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Electron scattering by atomic chains: Multiple-scattering e6ects
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Multiple-scattering effects of electrons traveling along atomic chains are shown to be important
and useful for surface structure determination, especially in the medium-energy range {200—1000
eV). This applies to techniques based on diffraction of elastic electrons, such as medium-energy
electron diffraction, as well as to techniques based on the angle-resolved detection of "secondary"
electrons such as photoelectrons, Auger electrons, and other electrons. Two new methods for com-
puting multiple-scattering amplitudes for chains are derived and used to show how multiple scatter-
ing along chains of atoms produces focusing, defocusing, amplification, and layer-dependent
enhancements that can be put to effective use in structure determination. Strong forward-focusing
peaks along internuclear axes are dominant under many conditions: this is a single-scattering effect.
However, multiple scattering can totally defocus such forward-focused peaks, while other interfer-
ence effects produce additional scattering peaks that do not have the direction of an internuclear
axis. In addition, it follows that surface composition analysis by conventional Auger-electron spec-
troscopy can be quite sensitive to the incident direction of the electron beam used to produce Auger
emission.

I. INTRODUCTION

Chains of aligned atoms occur in many situations: ob-
vious examples are provided by crystals and long or short
straight molecules. Electron scattering by such struc-
tures is an important aspect of surface-science studies
with a variety of electron-based techniques. The scatter-
ing of electrons by chains of atoms is especially important
in techniques that provide surface structural information,
including the diffraction methods and the fine-structure
methods: low-energy electron diff'raction' (LEED) and
its higher-energy counterparts —medium-energy and
refiection high-energy electron difFraction (MEED and
RHEED); angle-resolved photoemission extended
fine structure (ARPEFS), ' surface-extended x-ray-
absorption fine structure (SEXAFS),"' extended
appearance-potential fine structure (EAPES), ' and
surface-extended energy-loss fine structure (SEELFS),'
to name some of the major ones. Recently, forward
focusing of electrons by surface atoms has also emerged
as a very useful tool for structural determination and
clearly involves the scattering along chains of
atoms. '

Also of interest is the possibility of focusing effects in
standard Auger electron spectroscopy induced by elec-
trons: the incident electrons may be focused preferential-
ly onto certain atomic layers of the surface, giving rise to
a layer-dependent Auger-electron yield, over and above
the conventional mean-free-path effect.

Previous theoretical work with photoemission scatter-
ing and medium-energy electron diffraction * has
shown the key role of chains of atoms in the understand-
ing of electron multiple scattering in the intermediate-
energy range. At all energies, electron multiple scatter-
ing is likely to occur. At low electron kinetic energies,

say below 100 eV, the scattering by a single atom is un-
focused, i.e., the electron emerges without a strong
preference for a particular direction. But, as the energy
is raised above 100 eV, the scattering becomes increasing-
ly focused in the forward direction. For instance, at an
energy of about 1000 eV a metal atom focuses an elec-
tronic plane wave into a cone that has a half-width of ap-
proximately 10'. Thus, multiple scattering at medium en-
ergies is most prevalent when multiple forward scattering
is possible, as in the linear chains we will study here.

In this paper our aim is to explore the nature of multi-
ple scattering of electrons along atomic chains in the en-
ergy range 200—1000 eV. We shall set up an efficient cal-
culational scheme and apply it to simple but realistic situ-
ations that impact on surface-structure determination.
Elsewhere, ' we shall exploit our findings to develop
further the understanding and use of forward focusing for
actual surface crystallography.

Two principal situations must be considered: the
scattering electrons originate from far away, as in elec-
tron diffraction, or they originate in the chain itself, as in
the emission of secondary electrons, such as photoelec-
trons or Auger electrons, or in the inelastic scattering of
electrons. In the first case we shall assume an incident
plane wave hitting all atoms of the chain. In the second
case we shall assume a spherical wave emitted from an
atom at one end of the chain.

In Secs. II-IV we shall develop the necessary theoreti-
cal formalism. We start with single scattering in Sec. II,
then include multiple scattering self-consistently in Sec.
III. A more eScient calculational scheme will be
presented in Sec. IV.

In Sec. V we summarize the important aspects of elec-
tron scattering by single isolated atoms. In Sec. VI the
theory will be applied to chains of atoms, first from a
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point source of electrons, and then from a distant source
of electrons. In Sec. VII we shall discuss the significance
and potential uses of the scattering properties of electrons
along chains.

