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We consider the electronic properties of a low coverage of alkali-metal atoms adsorbed on a metal
surface. We calculate the alkali-metal-induced changes in the work function, optical absorption,
and second-harmonic generation within a simple but realistic model. The alkali-metal-induced peak
typically observed at a few eV loss energy in inelastic electron scattering is explained as resulting
from electronic transitions from the filled part of the ns resonance to the empty part of the same res-
onance and to the np resonance. We predict a strong alkali-metal-induced increase in the low-

frequency lossy response of an alkali-metal-covered metal surface. This theoretical prediction is
confirmed by new inelastic-electron-scattering data for the K/Cu(100) system. A strong increase in
second-harmonic generation (SHG) is predicted at low alkali-Inetal concentration (laser photon en-

ergy Pi~= 1.16 eV). The dependence of the SHG signal on the coverage (at low coverage) and on the
incident photon energy is in rough agreement with experimental data. Finally, we discuss the tem-
perature dependence of the work function and of the local Auctuating electric field which exists in
the adsorbate system. Experimental results for the temperature dependence of the work function
for the K/Cu(100) system are presented and are found to be in good agreement with the theoretical
predictions.

I. INTRODUCTION

Because of their great technological relevance, alkali-
metal atoms adsorbed on both noble- and transition-
metal surfaces have been well-studied chemisorption sys-
tems. ' For example, the strong decrease in the work
function which is induced by alkali-metal adsorption is
used in high electron emission cathodes. Another impor-
tant application is in catalysis where a small concentra-
tion of adsorbed alkali-metal atoms is found to enhance
the reaction rate or selectivity of many chemical reac-
tions. A wide variety of surface sensitive techniques have
been used to study these systems including work-function
measurements, electron-energy-loss spectroscopy
(EELS), inverse photoemission, second-harmonic gen-
eration (SHG), ' and metastable helium deexcitation
spectroscopy.

In this work we will use a simple but realistic model to
calculate the variation of the work function and the EEL
and SHG spectra with alkali-metal coverage. The work
function is determined by the static (zero-order) dipole
moment, while the EEL and SHG signals are determined
by the dynamical, first-order (in the external driving field)
and second-order dipole moments, respectively. All these
quantities are calculated using the same model, with
model parameters chosen to reproduce the measured
work-function data for K on Cu(100).

In Sec. II we define the model used in this work and in
Sec. III we calculate the coverage-dependent work func-
tion. In Sec. IV we discuss the frequency-dependent po-

larizability associated with an ordered lattice of adsorbed
alkali-metal atoms; the imaginary part of this polarizabil-
ity determines the alkali-metal-induced EEL intensity.
We predict a strong alkali-metal-induced increase of the
low-frequency "lossy" response of an alkali-metal-
covered metal surface. This theoretical prediction is
confirmed by new inelastic-electron-scattering data for
the K/Cu(100) system. In Sec. V we calculate the SHG
spectra for an alkali-metal-covered metal surface, and
discuss the experimental data of Song et al. Section VI is
devoted to a study of temperature-dependent local fields
which exist in alkali-metal adsorbate systems and which
inAuence many of their properties. We predict that the
work function of an alkali-metal-covered surface in-
creases with increasing temperature. Work-function
measurements on the K/Cu(100) system are in quantita-
tive agreement with these theoretical predictions. Sec-
tion VII contains a summary.

II. THE MODEL

The two most characteristic properties of alkali-metal
atoms are their small ionization energy and huge static
polarizability (see Table I). Both of these properties are
crucial for the understanding of the static (e.g., work-
function change) and dynamical (e.g. , optical absorption
or second-harmonic generation) properties of alkali-metal
atoms adsorbed on transition- or noble-metal surfaces.

The static polarizability of the alkali-metal atoms is al-
most entirely due to the ns~np transition, where ns is
the highest occupied s level (e.g. , 3s in Na) and np the
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lowest unoccupied p level (e.g. , 3p in Na). Hence, the
low-frequency polarizability of an alkali-metal atom is ac-
curately given by

ex=A 8
1 + 1

6E co kE +co
2A, 8
AE

as the frequency co —+0. From the known separation
AE =c, —c, between the np and ns levels and from the
known static polarizability a(0) given in Table I one can
derive the value for the parameter A, (see Table I).

Consider now an alkali-metal atom well outside a met-
al surface. The energy released on transferring an elec-
tron from the alkali-metal atom (ionization energy I) to
the metal (work function P) is P I. Next, —if the positive-
ly charged alkali-metal atom is brought to its equilibrium
position on the surface, an energy e /4d is released (as-
surning that the alkali-metal atom stays fully ionized and
neglecting the work done. against the repulsive part of the
ion-metal interaction potential), where d is the separation
between the center of the alkali-metal ion and the image
reference plane of the metal. Hence, within this simple
model, the alkali-metal binding energy is

Es=g I+e l4d . —

Since for alkali-metal atoms I-4—5 eV and for a typical
transition metal P-4 eV, one gets Es =3—4 eV if d = 1 A
as expected in most cases. This binding energy is slightly
larger than that observed experimentally (typically
Es =2.5 eV) and is consistent with the fact that the ad-
sorbed alkali-metal atom is not fully ionized.

When an alkali-metal atom is brought into the vicinity
of a metal surface, the ns and np levels shift (see above)
and broaden into resonances. The ns resonance is located
mainly above the Fermi energy but also has a tail extend-
ing below this energy. Theoretical first-principles calcu-
lations have shown that the ns resonance at low alkali-
metal coverage is centered -2 eV above EF and has a
full width at half maximum (FWHM) I, —1 —'2 eV.
Hence the filling of the ns resonance (accounting for both
spin directions) is typically -0.2 electron as compared
with one electron in the gas phase. We note here that a
partial filling of the ns resonance, even at very low alkali-
rnetal coverage, is in accordance with the metastable heli-
um deexcitation data of Woratschek et al.

As the alkali-metal coverage increases, the dipole mo-
ments associated with the partly ionized alkali-metal
atoms and their images will give rise to an electric poten-
tial at the surface which shifts the ns and np levels to-

TABLE I. The ionization energy I, the static polarizability
a{0), the energy separation hE between the np and ns levels,
and the transition dipole moment ek.

Cs

P=ed(0. 5 —&, n„)+—eA, (c, c~+c~c, ) . (2)

We have assumed spin degeneracy. For later use, we
note that if a time-dependent external electric field E(t)
exists at the surface, we must add the term pE(t) to—
(1) [throughout this paper we will assume that the time
dependence of any external field E(t)-exp( —idiot) is so
slow that the metal electrons can screen it out almost per-
fectly inside the metal, i.e., we assume that ~&&co&,
where co~ is the bulk plasma frequency].

