefficient corresponds to the translationally in-
variant susceptibility or dielectric approximation. For
R,„,= —1, this corresponds to Frenkel or tight-binding
excitons, which are totally reAected by the crystal sur-
face. In this case, the relative electron-hole motion is not
affected by the process. One can obtain Pekar's ABC Eq.
(2.5) for yp=0. The last case, R,„,=+1, corresponds to

where m* is the effective exciton-polariton mass, cu, is
the transverse exciton angular frequency, I is a phenom-
enological damping coristant, and n+ is the refractive in-
dex for the lower polariton mode for co&&m, . This ap-
proach is totally macroscopic.

Zeyher et a$. gave a microscopic determination of
ABC' s. The fundamental assumption about the physics
of exciton-polariton reAection at the crystal surface de-
cides for the different ABC' s. The wave function for the
exciton-polariton center-of-mass motion is approximated
as follows:
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Wannier excitons case. This case was treated first by
Ting et cil (.1975) (Ref. 24) and one obtains a new ABC
(Ting's ABC):

YACUUM NONI OCAL
MEDIUM

(2.13)

of

i( &
p'}Ei +nz(n 2 ep%2 0 . (2.14) D

III. INTEGRAL REPRESENTATION
FOR THE REFLECTED FIELD

z=a

Vfe consider a semi-infinite nonlocal medium occupy-
ing the half-space z &I. with z (I. being vacuum (see
Fig. 1). A detector is placed at z =0. We assume that a
normally incident laser pulse corresponds to a linearly,
polarized, monochromatic plane-wave field. For a square
pulse of unit intensity and duration T at frequency ~0,
the electric field at the plane z =0 is given by

INTENSITY
sk z=L

EI(O, t) = sin(copt)[6(t} —6(t —T)], (3.1)

where 6(t) is the Heaviside step function.
For laser frequency near the exciton resonance, the

coupling of an exciton state to a photon produces an exci-
ton polariton. Spatial dispersion or the nonlocality of the
medium corresponds to the center-of-mass motion of the
exciton polariton. A generahzed classical Lorenz oscilla-
tor model takes for dielectric function

2Ltc 2L/c+ T

FIG. 1. Schematic illustration of the geometry and the nota-
tion used. At time t =0, a square pulse of duration T is emitted
from the plane z =0 where a detector is placed to monitor the
reAectivity. For 2L/c & t &(2L/c+ T) the steady-state signal
is detected and for ~=t —2L/c —T~O the transient signal is
detected.

e(k, co) =ep+4vrg(lc, co)

4mao~r2

Z 2
co, —co icol +—(fico, /m*)k

(3.2)

1 —n (co)
p(co) =

1+n (co)
(3.3)

where n(co) is the effective refractive index of the nonlo-
cal medium and for different ABC's has the following
forms.

For Pekar,

n]n2+&0
n(co) =

n] +n2
(3.4a)

where eo is the backround dielectric constant, ao is the
oscillator strength, m * is the effective exciton-polariton
mass, co, is the transverse exciton-polariton frequency,
while I is a phenomenological damping constant which
has been taken constant in the vicinity of co, . In reality,
for CdS (Refs. 25 and 26) and CuCl (Ref. 27) crystals, I
depends on the frequency. Expression (3.2) produces a
translationally invariant real-space dielectric function
e(r r', co) after —Fourier transformation.

For normal incidence, the amplitude reflection
coe%cient is given by

for Birman,

n(co) =n, +nz n+, — (3.4b)

for Ting,

niilz(iii +nz )
n(co)=

(n', +nz+n, nz) —ep

for Kiselev,

Ep+ninz+l1 ninz(ni+nz)
n(co) =

n, +nz+iy(nzi+nzz+n, nz —ep}
'

and n „n2 are the solutions of the implicit relation

n =+[a(k,co))'~, k, =n co/c, j=1,2 .