II. CHAIN GEOMETRY AND FIRST-ORDER WAVES

Our scattering system consists of a linear chain of X
muffin-tin potentials, labeled 0 to X —1 and spaced by a
constant vector a. For our methods it is essential to
select the x axis of the coordinate system for the scatter-
ing calculation parallel to the chain axis; +z will point
into the chain.

We define two arrays with index I,

[w (kr„)),= d, (kr„)Y& (r„), I = Iml, . . . , I

[v (k;„)],=4m Ti(k)Yt* (k;„), I = ~m~, . . . , I,„(1)

[p ],=a, , I =[m], . . . , I .„.
Then the first-order wave function scattered from atom n

at the detector can be expressed as

ikR
y(n)(R) —e —ikna. R

R

max

m= —lmax

w (kR)p

III. MULTIPLE SCA'I I'KRING WITH NOZAWA'S
ORIGIN-SHIFT THEOREM

leads to cones of emission maxima about the chain axis.
Superimposed on these cones of intensity will be the
atomic-scattering factor

~f (8)
~

which will favor forward
(along k;„) scattering for all but the lowest electron ener-
gies.

For spherical-wave emission with components Al, we
define

so that an incoming plane wave with wave vector k;„
scattering upon the nth atom of the chain may be written
as

ikr„
(n) /k 't1R e

7n

max

m= —l max

w (kr„)v

The function d& is a polynomial in (1/2ikr) discussed
in Ref. 8 and it asymptotically approaches 1 for
kr ))I (I + 1)/2. This polynomial is important for quan-
titative near-field curved-waved calculations, but the
basic spherical-wave nature of the spherical Bessel func-
tions hl is carried in the asymptotic part. The other func-
tions including the convention chosen for the spherical
harmonics is detailed in Ref. 7.

The complete single-scattered wave function for a
detector at R where ~R~ )) ~a~ may be derived by sum-
ming waves from all N atoms using
= JR„—na[ = /Rf —na. R:

ikR X =1
@(N)(R)—e y (e' in'"~ ikR na)— .

R .=.
'

max

w (kR)v
m= —1max

The vector w is now independent of n and we may
recognize the atomic scattering factor

max

m= —l max

max

wmv~ = . g (2I +1)T&(k)PI(cos0i, .R)
rk l =0

=fk,„R .

The measured intensity will be

Ifk,„.R I'

R

—i AK-Na
1 e

—ihK a1 e eihK a
L

where AK =k;„—k R. The structure factor in large
square brackets will be equal to X for hK a=2mj,
j =0, +1,+2, +3, . . . , but of order 1 for other values of
hK. This is the Bragg-like condition for chains and it

Our next task is to include multiple-scattering terms in
the chain scattering. All such terms will involve the
propagation of expanding spherical waves from one atom
to another. Therefore, the wave field must be expressed
in terms of incoming spherical waves. The Nozawa
origin-shift theorem describes an outgoing wave cen-
tered at the point n a in terms of waves about n 'a, where
a))z by

i'Ii, (kr„)r, (r„)
eik~n —n'Ia

Dg. [k (n' —n)a]
ikrn n'~a —

&,

Xi'ji, (kr„, ) YI. (r„.), '

where we have factored out the asymptotic limit from
Nozawa's H

ika

4mN& N, HII .(«)= .k
DI7(«) .

rka

The quantities Dll. are related to the usual Gaunt-integral
coefficients as our dl is related to the spherical Hankel
functions; simple recursion relations for the Dll can be
derived from the formulas given by Nozawa.

To simplify our notation, we define a propagating ma-
trix whose I, I' element is

eik/n' —nja

[H (n' n)]&&.=—
, , Ti(k)DII. (k(n' —n)a) .

This matrix takes (I,m) outgoing waves on center n,
scatters them from center n', and gives the amplitude of
outgoing waves on center n' of type (I', m); it is defined
for m ~ I, I' ~ I,„. Then we assemble the propagating
matrices into a scattering supermatrix X with matrix
entries

H (n' —n) if n'&n,
m.«0 if n'=n .