III. WORK FUNCTION

The work-function change b,P induced by adsorption
of alkali-metal atoms on a surface is given by

hP =4~nep,

where n is the number of adsorbed alkali-metal atoms per
unit area. The dipole moments of all the adsorbed
alkali-metal atoms are assumed identical, which is the
case only if they form an ordered lattice structure. At
low alkali-metal coverage and at high enough tempera-
ture, where the thermal motion can overcome the strong
repulsive interaction between the alkali-metal atoms, this

wards larger binding energies. This will increase the oc-
cupation of the ns resonance and hence decrease the di-
pole moment associated with an alkali-metal atom. The
alkali. -metal-induced electric field at the surface also has a
second effect: due to the nonzero static polarizability as-
sociated with virtual electronic transitions from the filled
part of the ns resonance to the empty np resonance, di-
pole moments will be induced in the alkali-metal atoms
which have opposite direction to that caused by the
ns ~metal charge transfer. Both of these effects must be
accounted for when describing the coverage-dependent
work function. Note, however, that at low alkali-metal
coverage, owing to the small occupation of the ns reso-
nance, the contribution to the polarizability from virtual
ns~np transitions will be much smaller than for gas
phase alkali-metal atoms (see below).

The processes described above are contained in the fol-
lowing model Hamiltonian:

HO=E, &, +E'ER'p+ g sknk+ g (V I c, ck+H. c. )
k k

+ g ( V k c„ck+H. c. ) —p, Eo .
k

Here, we consider one single adsorbed alkali-metal atom
which interacts with the other adsorbed alkali-metal
atoms only via the local electric field Eo to be specified
later. The energy levels c., and c. are "renormalized" due
to, e.g., image effects and we have neglected the Coulomb
repulsion energy U associated with having two electrons
(spin up and spin down) in the s level (it has been argued
by Muscat and Newns that the effective U for adsorbed
alkali-metal atoms is negligibly small). The energy levels
of the metal are denoted by ck, and V,k and V k denote
the hybridization interaction between the

~
ns ) and

~ np, )
orbitals and the metal orbitals ~k). Finally, the dipole
moment operator p is given by
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is no longer the case (we will discuss temperature effects
in Sec. VI). We can write

p =&glplg&

where lg) is the ground state of the adsorbate system.
Since the Hamiltonian (1) is an effective one-particle
Hamiltonian, it can easily be diagonalized, and p and hP
can consequently be calculated exactly within this mod-
el. Here we prefer to present an approximate solution
which is strictly valid only at low adsorbate coverage, but
which is easier to interpret physically.

We assume that the np resonance remains unoccupied
upon adsorption. The dipole moment p then has only
two contributions:

and where a,„(0)is the static polarizability associated
with virtual electronic transitions from the filled part of
the ns resonance to the np resonance. Eo is the electric
field at the adsorbate under study from the dipoles associ-
ated with all the other adsorbed alkali-metal atoms, i.e.,

E=—g = —Up
2p

; o Ix;I'

where U= 18n and where the factor of 2 accounts for
the image dipoles. If p, (E) denotes the density of states
projected on the ns resonance, then

E,F
(n, )=f dEp, (E) . (7)

Note that
p =p, +n, (0)Eo, (4)

where p, is the contribution from the alkali-
metal —+metal charge transfer, i.e.,

p, =ed (1—2(n, ) ),

dip, (e)= 1 .

The polarizability a, is calculated in Sec. IV where it is
found

a, (co) =2(eA, ) dE de'p, (e)p (e') 1

c' —c—co—i 0 c.—c' —co—i 0

and the static polarizability a,z(0) is obtained by setting
co=0 in (8).

In all of the numerical results presented in this paper,
we have assumed that p, (E) and p (c, ) are Lorentzians,
?.e

(9)

The parameter values used above are quite reasonable.
For example, the value of d is very similar to what one
would obtain using the Lang-Kohn reference plane for
the image potential' and the width I =1 eV is in accor-
dance with the calculations by Muscat and Batra. "

To illustrate the physics involved in more detail, let us
consider the coverage dependence of c, —edEo —EF
=—E, —EF, a, (0), and the filling (n, ) of the ns resonance.

and

1 I /2
p~(E) =—

~ ( e —
E~ edEo ) + ( I ~

—l2)
(10)

Furthermore, we assume that k and the separation c., —c
between the ns and np levels are the same as in the gas
phase. The free parameters in the theory are therefore d,
E, —E~, and I, and I (most results presented below are
rather insensitive to the width I of the np resonance).
These parameters have been chosen to give the best possi-
ble fit to the known coverage-dependent work function
for K on Cu(100).

Substituting (5)—(10) into (4) gives an implicit expres-
sion for p as a function of coverage n, which can be
solved for p(n) by iteration. The circles in Fig. 1 show
the variation in the work function P with the coverage n

for K on Cu(100) (Ref. 9) at T = 120 K. The K-
monolayer coverage is at n =0.057 A . The solid line
has been calculated using the theory described above with
d =1.9 A, E, —eF=2.4 eV, and I, =I =1 eV (and from
gas phase data, iI=1.41 A and E~

—s, =1.6 eV). The
dashed line is obtained with the same parameters as
above except that we have put A, =O so that no screening
associated with s~p transitions can occur. As expected,
the dipole moment p now becomes larger.

) 2

CI

with screening ~

-5
0.01 0.02

n(A )

without

0.03 0.04

FIG. 1. The work-function change AP as a function of cover-
age n for K on Cu(100). The circles are experimental data from
Dubois et al. (Ref. 9). The two curves are theoretical results
calculated with and without the screening caused by virtual
s ~p transitions. The model parameters are d = 1.9 A,
c., —cF =2.4 eV, I ~

=I,= 1 eV and from gas phase K,
c~

—c, = 1.6 eV, and A, = 1.41 A (with s ~p screening) and X=O
(without s ~p screening).



39 WORK FUNCTION, OPTICAL ABSORPTION, AND SECOND-. . . 8223

n (atoms/A }

Q.OL 0.02 0.01

W
I

$W

0
0.0'l 0.02

n(A )

0.03 0.00

FIG. 2. The separation 'E, —cF between the center of the s
resonance and the Fermi energy (note: 'K, = c,, —edEo ) as a func-
tion of the coverage n of K adatoms. The same model pararne-
ters as in Fig. 1 (with screening).

0.01 0.02
n{A )

0.03 0.04

FIG. 3. The occupation of the s resonance (including both
spin directions) as a function of the alkali-metal coverage n.
The solid curve has been calculated using the same parameters
as in Fig. 1 while the dashed curve is obtained with A, =O, i.e.,
without screening from virtual s —+p transitions. The other
model parameters are readjusted so that the coverage-dependent

0
work-function data in Fig. 1 can be well fitted (d =2.2 A,
I,= 1.5 eV, and c, —cF=2.4 eV).