(3.4c)

(3.4d)

(3.5)

Because of the linearity of the problem, we may time
Fourier analyze Eq. (3.1) and treat each frequency com-
ponent by dispersion theory. The reflected field is ob-
tained as a superposition of the reflected components and
can be written as the frequency integral

E„(O,t, cop)= lim Re f dco I 1 —exp[i(co cop)T]I exp ico t ———+ p(co) 21.
g ~0 2& —oo COO CO l 'g C
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where the time delay 2L/c corresponds to a round trip
between z =0 and z =L.

co5 6=i (P5co, ——,
' I )+co, ,

c07 g
= l

2
I +co)

(4.8)

(4.9)

IV. STEADY-STATE AND TRANSIENT
REFI.ECTIVITY

[ 2= —'
—,'I +, 1+

6O

I I 2
4 (4.1)

co =(1—5 e ) 'I —i( —,
'I"+P5co, )

+[co,(1—5 eo)

—(P5co, + —,'1 ) ]' (4.2)

The reflected field, in Eq. (3.6), can be separated into
steady-state and transient parts, after removing the har-
monic time dependence exp( i co—t) Th.e steady-state part
gives rise to a reflected pulse (of duration T) whose lead-
ing and trailing edges contain the rapidly-time-varying
transient contributions. The integral in Eq. (3.6) is evalu-
ated in the complex co plane using the method of contour
integration. Using Eq. (3.3) in Eq. (3.6), the integrand is
found to have the following singularities which are the
same for all four ABC' s: (i) a simple pole at coo ig—, (ii)
four branch points co (j =1,4) in the lower half-plane,
(iii) two branch points co5 and co6 in the upper half-plane.
All six branch points correspond to branch-point singu-
larities of the complex functions n, (co), n2(co). (iv) For
Birman's ABC, there are two additional branch points co7

and co~ in the lower half-plane, corresponding to the
branch-point singularities of the complex function
n+ (co).

The explicit expressions for the location of these
branch points are obtained using Eqs. (3.2) and (3.5) and
are given by (see details in the Appendix)

]/2

Etc(0, t, coo)= Re[E~(t)+El (t)+ENL(t)] . (4.10)

The simple pole at cop-l q contributes to the steady-state
reflected field Es(t). The four branch points (or the six
ones for Birman's ABC) contribute to the transient
reflected field which consists of a local part EL (t) and a
nonlocal part ENi (t). Although E&(t) and E&(t) both
are affected by spatial dispersion, ENi(t) arises solely
from it and vanishes as 5~0 (m' —+ oo). Further, in the
limit of 5~0, Ez(t) and EL (t) reduce to the previously
obtained results. ' We now consider the steady-state and
transient parts of the reflected field separately.

A. Steady-state re8ectivity

Using Eq. (A21) from the Appendix, Es(t) is given by

For t &2L/c we close the contour in the upper half-
plane which is chosen so as to exclude the branch-cut line
joining cu5 and co6. An evaluation of the integral in Eq.
(3.6) shows that the branch points co5 and co6 contribute in
such a manner that Ez(t (2L/c)=0 as required by
causality.

For t ~2L/c, we close the contour in the lower half-
plane. The four branch points co& 2, cu34 for the case of
the ABC's of Pekar, Ting, and Kiselev and the six branch
points ~, 2 c034 co78 for Birman's ABC are joined by
branch-cut lines and the resulting contour for both cases
is shown in Figs. 2(a) and 2(b). Evaluation of the integral
in Eq. (3.6) is lengthy, although straightforward. Alge-
braic details are presented in the Appendix. Here we
note that the reflected field is found to consist of three
parts [see Eq. (A20)]:

co5 6=(1—5 eo) '[i(P5co, —
—,'I )

+[co,(1—5 eo) Es (t) = i p(coo)—exp i coo t —— (4. 1 1)

—(
—P5co, +—,'I ) ]' I, (4.3)

7 8= ——+( ', ——,'I ')' ',
i

(4.4)

where

p=(4ira )', 5=
1/2

Ace,

I c
(4.5)

Note that the dimensionless parameter 5 is a measure of
the extent of nonlocality of the medium (spatial-
dispersion coefficient). We also assume I (2p5co„ i.e.,
we exclude very heavily damped exciton polaritons.

One can simplify Eqs. (4.1)—(4.4) by noting the fact
that for most materials like CdS, CuC1, GaSe, and GaS,
the parameters 5=(irico, /I *c )', p =p /2eo, and I /co,
are small ( ~10 ), so that it is sufficient to retain only
lower order terms in 5, p and I /co, . Thus we obtain

B. Transient rehectivity

Transient reflectivity consists of a "local" part and a
"nonlocal" part:

Er(t) =EL (t)+EN„(t), (4.12)

for all ABC's for 2L/c ( t & (2L/c + T) and zero other-
wise. After an initial delay, a reflected square pulse of
duration T arrives at the plane z =0. In Figs. 3 and 4 we
have shown the reflectivity ~RO~ = ~p(coo)~ as a function
of ~o/co, in the vicinity of exciton-polariton resonance
for parameters appropriate to CdS (Ref. 13) and CuC1
(Ref. 27) crystals, for all ABC' s, respectively. Reflectivity
for a local medium (5=0) is shown by a solid line for
comparison. We notice that the main effect of spatial
dispersion is to reduce the reflectivity peak height for all
ABC's but more drastically for Pekar's and Birman's
ABC.