Next, we define the nth component of the composite vec-
tor y to be the vector of partial-wave amplitudes exist-

J
ing from atom n after j scattering events. %'e have
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Similarly, for emission from a point source we use

ikR
%3"(R)=

R ik. -a —ikk. a
1 —e

p if the nth atom is excited,

0 otherwise .
X

max

m= —1max

w (kR)X~X v (4)

Finally, the composite vector d~(r} contains outgoing
partial wavelets:

where X is given by

X"= g H (bn) .

w (kr„), (2)
The full-order solution is

which can be weighted by the partial-wave amplitude in

y and summed to give the complete wave function:

ikRe'"'(R)= ' 1

ia (k,„—kR)
1 e

max

'III '(r)= g d (r)y (lr;„) .
m= —Imax

max

max

w (I—X ) 'v

With these definitions, the second-order wave is

max

%~& '(r)= g d (r)X y
m= —Imax

for incident plane waves (i.e., double scattering) and

max

0"„'(r)= g d (r)(I—X ) 'y
m= —lmax

and similarly for 4 with z in place of y
1 1

The equations above are valid anywhere outside of the
muon-tin potentials. When we evaluate the wave ampli-
tude at our distant detector position R, we approximate

ikr„
e ikR

e '"a'"' and w (kr„)~w (kR) .

ik,„aWe can then multiply and divide by powers of e
This gives us a new propagation matrix,

H (bn)=e '" H (bn),
which is directly analogous to the usual definition
chosen' for two-dimensional LEED scattering problems.
This is advantageous for plane-wave scattering from an
infinite chain since the sums over scattered waves from
other atoms are expressed solely in terms of differences in
position: we may use translational invariance to simplify
the solution. For example, the third-order wave scatter-
ing from an infinite chain is

max

'P2"'(r) = g d (r)X z
m= —Imax

for a point source (i.e., single scattering). We exclude the
zero-distance scattering case ( n

' =n ) by defining
H (0)=0.

The parallel form of these equations is already evident;
we may extend them to higher-order scattering by inspec-
tion. The iterative form of these equations may be ex-
ploited to give an "exact" full order wave function:

We note that for every formula in this section we can
avoid half of the numerical work by combining negative
and positive values of m.

The formulas in this section are no more than the
well-known LEED formulas adopted to the chain
geometry. They are, however, much more efBcient for
numerical calculation. The chain version requires m
matrix inversions (X does not depend on the sign of m),
each of which requires of order (I,„+1) operations.
Solution by the more general method would require only
one inversion, but the matrix would have dimension
(I,„+1) by (l,„+1): the inverse requires of order
(1,„+1) computations. Hence the special-case formu-
las are (l,„+1) times less expensive when m, „=l
a consideration of great importance when I,„reaches 10
or more. Furthermore, I „can, in fact, be much less
than I „,so that the advantage of the chain formulas in-
crease with energy.

IV. CHAIN SCATTERING
WITH THE TAYLOR-SERIES

MAGNETIC-QUANTUM-NUMBER EXPANSION

The formulation in the preceding section relies upon
specialization of an exact origin-shift addition theorem.
Recently, a new addition theorem for spherical waves—
called the Taylor-series magnetic-quantum-number ex-
pansion (TS-MQNE) —has been derived, which corre-
sponds to a finite series summing to an exact result.

We start with scattering matrices for incoming partial
waves,

1"+ I"[C~]i„(o«}=N-im~nn"
and outgoing partial waves,

T$
[G (n n')]

&
=4~ . —Ht'~ ~(k~n —n'~a)N& (o „„)™,

tk

where

( —1)' ' if n (n',
(1) otherwise,
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so that
ikln —n'la

H (k (n n—')a ) =
~

„Cz (n —n')C (cr„„)..
n —n ~a

The remaining quantities are defined in Ref. 7, where
simple recursion relations are given for the integrals
H&~&, (k~n —n'~a).

The product of C and G contains sums on the
Taylor-series parameter p. We have decomposed the
l Xl" propagation matrix H into an l Xp part and a

p Xl" part. By inserting this expression wherever H
appears in the preceding section and summing over par-
tial waves (l and l"), we may convert the chain formulas
based on Nozawa's method into scattering-factor formu-
las. This conversion transforms each part of the chain-
scattering formulas from an orbital-angular-momentum
basis to a Taylor-series basis.