Figures 2 and 3 show the coverage dependence of 7, —c.F
and 2(n, ), respectively. As expected, these quantities
change monotonically with increasing coverage. The
dashed line in Fig. 3 shows the variation of 2(n, ) in a
second calculation where we have set A, =O and readjust-

0
ed the other parameter values (d =2.2 A, I,=1.5 eV,
and s, —sF=2.4 eV) so that the experimental work-
function data in Fig. 1 are still well reproduced. We note
that the filling of the s resonance in this latter case is
larger, i.e., the net dipole moment caused by charge
transfer is smaller than before. The reason for this is
obvious —in order to have the same total dipole moment
p [Eq. (4)] in the absence of screening by s ~p transitions,
it is necessary to reduce the charge transfer from the
alkali-metal ns level to the metal.

Let us now consider Fig. 4, which shows the variation
of the static s ~p polarizability, a,~(0), with the position

FIG. 4. The total static electronic polarizability (curve
denoted by s~s+s~p) and the contribution from s —+p tran-
sitions alone, as a function of the alkali-metal coverage. The
same model parameters as in Fig. 1.

of the ns resonance relative to the Fermi energy (lower
scale) and as a function of K coverage (upper scale). The
separation between the s and p resonances is kept con-
stant at 1.4 eV. As Z, —cF decreases, the polarizability
a, (0) increases. This is partly a result of the increasing
occupation of the ns resonance and partly because the
separation between the Fermi energy and the center of
the np resonance decreases leading to smaller virtual exci-
tation energies [see (8)]. Note also that the static polari-
zability a,~(0) in the case of a half-filled ns resonance
(i.e., s, —sF=O) is smaller than that of a gas phase K
atom (23 versus 36 A ). This is a result of the nonzero
width of the ns and np resonances which increases the
average virtual s —+p excitation energies involved in the
polarizability (8) [when I, and I ~0, (8) reproduces the
gas phase polarizability].

It is interesting to note that the main part of the static
polarizability of an adsorbed alkali-metal atom comes not
from the s~p transitions but rather from virtual transi-
tions from the filled part of the s resonance to the empty
part of the same resonance. Indeed, the total static polar-
izability is much larger (90 A, see Fig. 4) than the gas
phase polarizability (36 A ). Note also that at small
alkali-metal coverage, where the filling of the ns reso-
nance is small, the polarizabilities derived from the s —+p
transitions are very small (e.g., a,~ = 1 A as n ~0).

IV. POLARIZABILITY

The frequency-dependent polarizability of adsorbates
can be studied using electron-energy-loss spectroscopy.
Hence we will first review some of the basic equations
which relate to EELS.'
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Let us first define the surface response function g (q~~, co)

which plays an important role in EELS. Consider a
semi-infinite medium occupying the half-space z )0. Let

( )=

be an external potential which polarizes the medium.
The induced polarization changes will give rise to an in-
duced potential which for z & 0 (i.e., outside the medium)
can be written as

iqll x
II

+ q
II

z —i cot
(x t)= —g(q, ~}e (12)

This equation defines g (q~~, co).
Now consider an electron incident upon the surface.

The electric field from the electron penetrates into the
medium where it can excite, e.g. , electron-hole pairs,
plasmons, or phonons. Let k and k' denote the wave vec-
tors of an incident and an inelastically scattered electron,
respectively. Thus Aq~~ =A'(k~~ —

kI~) is the momentum
transfer (parallel to the surface) to the excitation in the
medium and irido=fi (k —k' )/2m is the energy transfer.
Let P(k, k')dQ«d(A'co) be the probability that an in-
cident electron is scattered inelastically into the range of
energy losses between A'co and A'(co+den), and into the
solid angle dQk around the direction of k'. For small
momentum transfer, qll «k, and for "weak" scattering
one has, from standard dipole scattering theory,

P(k,k')=, Img(qm, co),2 1 k
eaoir cosa '

q// +qJ

Ho=ps c c (18)

In the new basis

IJ Xpapacy ~

aP
(19)

where p &=&alplP&. Accounting for both spin direc-
tions, the polarizability a(co) is given by the standard for-
mula

a(co)=2+ f(c )p, tints
aP

1 1

c.&
—.c —co—i0 c —

ep —~—i0

(20)

metal requires co «~, where ~ is the plasma frequen-
cy). This approximation is satisfied in the applications
presented below.

Let us now calculate the polarizability of an adsorbed
alkali-metal atom within the model described in Sec. II.
Let E(t) be an external time-varying electric field. The
Hamiltonian for the adsorbate system is given by

H =Ho pE—(t),
where Ho and P are given by (1) and (2). Since Ho is
quadratic in creation and annihilation operators, it can be
diag onalized

= A (k, k') I g (q~~, ), (13) where f (e ) =1 if e & sF and zero otherwise. Using (2),
we can write (a&P)

where q~ =k, —k,', and a is the angle of incidence. Thus
the inelastic scattering probability is a product of two
factors —a kinematic factor A (k, k ) which is indepen-
'dent of the properties of the medium, and the loss func-
tion Img(q~~, co) which is proportional to the power ab-
sorption in the medium due to an external potential of
the form (11). g(q~~, co) enters the inelastic scattering
probability (13) because it determines the induced electric
field outside the substrate [via (12)] and it is this time-
varying field that can scatter the incident electron inelast-
ically.

For a regular lattice of atoms, treated as point particles
with the polarizability a(co), adsorbed on a substrate de-
scribed by a local dielectric function e(co), one can show
that (see Appendix A)

p t3= de&
l a&s&

—
le&

+«(&als &&plP&+&alp &&sip&) .

E 6 co l0 CO l0

where

p, (s)= y l &ass & l'5(E —e )

and

Substituting (21) into (20) gives

a(co) =2Idc de'f (e)p, (s)[(ed) p, (s')+(eA ) p~(e')]

(21)

(22)

e(co) —1
g = +8m.nq~~ao(q~~, co) .

eco +1
The total poiarizability ao(q~~, co) is given by

a(co )

1+a(co)U(qadi)

where

(14) p, (s)= g I&alp &l'fi(e —E ) .

In deriving (22) we have made two assumptions.
(a) The occupation of the np resonance can be neglect-

ed.
(b) Terms involving

p, (e)= g &&la&&alp &fi(s —e )

and the factor of 2 accounts for image dipoles. Equation
(14) assumes that ~e(co)~ ))1 (which for a free-electron

can be neglected compared with terms involving p, (E) or
p (c). This assumption is a good approximation if, e.g. ,
the overlap between p, and p is small (see Appendix B).
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FIG. 5. The real and imaginary part of the single-particle po-
larizability a{co) as a function of the frequency co of the external
driving 6eld. The calculation is for the alkali-metal coverage

o —2
n =0.01 A using the same model parameters as in Fig. 1.
The curve denoted by s ~s +s ~p is the total polarizability
while the other curve shows the contribution from s ~s transi-
tions alone.

0
0

v (eVj
10

FIG. 6. The total polarizability ao{q~~,co) for
q~~

=0 as a func-
tion of frequency co and for several alkali-metal coverages.