co, ~= i ,'I +co, (1—+p—),

co3 4= i ( ,'1 +P5—co, )—+co, ,

(4.6)

(4.7)
where the "local" part is what remains in EL(i ) when
5—+0, and from Eq. (A22)
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Z (t)=[E (t —2L/c)e(t —2L/c)
—exp( i c—ooT)E (t 2—L /c —T)

Xe(t 2L—/c —T)] (4.13)

for j=L and NL and EL (r) and ENL(v. ) are given by
Eqs. (A16)—(A19). The two terms in Eq. (4.13) corre-
spond to transients arising from the leading and trailing
pulse edges, respectively. If the pulse duration T is
longer than the effective time during which transients
significantly contribute, leading-and trailing-edge tran-
sients will not interfere and can be considered indepen-
dently. Up to a constant phase factor, transients from
both edges are identical in form and magnitude and are
governed by E.(r). Experimentally, it may be more con-
venient to look for trailing-edge transients which appear
just after the reflected pulse is cut off at t =2L/c+T.
Using Eqs. (A3) and (A12) in Eq. (A23), the local part of
the transient refj.ectivity is found to be given by

6C

Re(co j

@co,
EL (r) = exp( ice, r—) exp( —

—,'I r)

~ [p(n„n2) —p( n&, n—z)]
0 (co, —coo+p ( co, ~

u —i—,
' I )

X exp( ipco,—ru )du+ . (4.14)

for the ABC's of Pekar, Ting, and Kiselev, and by using
Eqs. (A3) and (A14) in Eq. (A25),

pc@,
EI (r) = exp( iso, r) ex—p( —

—,'I r) Re(co )

~ [p(n„nz, n+) —p( —n„n2, n+)]fX
0 (cot coo+@~cot ~u 1

2
I )

X exp( ipro, ru —)du+ (4.15)

for Birman's ABC where the ellipsis represents a similar
expression obtained by co, ~—co, . Here, dependence of
p(co) on the refractive indices n, and n2 plus its depen-
dence on n+ for Birman's ABC is explicitly shown and
n „n2, and n+ are to be evaluated at frequency
co=co, +pro, u i ,'I A—s —a. reminder, p =2maoleo
—(Ci)~ COt )/CO&.

It is easy to verify that Eqs. (4.13) and (4.14) reduce to
Elert s result in the limit of infinite exciton mass 5~0.
This follows by noting that when 5~0, n =n& for all
ABC's and the term in square brackets in Eqs. (4.13) and
(4.14) reduces to 4n, /(1 n, ). — —

The nonlocal part is given by Eq. (A24) which together
with (A3) and (A12) becomes

FIG. 2. (a) Schematic illustration of the contour in the com-
plex co needed to evaluate the rejected for Pekar, Ting, and
Kiselev's ABC. A pole at co—i g and six branch-point singulari-
ties co, , j =1 to 6 give rise to the steady-state and transient
reAectivity, respectively. (b) Schematic illustration of the con-
tour in the complex co plane needed to evaluate the rejected for
Birman's ABC. A pole at co —i g and eight branch-point singu-
larities co, , j=1 to 8, give rise to the steady-state and transient
reAectivity, respectively.

i/Nco,
ENL(r) = exp( i cu, r) exp(———,

' I r) 2'
[p(n„n2) —p( —n„n2)]

~ ~

[p(n „n2 ) —p( n2, n, )]-
exp( —P5i co, iru )du + (4.16)
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for the ABC's of Pekar, Ting, and Kiselev, and from Eq. (A24) with (A14) and (A3)

t P5co,
ENL(r) = exp( i—co,r ) exp( ——' I r)

2m.

] [p(n], n2, n+ )
—p( n],—n2, n—+ )]f, exp( P—5~co, ~ru)du+

[p(nt, nz, n+ )
—p( n—2, n „n+—)]+, exp —6 co, ~u du+ .

1 (cot coo t 5 Alt u t2 I (4.17)

for Birman's ABC where the ellipses represent a similar
expression obtained by co, ~—co, . Here, dependence of
p(co) on the refractive indices n, and n2 plus its depen-
dence on n+ for Birman's ABC is explicitly shown and
n i, n2, and n+ are evaluated at frequency
co=co, iP5co—, u i ,'I —N—ote. that ENL(t) is proportional
to the spatial-dispersion parameter 6 and vanishes for the
case of local medium in the limit of infinite exciton mass
(5=0).