We begin by defining the transformed parts. The in-

coming partial-wave amplitudes in y become in-
J

corning-wave scattering factors:

[n ]+„=C (+)[y ]„,
and the outgoing-wavelet amplitudes become outgoing-
wave scattering factors:

N eikl n —n'la

[o ]+: g ~ ~
G (n n')[d—]„,

„+& ~n
—n'~a

n —1 eikln —n'la

[o ] „= g, „Cx (n n')[—d ]„..
o ~n

—n'~a

The plus and minus signs refer to wave components trav-
eling up and down the chain, respectively. We use these
definitions when we insert our decomposed H into the
double-scattered wave function, Eq. (3), giving

I
qg(X) y T

m= —I

Third- and higher-order waves require a scattering-factor
matrix,

eikln —n'la
F (n' —n, +n')=C (+n')Ci (n' —n)

~
n n a

which we assemble into a supermatrix Z to parallel X
from the preceding section:

F (n' n, +—n') if 0( ~n n—'~ (X,
m ~+n, +n' 0 otherwise,

giving, for example, the third-order wave function as
I

o'Z n
m= —1

Each entry in the matrix F and in the vectors o and
n are generalized scattering factors described in Ref. 9.
Specifically,

ikln —n'la

[F (n' —n, +n')]» = ~, F~~™(k,(n' n)a—, +a),
n —n'~a

n' —i eikl n —n'la

[o ( —n)]~ = g, „F (k, (n' —n)a, R),
~P1 Pl (Q

&ikln —n'la

[o (+n)]~ = g ~, ~ F~ (k, (n' n)a, R)—,
„, n+, ~~ —~'~~ '

and

[n (+n)]z =F~~ (k, k;„,(+n)a) .

These scattering factors give the amplitude for spherical-
wave components (p, m ) on one atom to propagate along
a and scatter from a second atom into the direction +a:

Imax

F~ ~ (k, (n n')a, (n' —n")a) =5 —.( —1)q g (2l +1)TI(k)cr'„„„„-Hf'~(k~n n'~a) —
~ t

' c',
1 =lql

When we compare our new result for the triple-
scattered wave from a chain to the method of the preced-
ing section, we can understand the differences introduced
by the scattering-factor method. The basis for the No-
zawa formulation of the preceding section consists of par-
tial waves: the elements of the vectors y and d are
orbital-angular-momentum components of wave ampli-
tude on each atom. Hence the length of these vectors is
equal to l „+1 times the number of atoms. For the
TS-MQNE method, the elements of the o and n vec-
tors are spherical-wave components of scattering ampli-
tude. These elements are associated with particular
directions, either up or down the chain. Each atom in
the chain can scatter either into +z or —z directions, ex-
cept for the end atoms, which are restricted to only one
direction. Thus, 2n —2 scattering directions are re-
quired. If we call ~+1 the maximum number of com-
ponents with index p that are required to accurately

represent the scattering, then we will need
(r+1)(2N —2) elements in o and n . Previous experi-
ence shows that ~~2 is quite accurate for medium-
energy electron scattering and that the required value of
~ falls quickly to zero for long scattering distances and
large scattering angles. Hence the length of the vectors
in the TS-MQNE formulation is equal to a small number
times the number of atoms in the chain. From this
analysis we can conclude that the TS-MQNE method will
be advantageous for medium and high energy
[l,„&2(r+ I )].

In addition to using the TS-MQNE in the scattered-
wave formulas, we can also seek a full-order wave func-
tion. Successive incoming-wave scattering factors are re-
lated by the iterative formula

m+1 m m.J J

By summing this recursion, we find simultaneous equa-
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tions for the full-order scattering vectors n which may

be formally solved to give the full-order solution for a
finite-length chain using the TS-MQNE as

y(N) —f (g ) y e' in

n=0
I

+ g o (I—Z ) 'n
I=—I

The first term is the single-scattered wave, which requires
no curved-wave correction.