Let us now present some numerical results. We as-
sume that p, and p are Lorentzians [see (9) and (10)] and
that all the parameters c,„c,I

„

I, A, , and d take the
same values as before. Figure 5 shows the real and imagi-
nary parts of the polarizability a(co) of a single particle at
the coverage n =0.01 A . At small frequencies, the
contribution from s ~s transitions dominates, particular-
ly for Ima. Figure 6 shows the imaginary part of the to-
tal polarizability [as given by (15)] with

q~~
=0 and for

three difFerent coverages, n =0, 0.01, and 0.02 A . For
later use, we present both the magnitude and the phase of
the screening factor (1+aU) ' in Fig. 7.

Let us now compare theory with experiment. Many
EELS experiments have been performed on alkali-metal
atoms adsorbed on transition iaetals, noble metals, and
on aluminum. Here, we will only focus on the low
alkali-metal-coverage regime. All of the experimental
data exhibit a peak at -3 eV loss energy with a full
width at half maximum of a few eV. Since the
adsorbate-induced EELS signal is proportional to Imao
(we assume that dipole coupling dominates the inelastic
scattering cross section), one expects theoretically and
6nds experimentally, spectra in rough agreement with the
results given in Fig. 6. A crucial test of the theory is
whether the theoretically predicted intensity of the loss
peak is in accordance with the experimental data. To test
this we consider the experimental results of Andersson
and Jostell for K on Ni(100). At a K coverage of about

1.2—

n =0.005
1.0—

I

0.8
+

0.6

0.4

4
O

10

FIG. 7. The absolute magnitude and the phase of the screen-
ing factor {1+aU) ' as a function of frequency co and for
several alkali-metal coverages.
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Img~,„,&= 2g'
kF CO~

(24)

where, for C (ru, =2.6'7), 2g= 1. Now, when a low cover-
age of alkali-metal atoms is adsorbed on the surface,
there will be another contribution to Img which is given
by the second term in (14)

C"
CV

5

Energy Loss (eV)

FIG. 8. Experimental electron-energy-loss spectra from K on
Ni(100) for two alkali-metal coverages, n =0 and 0.016 atoms
A . From Andersson and Jostell, Ref. 2.

0.016 A the increase in the EELS signal at the max-
imum of the loss peak is roughly a factor of 2 larger than
that of the clean surface at the same loss energy (see Fig.
g), i.e., using (14)

Smnqi Imao(q((, co) =2. (23)
Im[e(co) —1]/[e(co)+ 1]

In dipole scattering,
q~~

(fico/2Ep)kp and using the tabu-
lated dielectric function e(co) for Ni at fico=2. 3 eV, we

get Im(e —1)/(8+ 1)=0.14 eV and (23) gives

Im(E —1)/(e, +1)
4mn Acoko/2Eo

where we have used Eo =18 eV. This is in rough agree-
ment with Imago=10 A at the peak maximum in Fig. 6.
Hence we conclude that it is very likely that the loss
peaks observed in EELS from adsorbed alkali-metal
atoms in the low coverage regime are due to electronic
transitions from the occupied part of the ns resonance to
the unoccupied part of the same resonance and to the np
resonance.

Finally, let us pr'esent another test of the theory. In-
elastic scattering of slow electrons from metal surfaces is
an ideal tool for the study of the low-energy surface exci-
tations. Recently, this technique has been used to study
the electron-hole pair response of a Cu(100) surface. '

There are several contributions to the loss function
Img ( q~~, to ) which can be classified according to the
source of the momentum needed for the excitations.
Here, we will focus only on the surface contribution
where the momentum needed for the excitation comes
from the surface potential. It has been shown that within
the semi-infinite jellium model

Imgl, ~k,~;= &~nq~~ Ima

Hence

Img~ai~ati 4m Im~io—fl kF Q)p
g I sU g f

(26)

For small co, Ima~-co so that (26) is co independent. For,
0

e.g. , n =0.02 A we have from Fig. 6 Imao=2co where
0

co is measured in eV and ao is in A . Hence (26) gives (for
a Cu substrate)

We conclude that a metal surface with a low concentra-
tion of alkali-metal atoms is much more "lossy" at low
frequencies than the clean surface. (Note, however, that
care must be taken to minimize the contribution from the
bulk and interference processes, as discussed in Ref. 13.)
To test this theoretical prediction we have performed in-
elastic scattering of slow electrons from the K/Cu(100)
system.

The thin lines in Figs. 9(a), 9(b), and 9(c) show the in-
elastic electron-hole pair background for a clean surface
and for two K-covered surfaces, n =0.0077 and 0.017
A . The solid line in 9(a) (clean surface) is the theoreti-
cally predicted loss background for Cu where we have in-
cluded the surface, bulk, and interference contribution to
Img [see Ref. 13(b) for details]. This first-principles cal-
culation, which contains no adjustable parameters, agrees
very well with the experimental data for loss energies
above =0.1 eV. The deviation between theory and ex-
periment for small loss energies is attributed to trace
amounts of C and 0 impurities. The experiment has been
performed under such conditions that the bulk and in-
terference contribution to Img cancel almost exactly [see
Fig. 6 in Ref. 13(b)]; hence the solid line in Fig. 9(a)
directly represents the surface contribution to the inelas-
tic loss background. The solid curves in 9(b) and 9(c) give
the expected loss background under the assumption that
Imo, o-co. We have scaled these curves so that they agree
with the experimental data at small loss energies. For
case (b) of Ref. 9 relatively good agreement between
theory and experiment is obtained although the experi-
mental data tend to decay somewhat slower with increas-
ing loss energy than the theoretical result. For case (c) of
Fig. 9 the discrepancy between theory and experiment is
much larger, the experimental data now lying well above
the theoretical result for large loss energies. We attribute
this deviation between theory and experiment to non-
linear contributions to Imo. o(co). Indeed from Fig. 6 it is
obvious that for "large" cu, Imago increases faster than in-
dicated by the initial linear slope. The "onset" of this
rapid increase in Imao(co) occurs at smaller loss energies
~ as the potassium coverage increases, in qualitative
agreement with the experimental data in Fig. 9. The
magnitude of the loss background at small loss energies is
also in good agreement with theory. The solid lines in
9(b) and 9(c) are obtained by scaling the solid line in 9(a)
with the factors 3.5 and 14, respectively. Subtracting
away the contribution from the clean surface (we assume
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ty. ' SHG vanishes in systems with inversion symmetry,
e.g. , in the bulk of simple metals, but not at the crystal
surface where the inversion symmetry is broken.

SHG has been used to study clean metal and semicon-
ductor surfaces, ' as well as adsorption of gases on metal
surfaces. ' It can often be used under conditions where
many standard surface-science techniques cannot be ap-
plied, e.g., to study surfaces in liquids or interfaces be-
tween solids. In addition, the method has inherently high
time resolution limited only by the pulse duration of the
laser employed (which currently can be shorter than
10 ' s).