Equations (4.13)—(4.17) give the total transient
rejected field associated with a square pulse of duration
T. In the following, we focus our attention on transients
arising from the trailing pulse edge and set
w= t —2I. /c —T. For T & a few psec, leading-edge tran-
sients would die out before the trailing edge of the pulse
arrives and therefore

I

(4.14) and (4.15), and the last two terms in Eqs. (4.16) and
(4.17) will not contribute significantly and henceforth will
be neglected. It may be noted that these terms arise from
the branch points lying in the third quadrant of the com-
plex co plane [see Figs. 2(a) and 2(b)]. In the next two sec-
tions we consider the nonlocal and 1ocal parts of transient
reAectivity separately.

V. SPATIAL-DISPERSION-INDUCED
TRANSIENT REFLECTIVITY

In this section we simplify the nonloca1 part of tran-
sient refiectivity [Eqs. (4.16) and (4.17)] and discuss vari-
ous features numerically. For this purpose we need to
eva1uate n, , n 2, and n + at frequency co =co,

i f35', u— i ,' I —U—sin. g Eqs. (A4) —(A6) to the leading or-
der in 6 we obtain

E (r) = —exp( i cooT)E —(r), (4.18)

where ~)0 and j =I. and NL.
Since the transient e6'ects are expected to be important

only in the immediate vicinity of an exciton-polariton res-
onance, we shall assume that the laser frequency coo=~, .
Under near-resonance conditions, the second term in Eqs.

eo ipua
2 5

132b=-—
(eo5 )

—+ [a+( 2 ~ b)1/2]1/2

n+ =+(2a —eo)'

where

(5.1)

(5.2)

(5.3)
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FIG. 3. Resonance enhancement of steady-state reAectivity
~RO~ which persists for 2L/c & t(2L/c + T). The parameters
are chosen appropriate to a CdS crystal with E'p=8 i6co, =2.55
eV, m*=0.9m„ I /co, =5X10 ', P =0.0125, and y=10
For comparison each curve is represented by an ABC as fol-
lows: Local optics, ; Pekar, ~ - - .; Birman,
T ging —.—- —' Kiselev —-gt

FIG. 4. Resonance enhancement of steady-state reAectivity
~RO~' which persists for 2L/c &t &(2L/c+T). The parame-
ters are chosen appropriate to a CuCl crystal with ep=5. 59,
Ato, =3.2022 eV, m =2.3m„ I /co, =5X10 ', P'=0.0199, and

y = 10 '. For comparison each curve is represented by an ABC
as follows: Local optics, ; Pekar, - ~;Birman, ———;
T g~ng ——- —. K&selev-g)
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Substituting Eq. (5.3) in (5.1) and (5.2) and assuming
F05/2p((1, we obtain

1/2

l&
n( —nz, n, )= exp

1/2

(u —1) ', (5 9c)

7l = l1

iO
exp

2
(5.4) for Pekar's ABC,

n 2

1/2
i8

exp
2

(5.5)

1/2
2Pn( n), np, n+)= exp — (v'1+u —v'u ),4

(5.10a)
for 0 ~ u & 1, where 0= sin 'u and

' 1/2 n( n„n—~, n+—)=
1/2

exp
4

exp
l IT Z

4 2
exp (5.6)

X(i&1—u +&u ), (5.10b)

n 2 exp
l 'lT . Z

4 2
exp (5.7) 2Pn( —nz, n&, n+—)=

1/2

exp 4
for u ) 1, where u = coshz, while X( —&u —1+&u ) (5.10c)

1/2

exp
l '|7

4
(5.8)

n(n„nz)= exp

l ITn( n„n—z)= exp

' 1/2

(1 u)
—1/2

25
(5.9b)

for every u ~0.
Using Eqs. (3.4) and (5.4) —(5.8) the effective refractive

index for each ABC is found to be given by
1/2

(1+u) ' (5 9a)4 26

for Birman's ABC,

n(n„nz)=

n( —n~, n, )=

for Ting's ABC, and

xp

1/2

in &1+u
4 (2u +1)

im &u —1

4 (2Q —1)

(5.11a)

(5.11b)

(5.11c)

n(n„nz)=
1/2

' 1/2
in + 2P

&1+u +iy exp

' 1/2

(1+2u)
(5.12a)

n( n„nz) =—
1/2

l 7T
exp

1/2

1/2 (5.12b)
l 7T&1—u +i y exp (1—2u)