Parallel with our development in Sec. III, we conclude
with the infinite-chain case. Translational symmetry al-
lows us to concentrate on a single atom with scattering
components in the +z and —z directions. The matrix
Z will have four submatrices,

Ikna
[Z"]+ p= g F (k, +a, +a},

I na

with the wave-function radial decay and inelastic scatter-
ing contributing to the convergence of the sum. This
sum and Eq. (5) will require a similar number of terms,
but each term in Eq. (5) is an (l,„+1)X(I,„+1) ma-
trix. The terms here for Z are (~+ 1}X(~+1)matrices,
and the size of the matrices falls rapidly as the sum
progresses, leading to a single complex number. The
solution is

1

i(k,.„—kR).a
1 e

I

X f (8~ R)+ g o (I—Z")
m= —I

VI. ELECTRON SCA'I j.'ERING
ALONG ATOMIC CHAINS

The physical parameters used in our calculations are
the same as for conventional LEED calculations, extend-
ed where appropriate to energies on the order of 1000 eV.
We used up to 20 phase shifts, which are based on
Moruzzi-Janak-Williams potentials for nickel and
copper, and on Tong-Puga surface potentials ' from
Herman-Skillman wave functions for carbon and oxygen
in carbon monoxide. The electron mean free path was set
to 24 A. Isotropic, layer-independent thermal vibrations
were included, corresponding to Debye temperatures of
335 K for nickel, 343 K for copper, 1405 K for carbon,
and 1217 K for oxygen, with an actual temperature of
300 K.

A. Point source in chain

We first consider the case of a source atom located at
the end of the chain. It emits an electron as an s wave,
which will be scattered by the complete chain. We plot
the angular distribution of the emitted and scattered
wave amplitudes taken together. The length of the chain
is varied from two atoms to many atoms. To simulate
emission from a fcc (100) crystal surface, the chain is tilt-
ed by 45 with respect to the surface, and damping is in-
cluded from the surface plane down into the otherwise
atom-free bulk. Thus the angular distribution will not
have exactly cylindrical symmetry about the chain axis.

Thus we have another solution to the chain multiple-
scattering problem.

As was the case for the Nozawa method, the scattering
matrix Z has a special structure which can be used to
advantage for practical computations. For a chain with
N atoms the matrix has (2N —2) submatrices, of which
half are zero and only 2N —1 are unique. The matrix can
be partitioned into four banded triangular matrices which
can be identified as two identical forward-scattering ma-
trices and two identical backscattering matrices. This
structure should facilitate perturbation-scattering
methods of solving the chain-scattering problem.

V. ELECTRON SCATTERING BY ONE ATOM (c)

The properties of electron scattering by a single atom
are fundamental to our discussion. The atom acts on the
passing electron like a crude converging electrostatic
lens, see Figs. 1(a) and 1(b). In Fig. 2 we illustrate the
atomic-scattering amplitude f (8) for nickel and oxygen
atoms at a few energies of interest to us. The forward-
scattering peak is seen to sharpen strongly toward higher
energies, while scattering in other directions decreases
appreciably.

We now explore how multiple scattering from atom to
atom in a chain takes place and aFects the resulting angu-
lar distribution of scattered electrons.

FIG. 1. (a) Optical paths for forward focusing of incident
parallel light by a lens. (b) Classical trajectories for forward
focusing of parallel beam of electrons by one atom. (c) Same as
(b), but for electrons emitted from a point source. (d) Same as
(c), but with forward focusing by two atoms.
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The top of Fig. 3 shows the resulting angular distribu-
tion for a chain of two copper atoms at 917 eV. One
recognizes the dominant effect of the atomic-scattering
amplitude as a strong forward-scattering peak, cf. Fig. 2
(copper and nickel have almost identical atomic-
scattering amplitudes). However, there are new secon-
dary peaks to either side of the main forward peak.
These are interference peaks between the unscattered
emitted s wave and the scattered wave coming from the
other atom, as discussed before.

Figure 3 also shows the effect of removing multiple
scattering between the two atoms, which in this geometry
and at high energies consists of very weak back-and-forth
scattering.

The case of three atoms in the chain is shown in the
middle of Fig. 3. The central forward-scattering peak is
slightly sharper, but markedly smaller. It loses intensity
due to defocusing: electrons are focused by the second
atom in the chain onto the third atom; the third atom, in
turn, tries to converge the electron trajectones, but over-
does it, as schematically illustrated with trajectories in

Figs. 1(c) and 1(d).
Defocusing is perhaps the most important effect of

multiple scattering in atomic chains. Single-scattering
theories predict large forward peaks which can be de-
creased drastically by defocusing, and even destroyed
completely in longer chains, as we shall see presently. A
multiple-scattering treatment is essential to properly
model this effect.

As Fig. 3 shows, the three-atom chain also exhibits dis-
turbances in the secondary nonforward peaks, compared
to the two-atom chain. These are simply due to addition-
al interfering trajectories. The Ave-atom chain gives the
angular distribution shown at the bottom of Fig. 3. The
forward peak has almost vanished due to repeated de-
focusing along the chain.