Recently, tremendously enhanced SHG signals have
been observed for thin layers of alkali metals adsorbed on
noble- and transition-metal surfaces. ' In particular,
Song et al. find that less than one monolayer of Rb on
Ag(110) enhances the SHG signal by a factor —1000 at
the incident photon energy fi~ = 1.16 eV. Here, we show
that the simple model described in Sec. II gives a strong
enhancement at low alkali-metal coverage.

Let E(t) be an "external" time-varying electric field.
The Hamiltonian for the adsorbate system is written as
before

H =Hp PE(t)—,

I

0.1 0.2

Energy Loss (eV3

0.3 0.0
where Hp and P are given by (1) and (2). As before, we
introduce a new basis in which the one-particle operator
Ho is diagonal:

FIG. 9. The electron-hole pair signal AP as a function of the
loss energy and for three different coverages n of K on Cu(100).
The solid line for the clean surface (n =0) is the theoretical re-
sult obtained using an incident electron energy ED=1.7 eV, an
angle of incidence a =60', and a collectiog angle for the
analyzer (half-width at half maximum) 2'. The thick solid lines
for the alkali-metal-covered surfaces have been obtained by
scaling that of the clean surface with factors 3.5 and 14. Experi-
mental details are discussed in Ref. 9.

Hp = Q e~c ~c~

In this basis

p= Q pa+acp ~

a/3

p ti= —ed (als ) (slP)

+~e (&als & &pip&+ &alp & &sip&) .

(28)

(29)

(30)

additivity) this gives enhancement factors of 2.5 and 13.
By interpolation from Fig. 6 we obtain Imam=0. 8m and
Imo;O=1. 6~ for the potassium coverages n =0.0077 and

0
0.017 A. , respectively, where ~ is measured in eV and
ap in A . Substituting these results in (26) gives the
enhancement factors 2.3 and 10.2, respectively, which is
in remarkably good agreement with those deduced from
the experimental data.

Finally let us point out that Eguiluz and Campbell
have performed a very nice and detailed study of the
dynamical response of thin jellium slabs on a jellium sub-
strate. ' However, these calculations are of no relevance
for the present work which is concerned with low alkali-
metal coverages which cannot be described by a uniform
jellium slab.

Second-order response theory gives the second-order in-
duced dipole moment as (at zero temperature)

P&(t)= f dt dt'y(t, t', t")E(t')E(t"),

where

(31)

x g n [[p(t),p(t')], p(t")] (33)

e(t —t')e(t' t")(Ol [[p(t),p(t')], p—(t")]l0),
(32)

where l0) is the ground state of the system in the absence
of the "external" field E(t). Substituting (29) into (32)
gives

V. SECOND-HARMONIC GENERATION

Second-harmonic generation has found increasing ap-
plication in surface science because of its surface sensitivi-

where the matrix p(t) has the components

&ay(t) =patte (34)
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E(t)= f dcoE(co)e

E(co)= f dt E(t)e' ',= 1

2m'

(35)

It is convenient to Fourier transform the time depen-
dence

where

g(co, co, co )

( cof co t co f )y( t tt t g

)2& 7

Substituting (33) and (34) into (38) gives

(38}

and similarly for p (t). Substituting this into (31) gives

Pz(co) =f dco'dco"y(co, co', co")E(co')E(co"),

X(coico, co )=5(co—co —co )A (co,co"),
(37) where

(39)

A (co,co")=fdade'ds"f (E)F(e,e', e") 1 1 1

+.-'+ 0 -+.-'+ 0+ +' —.+ 0 -+'-.+ 0

1 1 1 1

m+v' —c."+i0 m" +c—e"+i0 co+a' —c,"+i0 co"+c.' —c, +i0
where

F =2 g p ~&rp~ 5(e —s )5(E' —e&)5(E"—s„),
agy

where the factor of 2 accounts for the electron spin.
Substituting (30) into (41) gives

F =2( —ed) p, (E)p, (e')p, (E")+2(ei,) (
—ed)p, (e)[p, (e')pz(e")+p~(e')p, (e")] .

(41)

(42)

In deriving this formula, we have made the same two approximations as in Sec. III, namely, (a} we have assumed that
the occupation of the P resonance is negligible; (b) we have neglected terms involving p,~(s) which is a good approxima-
tion if the overlap between p, (s) and p (E) is small (see Appendix B}.

If p, and p~ are well approximated by Lorentzians [see (9) and (10)], then the e' and e" integrals can be performed
analytically. The remaining integral over c. is conveniently performed by numerical integration.

Let us now assume that the "external" electric fie1d has the form

E(t) =Eoe ' +Eo e

so that

E(co)=E05(co coo)+Eo 5—(co+coo) .

Substituting this into (36) gives an integrand proportional to

5(co co' —co")[E—05(co' coo)+ED 5(co'—+coo)][EO5(co" coo)+Eo 5(c—o"+coo)]

=5(co 2coo)E05(c—o' coo)5(co"——coo)+5(co+2coo)(EO ) 5(co'+coo)5(co" +coo)

+5(co )EOEO [5(co' —coo)5(co"+coo)+ 5(co'+ coo)5(co"—coo) ] .

The last term in this expression gives only a contribution
to the static dipole moment which does not interest us
here, while the first and second terms give a contribution
to the induced dipole moment of the form

P2 (co ) =B5(co 2coo) +B*5(co+2coo), — (43)

OI

2~oP2(t)=Be '+c.c. , (44)

where

B = A (2coo, coo)E0 .

The radiation from this oscillating dipole gives rise to the
SHG signal. If we have an ordered lattice of adsorbed

dp clean
2

dA

~ IEOI'
264' en b

(46)

where nb„&k is the number of free carriers per unit volume

I

alkali-metal atoms, we must sum up the scattered radia-
tion from each dipole (plus its image in the substrate) in
order to get the total SHG signal from the adsorbates.

Let us now discuss the magnitude and frequency
dependence of the SHCr signal. It is convenient to nor-
malize the SHG signal for an adsorbate-covered surface
to that of the clean surface. The second-order contribu-
tion to the normal dipole moment per unit area of a clean
metal surface is conveniently written (at low frequen-
cies) '
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in the bulk and a is a dimensionless, frequency-dependent
and, in general, a complex valued function of the laser
frequency co. For the small frequencies which interest us
here (Ace-I eV), experimental data indicate that for
silver a = —10.

Consider now a metal surface with adsorbed alkali-
metal atoms and let n denote the number of adsorbates
per unit area. Including the dipole-dipole interaction be-
tween the adsorbates, we obtain from (44) and (45)

o
QJ

C5

CL

n=0.02 atomsf'A

dP~ ' nA (2a), co)iEoi

[I+a(co)U] [I+a(2')U]
Hence we can write

(47)

dP' '/dA

dp clean /d g2

2'2 3
2e d bulk

lf I, a
Q(~)

[I+a(co) U] [I+a(2')U]

v (eV)

FIG. 11. The phase of Q.