26

n( —nz, n, )=
1/2 exp

4

&u —1 i y exp—
1/2

u —1

1/2

(2u —1)

(5.12c)

for Kiselev's ABC.
Equations (3.3) and (5.9)—(5.12) are used to evaluate the integrands in Eqs. (4.16) and (4.17). By assuming (p/5) )& 1

and using Eq. (4.18), ENL(r) has the form

«[ENL(r)] = IR )(~) l
sin(~, r —P&),

where R, (r) = ~R, (r) ~ exp[i/, (r)] is given by

(5.13)
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1/2
2P5R, (2.)=i exp( —ico, v) exp( —

—,'I ~)
7T'

l 7T
exp

1 exp( —P5co, ~u )
X du

0 (co, co—o i P—5co, u —i—,
' I )

&I+u +i&1—u
1/2

1+ exp (&I+u —i&1—u )
25 l&

13 4

f exp( P5—co, ru )+ du
1 (co, coo lP5 oc, u i&1 )

&u+1 —&u —1
1/2

26
exp (&u + I+&u —1)l VT

4

(5.14)

for Pekar's ABC,
1/2

R1(v) =i exp( i co, v) ex—p( —
—,I w) 2

p53
2~2

l TT

exp

1 exp( —P5co, ~u )
X du

0 (co, coo —i P5c—o, u —i—,
' I")

' 1/2
25

+I+u +i&1—u

exp
' (&I+u —iV'I —u +2v'u )

exp( —P5co, v u )
+ du

(co, coo iP—5co,—u i ,' I—)— 1/2
25

&u +1—&u —1
r

exp (&u + I+&u —I+2&u )
4

for Birman's ABC,

R1(T)=l exp( leo '7) exp( —I &)
p5' l&

exp

1 exp( 135co,ru )— exp( 135co,ru )—
X du, F(u)+ du, F2(u)

0 (co, coo i P—5co, u——i—,
' I ) (co, coo iP—5co, u——i—,

' I )

where

F1(u) = (I+2u)&1 —u +i+I+u (1—2u)
1/2

exp [(I+2u)&l —u i &1+u—(1—2u)]

F2(u) = (2u + 1)&u —1 —v'u + 1(2u —1)
1/2

(u 2 I ) I/2+
213

exp [(1+2u)+u —1+v'u +1(2u —1)]
4

for Ting*s ABC, and

i 135co,
R 1 ( 7 ) = exp ( i co,s ) ex—p ( —z' I w )

E

fp(n „n2)—p( n„n2)]- [p(n l, n2) —p( —n2, n1)]
xf, exp( —i35co, ~u )du+, exp( —p5co, ~u)du

0 (co, coo iP5—co, u ——i—,
' I ) 1 cot coo l 5co&u 1& I

where
(5.17)

1 —n(n„n2)
p(n „n2)=

1+n(n, , n2)
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n(+n„n2)=
1/2

le
exp + +y

4

l 7T.&1+u +iy exp +

1/2

&1+u
5

1/2

(1+2u)

n( —ni, ni)=
1/2 exp

4

&u —1 iy—exp

1/2

&u —1

' 1/2

(2u —1)

for Kiselev s A's ABC.
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n+ =+(2a —e,)'",
where

(6 2) 1n( —n„n~)=-
0

1/2

~o pu 2pu Pa-= h=
5 5 (5e) (6.3) X 1— 6ep

1 )
—1/2

Q
(6.7b)

and p =P /2eo.
Substituting Eq. (6.3) in (6.1) and (6.2) and assuming

eo5 /2p ((1,we obtain
for Pekar's ABC,

1/2

(6.4)
1n(n„nz, n+ )= eo 1 ——

Ep

Ep

' 1/2

r

6Ep1+—
2 Pu

2

(6.5)

(6.6)

5ep
X 1+— (u —1)

2 Pu

1/2

(6.8a)

Using Eqs. (3 4) and (6.4) —(6.6) the efFective refractive
index for each ABC is found to be given by

1/2

1
n( n„nz, n+ )= —— eo 1 ——

1
n(ni, n2)= eo 1 ——

5epX1+ '(u —1)»'
Ip

(6.7a)

T

pep
X 1 —— (u —1)

2 Pu

for Birman's ABC,

(6.8b)

1
n(n „n2)= eo 1 ——

1/2
' 2

6ep1— (6.9a)