We next show that lighter atoms, such as those corn-
mon in molecules, can produce similar focusing effects.
Figure 4 exhibits the angular distribution of a single two-
atom chain of carbon monoxide, where carbon acts as the
s-wave emitter. Again, the atomic-scattering amplitude
gives rise to a distinctive forward peak, while interference

Ni

=60eV

= 100 eV

= 300 e

= 1000 e

10'

QO

10'

QO

10'

Qo

1 Qo

00

FIG. 2. Atomic-scattering amplitude ~f(0)~ for nickel and oxygen atoms at a few energies. The forward direction is defined as
8=0.
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can be scattered on its way into the crystal; this effect will
be explored here.

We have calculated the multiple scattering of a plane
wave incident on a surface that has damping. The sur-
face has only one chain of Ni atoms, with a length of five

atoms, and it is perpendicular to the surface. As a mea-
sure of the distribution of electrons by depth into the sur-

face, Fig. 5 shows the Aux of electrons leaving each atom
in the chain as a function of incidence direction. This
Aux is defined as the quantum-mechanical current exiting
from each atomic sphere after all multiple scattering has
taken place (this involves a two-dimensional solid-angle
integration over each atomic sphere with a covalent ra-
dius).

In Fig. 5 let us first consider a far off-axis incident
direction (far compared to the forward-scattering peak
half-width of about 10; for instance, 27'). Then there is
little multiple scattering, because the forward-scattered
waves miss the next atoms down the chain. As a result,
the Aux leaving each atom is mainly determined by the
damping and thus decreases exponentially with the depth
of the atoms.

At an off-axis angle of 8, close to the peak half-width,
multiple scattering sets in strongly. In this situation,
each atom receives not only the undisturbed (although
damped) incident plane wave, but also scattered contribu-
tions from atoms preceding it in the chain. In a small an-
gular range (about 5' —10 off axis), the result is a surpris-
ing amplification: the deeper atoms end up sending out
more Aux than the shallower atoms, with the fifth atom in
Fig. 5 giving out more than any of the preceding ones (ul-

timately, of course, damping takes over and prevents un-
limited amplification). In this situation, forward focusing
onto neighbors is active, while defocusing is not yet ac-
tive. In an Auger experiment, for example, this would
imply that most emitted Auger electrons come from
deeper in the surface, with a depth distribution as shown
in Fig. 5, rather than with an exponential depth distribu-
tion given simply by the damping.

Besides amplification, we have also found a focusing
enhancement. This occurs when the incident direction is
within the peak half-width from the axis direction (i.e.,
about 5 in Fig. 5). Here focusing of the incident plane
wave occurs on the second atom in the chain, while de-
focusing reduces the contribution reaching the deeper
layers, relative to the almost kinetic case shown for far
off-axis directions. Figure 6 shows the energy depen-
dence of this focusing enhancement: it is stronger at
higher energies. At an actual surface, one may thus pref-
erentially expose atoms in a certain layer by suitable
choice of the incident angle.

VII. CONCLUSIONS

We have presented two versions of a multiple-
scattering theory developed for electron scattering in
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FIG. 6. Emitted-electron Aux by difterent Ni atoms in a
chain, due to an incident plane wave, as function of incident en-

ergy. The curves correspond to the atoms numbered 1 —4. The
right-hand diagram shows the on-axis scattering geometry.

chains of atoms. The first version yields self-consistently
exact results, while the second is a perturbation expan-
sion that relies on sufficient damping to converge. The
first already gives a very efficient computation, in the
sense that its computational cost rises only as a small
power of the energy and number of phase shifts. The
second is even faster, because it only computes the wave
field in the immediate neighborhood of the next scatterer,
rather than in a large volume around the last scatterer.

We have shown that forward focusing along chains of
atoms play a role in a number of important techniques
which are sensitive to surface structure. We explore
these applications of forward focusing in more detail in
separate publications.

Focusing on the'way into the surface is also possible, as
we have shown, and is of significance in Auger-electron
spectroscopy. In this case, incident electrons can be pref-
erentially focused with variable effectiveness on atoms at
different depths in the surface. Then, Auger electrons are
generated with a nonexponential depth distribution.
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