(48)

where

Q(a)) = —16m. A (2', co)I', /(ed) (49)

In Fig. 10, ~Q~ is plotted as a function of the laser fre-
quency co and for several di8'erent alkali-metal coverages.
Figure 11 shows the phase of Q [Q =

~Q~ exp(iP)]. These
calculations have been done using the same parameter

values as before, namely c, —v+=2. 4 eV, I,=I =1 eV,
d =1.9 A, A, =1.41 A, and c. —c, =1.6eV.

A knowledge of the phase P is important if several (ap-
proximately) independent processes contribute to the
SHG signal. This is the case for low adsorbate coverages
where the total second-order dipole moment per unit area
is the sum of the contribution from the adsorbates plus
the contribution from the clean surface, i.e.,

dP"'/dA =dP' '/dA+dP'""/dA .

70
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2 atoms/A

'50
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0
30— s+p n = 0.01 atoms/A
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20-
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I I

n=0 atoms/'A

v IeV)

FIG. 10. The absolute magnitude of the function Q, which is
proportional to the second-order induced dipole moment, is
shown as a function of frequency and for several difFerent
alkali-metal coverages. The contribution froin s~s transitions
alone is shown separately. The same model parameters as in
Fig. 1 are used.

Depending on the relative phase between these two con-
tributions, constructive or destructive interference will
occur. '

The alkali-metal-induced enhancement of the SHG sig-
nal, ~g~, is shown in Fig. 12 as a function of the alkali-
metal coverage n and for the incident photon energy
co=1.16 eV. The fast decay of the SHG signal for
n ~0.02 A is due to the strong (linear) screening of the
electric field at the surface. This screening gives rise to
the factor [1+a(co)U] [I+ct(2')U] ' in (47) and gives
a reduction in the SHG signal by a factor =0.03 at the
alkali-metal coverage n =0.02 A and by =2X 10 at
n =0.04 A (see Fig. 7). Without this screening, ~g~

would increase monotonically with increasing alkali-
metal coverage n. It should be pointed out, however,
that the present model calculation, which neglects the
direct overlap in the wave functions of the alkali-metal
atoms, is strictly valid only at relatively low alkali-metal
coverage (perhaps n ~0.02 A ). Nevertheless, recent
model calculations by Liebsch, which use a jellium slab
on top of a semi-infinite jellium background to describe
the alkali-metal-adsorbate system (this might be a reason-
able model for thick alkali-metal layers), predict very
small enhancements in the SHCx signal. This is consistent
with the strong (linear) screening (at fico=1. 16 eV) in
such systems. Hence it is very puzzling that the observed
SHG signal increases monotonically up to about one
monolayer alkali-metal coverage and then only very slow-
ly decays in an oscillatory fashion with increasing film
thickness (see Fig. 13). On the contrary, electron emis-
sion caused by two-photon absorption (which is possible
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FIG. 12, The SHG enhancement as a function of the alkali-
metal coverage n.

hence strongly reduces the photocurrent at "high" adsor-
bate coverage in agreement with the experimental data in
Fig. 13.

Let us now discuss the magnitude of the SHG signal
and its dependence on the laser frequency. At 1.16 eV
photon energy, an enhancement of -40 is found at
n-0. 015 A (see Fig. 12). A strong increase in the
SHG signal at low alkali-metal coverage is in accordance
with the experimental data of Tom et al. and of Song
et al. (see Fig. 13). The result presented in Fig. 12 has
been calculated using a = —10. There exists at present
some uncertainty about the actual magnitude of the a pa-
rameter for Ag at %co=1.16 eV. While some "old" ex-
perimental data ' indicated a = —1 for Ag at %co=1.16
eV, there are new experimental data by Song and Plum-
mer which suggest a = —10. This is consistent with the
theoretical work of Weber and Liebsch and of
Chizmeshya and Zaremba using the jellium model de-
scribed earlier and treating the electron-electron interac-
tion within the density-functional scheme in the local-
density approximation (LDA) (Weber and Liebsch) or in
the hydrodynamic approximation (Chizmeshya and
Zaremba). However, the LDA is known to overestimate
the nonlinear response of atoms by typically a factor of 2
and the same might be true for metal surfaces. In addi-
tion, the jellium model does not account for the d bands
in the noble and transition metals and does not give the
correct work function. All of these factors taken togeth-
er make a theoretical estimate of the a parameter very
uncertain for both transition and noble metals. It is un-
likely that this fact will change the qualitative result that

only when the alkali-metal coverage is so large that the
work function P(2iitco=2. 32 eV) does indeed show a
peak centered at about —,

' monolayer for Rb on Ag(110)
(see Fig. 13). The fast decay in the electron current for
n ~

—,
' monolayer is almost certainly due to the strong

(linear) screening of the external driving field (see below).
The puzzling question is why this screening shows up in
this case but not in the SHG data. However, one should
note that while in linear optics light scattering and elec-
tron emission (the photoelectric effect) are both related to
the (linear) polarizability [light scattering —~a(co)

~
while

optical absorption -Ima(ni)] such a simple and direct
relation does not exist between SHG and electron emis-
sion caused by two-photon absorption. Indeed, the rate
of electron emission is given by

4,
l

C:
CU

2—
LJ
C:
C)
Vl
Vl

E
OJ

1
o
CL

(50)

2' f pE . p.E i 5(Ef E, ), —1"f 0 i l

-2000

1500 ~

1000 ~

a

5QQ m

where the sum is over all final states
~f ) where two pho-

tons have been absorbed and one electron has been excit-
ed from an occupied level to an empty level correspond-
ing to an electron which is leaving the adsorbate system.
Hence the electron emission current is proportional to p
while the SHG response function y-p [see Eq. (33)] and
no simple relation exists between the two processes.

The electric field E in (50) is the screened linear electric
field, i.e., it contains the screening factor [1+a(co)U]
which therefore occurs to the fourth power in w and

2 3 4
Thickness (monoLciyers)

0
5

Flax. 13. The SHCJ signal [normalized to that of the clean
Ag(110) surface] and the electron emission current as a function
of the alkali-metal thickness (in monolayers). The experimental
data are for Rb on Ag(110) and are obtained by Song et al. (Ref.
5).
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the model studied in this work gives a strong enhance-
ment in the SHG at low alkali-metal coverage.