1
n( n„nz) = — eo 1 ———

1/2 2

2 (6.9b)

for Ting's ABC, and
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1
n(n, , n2)= eo 1 ——

1/2 6ep
1+iy —i@

'2

6ep
0 +

(6.10a)

1
n( n—, , n2)= — eo 1 ——

1/2 6@0
1+iy —iy

2

1
2

5ep
u +

(6.10b)

for Kiselev's ABC.
Equations (3.3) and (6.7)—(6.10) are used to evaluate the integrands in Eqs. (4.14) and (4.15). By assuming (p/5) )) 1

and using Eq. (4.18), EI (r) has the form

Re[El (r)]= ~R2(r)
~
sin(co, r —P2),

where R2(~) = ~R2(r) ~ exp[i/&(r)] is given by

(6.11)

R~(r) =i exp( irate—) exp( —
—,'I r)

2pco,

1 exp( —ip ru, ru )
X du

6 (cot coo+pcotu l —I )

(u —u')'"
(eo —1)

E'0

. F(u) (6.12)

where
1/2

25 ~oF(Q)=1—
/3 u

for Pekar's ABC,

5 &0F(u)=1 ——
p u

for Birman's ABC,

e —10
1 — u

60

e —10
1 —— u

60

(6.12a)

(6.12b)

for Kiselev's ABC.
Equations (6.12) show how the local part R2(r) of tran-

sient reAectivity is a6'ected by spatial dispersion. We first
consider the case of exact resonance, at cop=co, . Figures
9 and 10 show the time decay of ~R2(r)~ for parameters
appropriate to CdS and CuC1 crystals, respectively. By a
solid line, we also show the corresponding curves ob-
tained for a local medium (5=0). A close look shows
that the effect of spatial dispersion reduces ~R2(r) ~

and
damps out its variation with time faster than the local
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2

e05

p
1
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0.60
cds
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@06
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FIG. 9. Time oscillatory decay of the local part of transient
reflectivity
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for various ABC's for the case of exact reso-

nance coO=co, . The parameters for CdS are the same as in Fig.
3.
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from a spatially-dispersive semi-infinite medium for the
case of normal incidence. %'e investigated the role of
difterent ABC's on the steady-state reAectivity and tran-
sient reAectivity. Especially, in the time domain, after
the pulse cuto6; the medium continues emitting energy in
damped oscillatory form for the case of long relaxation
times (small I }. Different ABC's infiuence the decay pro-
cess in di6'erent quantitative ways, especially for laser fre-
quency coo very close to the exciton-polariton resonance
frequency m„where spatial-dispersion e6'ects are dom-
inant. In the frequency domain, the transient-reAectivity
amplitude shows double peak at co, and co&, for some or
all ABC's depending on the choice of material.

Our results are obtained under certain simplifying as-
sumptions. The finite-length crystal is replaced by a
semi-infinite nonlocal medium. Furthermore, we have
simplified our calculations by assuming dimensionless pa-
rameters 5=(%co, /m*c )', p =P /2eo, I /co, to be
small. For CdS and CuC1 crystals each of them is
~10

Measurements of predicted features of transient
reAectivity can provide independently determined values
of important exciton-polariton values such as mass, life-
time, oscillator strength, co„and co& plus an experimental
verification of the "true" ABC for CdS and CuCl crys-
tals.

In reality, experiments are designed for oblique
geometries. An extension of this analysis for oblique
transient reAectivity for various ABC's will be presented
in a subsequent paper.

Note added in proof. Numerical analysis for Gauss-
ian picosecond pulses at normal incidence and at
Brewster's angle was reported by J. Aavishoo, J. Lipmaa,
and J. Kuhl [J. Opt. Soc. Am. B 5, 1631 (1988)]. To our
knowledge, the first experimental verification for tran-
sient reAectivity of picosecond Gaussian pulses for spa-
tially dispersive media (GaAs) was reported by. J. Aav-
ishoo and J. Kuhl (unpublished).
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APPENDIX: CONTOUR-INTEGRATION METHOD
TO EVALUATE THE REFLECTED FIELD

[EQ. (3.6}]

In this Appendix we outline the algebraic details to
evaluate the integral in Eq. (3.6) in the complex co plane
for t ~2L/c. It is helpful to break the integral in two
parts arising from each term in the curly brackets:
[ 1 —exp[i (co coo) T] j. The first —part contributes for
t )2L /c while the second part contributes only for

t )2L/c+ T. Equation (3.6) can therefore be written in
the form

Ez(t) = Re[E(t 2L—/c)e(t 2L—/c)
—exp( —i cooT )E (t 2L—/c —T)