Finally, concerning the frequency dependence of the
SHG signal, it is obvious from Fig. 10 that as the laser
frequency is doubled (from 1.16 to 2.32 eV),

~ Q~ decreases
and this leads to a decreased SHG signal in qualitative
agreement with the experimental data. '

UI. TEMPERATURE-DEPENDENT
LOCAL FIELDS

Alkali-metal atoms adsorbed on noble or transition
metals at 1ow coverages are largely ionized. The resulting
strong repulsive interaction between the alkali-metal
atoms makes them form (almost) ordered lattice struc-
tures if the temperature is low enough. For ordered
structures the local electric fields E, and the induced di-

pole moments p, are identical for all of the adsorbates
and are related via E = —Up where the dipole sum U can
be written

U= 2 = 180 /a
/x, /'

(51)

Here the factor of 2 accounts for image dipoles and a is
the lattice constant (assuming a simple square lattice) as-
sociated with the alkali-metal-monolayer surface unit cell
and 0 is the corresponding alkali-metal coverage. As the
temperature is raised, the adsorbate lattice will start to
disorder. For example, at low alkali-metal coverage it is
known that the alkali-metal-induced low-energy electron
diA'raction rings typically disappear at —300 K. As a re-
sult, the dipole sum in (51) is no longer over a regular lat-
tice and the local electric fields E; and the induced dipole
moments p; are no longer identical for all of the adsor-
bates. In the limiting case of complete disorder, where
the adsorbates are distributed randomly (but with an
average concentration n =8/a ) over the substrate bind-
ing sites, the dipole sum becomes U(random) =180/a .
This difFers by a factor 0'~ from U (ordered) and at low
alkali-metal coverage (say 0—0.01) this is a very large
"correction. " In practice it is impossible to reach the
limit of complete disorder by simply increasing the tem-
perature (it would require such a high temperature that
the alkali-metal atoms desorb almost instantaneously),
but the argument indicates that non-negligible
temperature-dependent changes in the local fields E; and
dipole moments p; may occur as the temperature is
raised. In this section, we wi11 discuss this problem in
some detail.

Consider first the idealized case where the substrate is
perfectly smooth (i.e., the alkali-metal binding energy is
the same everywhere within the surface unit cell). In this
case, the alkali-metal atoms would form (at zero tempera-
ture) a perfectly ordered (triangular) lattice structure.
However, a real surface is corrugated with one site within
each surface unit cell having a higher binding energy
than the other sites. At low alkali-metal coverage, the
state of highest binding energy is obtained by displacing
the alkali-metal atoms slightly away from their ideal lat-
tice positions to the nearest site of high binding energy.
This results in disorder. In the discussion which follows

we will only focus on the very low coverage case here, for
our purposes, this weak disorder can be neglected.
Hence, when calculating the spatial distribution of adsor-
bates at thermal equilibrium, we can treat the substrate
as perfectly smooth and assume that the adsorbates (at
zero temperature) form a regular lattice structure.

Suppose that we increase the surface temperature.
Due to thermal motion, the alkali-metal atoms will now
temporarily occupy binding sites away from the lattice
sites occupied at zero temperature. Let us calculate the
total lateral interaction energy after the alkali-metal
atoms have been displaced by vectors b; (i =1, . . . , X),
x; ~x;+b,'

&P]PgE(b)=-, y /x;+b; —x —b
/

(52)

where the factor of 2 accounts for image dipoles. For the
ordered lattice ( T =0) all the alkali-metal atoms give rise
to the same dipole moment because the local electric field
at each alkali-metal atom from the dipoles associated
with all the other alkali-metal atoms is identical. Howev-
er, for TWO, we will have a distribution of induced di-
poles. The dipole moment p; of adsorbate i is a function
of the local electric field E;. At low alkali-metal cover-
age, where E; is small, we can expand

p; =p (E, ) =p (0)+aE, , (53)

where a=dp/dE at E =0. Note that both p(0) and a
can be calculated from the dependence of the work func-
tion on the alkali-metal coverage at low temperature (see
below}.

Expanding the interaction energy E(b) to second order
in b, gives

E(b)=E(0)+E pb bp, (54)

p, =p(n)+p; b +p; pb b~, (55)

where p(n) is the dipole moment of an adsorbate when
b =0 and at the alkali-metal coverage n under con-
sideration. Now, since

(56)

where

lx, +b, —x, —b, l' ' (57}

where we have introduced the "state" vector b& with 2X
components [the x and y components of b;
(i = I, . . . , X)] and where summation over repeated in-
dices (a, /3) is implicitly understood. There is no linear
term in the expansion (54) since b&=0 is a minimum of
E (b). Next we expand p, to second order in b:
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we get from (53) and (56)

p,. =p(0) —a+' U;,pj .
J

(58)
gp, =p(0) gp, 2—aE(b) . (59)

Next, we multiply this equation by p; and sum over i to
get

Substituting (54) and (55) in (59) gives, to second order in
b,

Np (n)+2+ p(n)p; b + gp;~ &b b&+2p(n) gp; &b b&

=Np(0)p(n)+p(0) gp; b +p(0) gp; &b b& 2a[—E(0)+E &b b&] .

Since 6 is arbitrary, we get

Np (n) =Np (0)p (n) —2aE(0),
[2p (n) —p (0)]g p; =0,

(60)

(61)

Since, in general, 2p(n)&p (0), (61) gives

gp;~;&+[2p(n) —p(0)] gp; &= 2aE &
—. (62)

p (0)—p (n)
Up (n)

Substituting this in (65) and (66) gives the final results

(p; ) =p (n) — k~ T,
Up (n)[p (n) p(0)/—2]

k~T

p (n) —p (0)/2

(67)

(68)

gp; =0

and (62) reduces to

(63) and the work-function change

bed=4,one (p.; )

(69)
Up (n)[p (n) —p (0)/2]Xp-n= (64)

p (n) —p (0) /2 where b,go(n) is the work function at low temperature.
Note that this level of theory is only valid when the
alkali-metal coverage is small and one is well away from
any singularity in Eqs. (64)—(69). These formulas can be
used to estimate the temperature dependence of the aver-
age local field (E; ) and of the work function. For exam-
ple, for K on Cu(100) we get, at the coverage n =0.01A, a 20% increase in the local field (E; ) and a 4% de-
crease ( = 120 meV) in the work-function lowering, as the
temperature increased from 0 to 600 K. The temperature
dependence of the work function of a clean metal surface
is typically ten times weaker than for an alkali-metal-
covered surface [e.g., for a clean Pt(111) surface P de-
creases by about 15 meV as the temperature is raised
from 0 to 600 K (Ref. 25)].

We have performed work-function measurements to
test these theoretical predictions. For a clean Cu(100)
surface the work function decreases by 8+2 meV when
the surface temperature increases from 100 to 500 K. At
the K coverage n =0.009 A the work function in-
creases by 41+11 meV as the temperature increases from
100 to 420 K. Assuming that the work-function change
of the clean surface and of the alkali-metal-covered sur-
face are additive this gives a net =50+10 meV alkali-
metal-induced increase in the work function. This is in
reasonably good agreement with the theoretical predic-
tion, 65 meV, according to Eq. (69) and Fig. 1.