Xe(t 2L—/c —T)], (Al)

E ( r) = lim f f ( n „nz )d co
q —+O —oo

for the ABC's of Pekar, Ting, and Kiselev, and

(A2a)

E(r)= lim f f (n&, n2, n+ )dc'
g~0 —oo

for Birman's ABC, while

(A2b)

n =+[a+(a —e b)' ]'

n ~ = +(2a eo)

a =(2co 5) '[coco 5 +(co —co, —icol )],
2 2

b =(co 5 )
' (co co, icoI —)—

(A4)

(A6)

where

i6co]
p =(4~ao), 5 =

m c

An examination of Eq. (A4) shows that the conditions
b =0 and a =rob correspond to the branch-point singu-
larities in f (n„nz). A further examination in Eq. (A5}
reveals an additional condition 2a =@0, which corre-
sponds to the branch-point singularities in f(n„nz, n+ ),
in addition to the two previous ones.

Using Eq. (A6), the first two complex conditions yield
six branch points (in the complex co plane) co, j =1—6,
whose location is given by Eqs. (4.1)—(4.3), while all
three conditions yield eight branch points co, j =1—8,
whose location is given by Eqs. (4.1)—(4.4). So, the main
difference between f (n, , n2) and f (n„nz, n+ ) is the
number of branch points for each one.

The branch points co] and co2 arise from the condition
b =0. Around these points the integrands f (n&, n2) and

f (n„nz, n+) are made single valued by going to the
Riemann sheet on which n, —+ —n, and n2, n+ remain
unchanged.

The branch points ~3, co4, co5, and co6 arise from the

f (n»nz) 1 p(~)
exp( —icor), r) 0 .f (n ],n 2, n+ ) 2~ coo —co —i/

(A3)

For notational convenience, we have explicitly shown the
dependence of the integrands f (ni, n2) and f (n&, nz, n+ )

on the refractive indices n„n2, and n+ [see Eq. (3.3)]
and the ~ dependence is implicitly understood.

The choice of the appropriate contour depends on the
singularities off (n „n2 ) and f ( n „n2, n+ ). For this pur-
pose we require an explicit form of n„n2, and n+. Us-
ing Eq. (3.2) in (3.5), we obtain
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condition a =cob; on the corresponding Riemann sheet,
n, and n2 are interchanged (n, ~n2) and n+ remains un-
changed.

The branch points cu7 and cps arise from the condition
2a =so', in this case, f (n „nz, n+ ) is made single valued
by going to the Riemann sheet on which n+ ~—n+ and

n], n~ remain unchanged.
The appropriate contours to evaluate Eqs. (A2) and

(A3) are shown in Figs. 2(a) and 2(b) and contain only a
single pole at co=coo —i g for both cases.

A straightforward application of Cauchy's theorem
shows that

+ QO
CO

1ff(n], n2)do]= f f(n„n2)de+ f [f(n] n2) f( n] n2)]den

Reco3 —i oo 602

+ f [f( nz,—n]) f (n—],n2)]de+ f [f( —n], nz) f (n—],n2)]dc@
3 4

Reco4 —i oo

+ f [f(n „n2)—f ( n2—, n] )]dco=2vri Res]
4

(A7)

[f(n] n2 n+ ) —f ( —n&, n], —n+ )]des

6)~

+ [f(—n] n2 n+) —f(n], n2 n+)]d~
Ng

+ OO Q)1f (n], n2, n+ )do]= f (n„n, , n+ )de+ [f(n], n2, n+ ) —f ( —n], n2, n+ )]de
QO 603

Reco3 —i oo

+ f [f( n2—,n„n+) f—(n], n—2, n+)]d~
6)3

CO(+ [f( n„n~, n+) —f( n, , n„—n+)]de
607

COg

+ [f( —n], nz, —n+ ) —f (n„n„n+ )]dc'
CO4

Reco4 —i oo

+
604

(A8)

E(r) =Es(r)+Er(~), (A9)

where Res„Res2 represent the residues of f (n„n2) and
f (n „n2,n+ ) at the pole co=coo ig, r—espectively Using.
Eqs. (A2) and (A7) or (A8), we formally decompose E (r)
into a steady state (pole contribution) and the transient
(branch-point contribution) parts,

g'(]o) =[f( n2, n,—) f (n] n2)]-,

g](co)=[f( n], n~, —n+ ) —f (n]—, n~, n+ )],
g2(co)=[f ( n„n2, n+ ) —f (n „n2,n+—)],
g "(co)= [f ( —n 2, n „n+ ) f (

—n „n2,—n+ ) ] .

(A13b)

(A14a)

(A14b)

(A14c)

where

(A10)Es(r) = ip{coo) ex—p( io]or)—

for all ABC's and
67) C02

ET(r)= f g(o])dao —f g (a))de
603 604

Redo& —i oo Reco4 —i oof g (co)dt's+ f g (]o)d]o

'
Keco4 —i oo

g "(co)dc@+ f

g(~)=[f ( —n„n, ) —f (n, , n, }],

(Al 1)

g "(co)d co

(A12)

(A13a)

for the ABC's of Pekar, Ting, and Kiselev,
CO7 COg

ET(~)= f g, (co)den f g, (co)dco-
C03 Q)4

Reco3 —i cc

603

+ f g2(co)do] —f gz(co)de
7 g

for Birman's ABC, while

for all ABC' s, while

El. (&) f g (]o)dco f g (cg)d ~,
(A16)

Reco3+i Imago& Reco4+i Imco2

E(NL) —rf g (]o )dco f g (co )do]

Reco3 —i oo Reco4 —i oo

g ( co )d co +
CO3 6)4

g'(co)des,

(A17)

We have found it useful to further decompose the tran-
sient part ET(r) into a "local" part and a "nonlocal"
part. This facilitates comparison with a local medium for
which the nonlocal part, by definition, vanishes identical-
ly. Such a decomposition can be carried out by noting
for f (n], nz) that for a local medium the branch-out line
(joining co] and co3) in Fig. 2(a) is horizontal. For the case
of f (n„n2, n+ ) the branch-cut line (joining ro] and co7)

in Fig. 2(b) shrinks into the point co7. This can be easily
verified using Eqs. (4.1), (4.2), and (4.4) with 5=0. We
then formally obtain

ET(r) =El (r)+ENL(r) (A15)
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for the ABC's of Pekar, Ting, and Kiselev, and

tLJ I M2

EL(r)= f g2(co)dco f— g~(co)dco,
7 8

607 cc)
8ENL ( 7) f g i ( co )d co f g i ( co )d co

603 ti74

Reco3 —i oo

tc) 3

Recu4 —i oo

g (co)dco+ fC04

(A18)

g (co)dco

(A19)

EIc (0, t, coo) = Re[Es(t)+Et (t)+ENL(t)],

where

(A20)

Es(t) =ip(coo)[6(t 2L /c) ——6(t 2L /c ——T)]

X exp[ i coo(t —2L /c)—],

for Birman's ABC. We not substitute E =Ez
+EL +ENi in Eq. (Al) and obtain

ET(t) =[E,(t 2—L /c)6(t 2—L /c)
—exp( —i cooT)E~ (t 2L—/c —T)

X6(t 2L—/c —T)], (A22)

with j=NL or I..
The evaluation of Eqs. (A16) —(A19) can be simplified

by noting that in most cases of practical interest the three
parameters 6, p, and I /m, are much smaller than unity
(~10 ). We are therefore justified in neglecting their
products and higher powers. The branch points co given
by Eqs. (4.1)—(4.5) then simplify into the Eqs. (4.6)—(4.9).

Again as a reminder, we have defined p =P /2eo
=2rraoleo and physically p = (co&

—co, )/co„where
u&

—co, is the so-called longitudinal-transverse LT split-
ting.

An appropriate change of variables permits us to
rewrite the expressions in Eqs. (A16)—(A19) in the follow-
ing simplified form:

1 1

EL(r)=pco, g(co, +pco, u —i—,'I )du+ f g( —co, +p c,ou i ,'I —)du—

1 1

ENi (r) =iP5co, g (co, iP5co—, u —i ,' I )du —— g ( —co, iP5co, u i ,'—I—)d—u

+ f g'(co, iP5co,—u —i—,'I )du —f g'( co, iP5c——o, u —i—,'I )du (A24)

for the ABC's of Pekar, Ting, and Kiselev, and

1 1

EL(r) =pco, g~(co, +@co,u —i—,
' I )du+ g2( —co, +@co,u —i—,'1 )du

I 1

EN„(r)=iP5co, g, (co, —iP5co, u —i—,'I )du — g, ( —co, iP5co, u ——i—,'1 )du

(A25)

+ f g "(co, i P5co, u —i ,' I )du —f——g"(—co, iP5co, u ——i—,'I )du (A26)

for Birman's ABC.
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