Using (55), (63), and (64) gives

gp, =Np(n) — E
tabb bp

or

=p(n)— cz
k~T .

p (n) —p (0)/2
(65)

Using (53), we get

&p, ) =p(0)+a&E, )

and combining this with (65), we obtain

k~T

p (n) —p (0)/2
'

p(n) —p(0)
a (66)

To determine cx, let us consider an ordered. lattice of ad-
sorbates (i.e., T =0), where

E= —Up .

Furthermore, in this case (53) takes the form

(p; ) =—g p; =p (n) — —(E (b) E(0))—e 1

p (n) —p (0)/2 N

p (n) =p (0)+aE
VII. SUMMARY AND CONCI. USION

Hence

=p(0) —
a Up(n) .

In this work, we have developed a simple but realistic
model for alkali-metal absorption on metal surfaces. The
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FIG. 15. The electron density profile at a surface.
FIG. 14. A schematic representation of three processes dis-

cussed in this work.

inhuence of a low concentration of adsorbed alkali-metal
atoms on (a) the work function; (b) the surface polariza-
bility; and (c) the SHG signal has been analyzed in detail
(see Fig. 14). The same model with the same model pa-
rameters was used in all of our calculations. The surface
polarizability and SHG signal are determined by the first-
and second-order (in the external driving field) induced
dipole moments and these quantities were calculated us-
ing standard linear and quadratic response theory. The
main results of the analysis are the following.

(a) The alkali-metal-induced peaks observed in the
electron-energy-loss spectra at low alkali-metal coverage
are the result of electronic transitions from the filled part
of the ns resonance to the unoccupied part of the same
resonance and to the np resonance. In addition, the sur-
face becomes much more "lossy" at low frequencies.

(b) The model predicts a strongly enhanced SHG signal
at low alkali-metal coverage (at the photon energy
fico= l. 16 eV). At higher alkali-metal coverage the SHG
signal is predicted to decrease due to screening; this is not
in accordance with the experimental data which show a
monotonic increase in the SHCx signal up to full mono-
layer coverage. We have no explanation for this puzzling
discrepancy between theory and experiment.

(c) The temperature dependence of the work function is
quite small, typically of order-5% as the temperature in-
creases from 0 to 600 K.

time-varying electric potential of the form

2ir
exr

= e

where the prefactor 2irjq~~ has been chosen for later con-
venience. If the medium can be treated as translationally
invariant parallel to the surface, then the total potential
outside the medium must have the form

(A 1)
qll

where the linear response function g depends on qll and
co. The external potential P,„,will induce a charge distri-
bution p;„dwhich we assume is localized within a slab at
the surface. Outside this slab, the potential which p;„d.
gives rise to can be represented as a multipole expansion,
i.e., we formally replace the continuous charge density
p;„dby the multipole expansion (including only the first
two multipoles)

[o Q(z)+pi'(z)]e
where o. and p are the charge and dipole moment per unit
surface area, j.e.,

~= jdz p,„,,
d~ ~pind '

In the multipole expansion we have only kept the first
two moments. Next we use
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APPENDIX A

Here we will prove Eq. (14). In so doing, we will first
consider a more general problem (which has been treated
earlier in the literature; however, the proof given below
is simpler). Consider a semi-infinite medium with a sur-
face electron density profile which varies in space as illus-
trated in Fig. 15. For a clean metal surface, for example,
this spatial variation would arise from the electronic
wave functions which decay into the vacuum. We want
to calculate the response of this system to an external

rri(z) — dk eikz1

277

so that the multiple expansion of the induced charge den-
sity takes the form

Jdk(o+ikp)e' 'e2'
Substituting this into Poisson's equation

V' Q;„d=—4mp;„d

gives
ikz

rtr;„d=2Jdk, , (rr+ikp)e
+qll

27r —
q)) [zf i (q() x)) ~r)o qllp e e

qll
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where + refers to z &0 and z &0. The total potential is
the sum of the external plus induced potential, i.e.,

(A2)
p —0,'E) —cx

2E' E' 1

6+1 E+1+1 E..t

The dipole moment p can be written

Now, since in general o depends on qll we get for small qll

00+qito

where o 0 and 0
&

depend only on co. Substituting this into
(A2) and making use of the standard boundary condition

where

The equation above can be solved for p to give

z 0+
=0

az
(A3)

and

p-
(e+ 1)/2m+a Uo

gives

1 —oo —(o &+p)qli a[1+0'0+(o i
—

p)qll~ 0 .

This equation should be valid for all (small) qll, i.e.,

Using these two equations, for z & 0 the term in
parentheses in (A2) becomes

T

e i~ — 1+ qi( e

Comparing this with (Al) gives

pn @+1 no.
oo e —1 (@+1)/2e+aUO

Substituting this into (A4) gives

e—1 E' n 0.'q
i~

g = +4m.
e+ 1 e+ 1 (e+ 1)/2@+a Uo

We only focus on low frequencies (co ((ai ) where
~ej ))1. Hence we can take e—+ ~ in the last term in g to
get

+8vr-
n cxqii

&+1 1+0'U '

where U=2UO. Hence we have proved Eq. (14).

e—1 2e
g (qll, co) — 1+ di(co)qll (A4)

Since

APPENDIX 8

where

f dz zp;„d

ao fdzp, „, (A5)

p =0.'Ei, ,

1 E
C7p—

where E, , is the local electric field at an adsorbate. The
external electric field is obtained from (Al)

ext
- = —2~ as qii~0 .

Bz

is the centroid of the induced charge density for
qadi

=0.
The proof of (A4) results from a systematic expansion of
all quantities to first order in

qadi, except for the boundary
condition (A3) which is valid only to zero order in qll.
However, one can generalize this boundary condition to
finite qll but one finds that the extra term linear in qll

van-
ishes identically if the origin z =0 is suitably chosen.

Let us now apply the general result (A4) to the case of
adsorbed atoms. Let us assume that the atoms can be
treated as point particles with polarizability a(co) and
that the particles occupy the sites of a regular lattice. We
then have

p„(s)= (a I &(s Ho) I b —),
p, (&)=(ai&(s—~ )ia),

and similarly for pb(c, ), it follows from a generalized
Schwartz inequality that

P,b(E) ( [P,(s)Pb(s)]'i' .

Hence, if the resonances p, and pb have negligible over-
lap, then p, b =0. Note also that while

dip, =1

we have

f dep~b =0 .

The quantity p,b(E) contains information about the ex-
tent that orbitals ia ) and ib ) can "communicate" via the
metal conduction band [ik ) J, to which they both are
connected via the hybridization interactions V,I, and Vbk.
The quantity p, b is important when studying the indirect
(via the metal conduction band) static or dynamic in-
teraction between molecules adsorbed on a metal surface.
In this case, ia ) and kalb ) could be the same type of orbit-
als in two identical molecules separated laterally by a vec-
tor R (see Ref. 28 for details on this class of problems).
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