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The quasiparticle excitation spectrum is calculated for the nearly-free-electron metals Li, Na, and

Al by evaluation of the electron self-energy operator within the GS'approximation and a general-

ized plasmon-pole model. The calculated quasiparticle energies for Na and Al are in excellent

agreement with angle-resolved photoemission experiments. For Na in particular, the occupied-

band width is significantly narrower than the free-electron value, as found in experiment. Inclusion

of exchange and correlation effects in the dielectric matrix is shown to decrease the bandwidth rela-

tive to the random-phase-approximation result by a significant amount. Local-field effects, reAected

in the off'-diagonal elements of the dielectric matrix, are found to have little effect on the quasiparti-

cle band structure of these simple metals.

I. INTRODUCTION

Most modern band-structure calculations are based on
some form of local-density-functional theory together
with the assumption that the Kohn-Sham' eigenvalues
can be interpreted as the energy required to add or re-
move an electron from an infinite solid. Although this
approach for obtaining excitation energies is without a
rigorous theoretical foundation, in practice it has been
very useful in unraveling the essential physics in many
condensed-matter systems. However, it is well known
that this approach fails to give band gaps correctly in
semiconductors and insulators. It systematically un-
derestimates the magnitude of the energy gap. Less well
known is the fact that the local-density-approximation
(LDA) eigenvalues overestimate the valence-band width
of simple metals such as Na, Mg, and Al.

Achieving a better predictive capability for solid-state
electronic properties requires a theory specifically
designed to yield the energies of the excited states. Such
a theory must treat accurately both the many-particle
correlation effects and the one-body crystalline potential.
Recently, there has been considerable progress in this
direction. For example, it has been demonstrated that
the band gaps of semiconductors and insulators can be
calculated to an accuracy of -0.1 eV provided that the
nonlocality and energy dependence of the self-energy
operator are treated properly. "'

In this paper we report calculations of the electronic
excitation energies for the metals Na, Li, and Al. The
calculations are based on Hedin's G8' approximation, '

wherein the electron self-energy operator is approximated
by the first term in a perturbative expansion in powers of
the screened Coulomb interaction and the dressed elec-

tron Green function.
Because Na is a nearly-free-electron metal with a sim-

ple valence-band structure, it can be used as a testing
ground for theories of many-body effects in electronic
structure. Angle-resolved photoemission experiments '

for Na indicate that the occupied valence band is almost
parabolic in shape and has an energy width of 2.5—2.65
eV. These results are consistent with earlier x-ray photo-
emission data. ' The measured bandwidth is significantly
less than the free-electron value, 3.21 eV, and the value
obtained in local-density calculations, 3.16 eV. The lack
of agreement between these theoretical estimates and the
experimental values has its origin in the inadequate treat-
ment of electronic correlations. From Hedin's work it is
known that dynamical correlation effects tend to reduce
the bandwidth. ' Hedin's calculations for the electron
gas, which employed the 6S" approximation and
random-phase-approximation (RPA) dielectric screening,
indicated a bandwidth reduction of about lo%%uo for the
electron gas with the same electron density as Na. This
reduction is not enough to account for the experimental
result. The apparent failure of the existing many-body
perturbation theory to account for the bandwidth ob-
served in Na has resulted in several new approaches. "'
We have demonstrated recently' that, for Na, excellent
agreement with experiment can be obtained within the
GR' approach if exchange-correlation effects are included
in the calculation of the dielectric function determining
the screened Coulomb interaction.

The rest of this paper is organized as follows. In Sec.
II the underlying theory is outlined. In Sec. III we dis-
cuss the details of the numerical calculations. Results for
the metals Na, Li, and Al are given in Sec. IV, and Sec. V
contains an analysis of the results in terms of electron-gas
calculations.
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II. THEORY

The method used here to calculate excitation energies
is based on many-body perturbation theory and employs
Green-function techniques. The underlying theory has
been reviewed extensively in Ref. 7. A detailed discus-
sion of the calculational procedure can be found in Ref.
4. In the Green-function approach the particlelike elec-
tronic excitation energies of a many-electron system are
given by the eigenvalues E„k of the quasiparticle equa-
tion:

[T+V,„,(r)+ VH(r)]'Il(r)

+ fX(r, r';E„I,)+(r')dr'=E„k@(r) .

In this equation T is the electron kinetic-energy operator,
V,„,(r) is the electron-ion interaction, VH(r) is the Har-
tree potential, and X is the self-energy operator. The
main problem lies in determining X. Because X is not
necessarily Hermitian, the eigenvalues E„k of the quasi-
particle equation are, in general, complex; the real part
determines the energy of the excited state and the imagi-
nary part determines the lifetime. In the present work we
retain only the real part of the self-energy operator in the
quasiparticle equation. Consequently, the eigenvalues

E„k are real and correspond to quasiparticle excitations
with infinite lifetime.

The self-energy operator is written as

X(r, r', E)= (i /2, m)f 6 (r, .r', E +co }W ( r, r', co )e ' d co,

Kramers-Kronig relation be satisfied. 6 is a positive
infinitesimal. In this model only the static dielectric ma-
trix and the electronic charge density for the crystal are
required to determine A and co.

The static dielectric function is defined as the function-
al derivative of the average electrostatic potential, the po-
tential experienced by a test charge probe, with respect to
an external potential. It is a ground-state property and
can be calculated exactly, in principle, within the
density-functional theory (DFT). The change in the aver-
age electrostatic potential depends on the charge density
induced by the external perturbation. In DFT the in-
duced charge density depends on the total potential
(external potential plus Hartree potential plus exchange-
correlation potential) induced by the external perturba-
tion. In the DFT, linear-response theory implies that the
inverse static matrix is given by

e '= 1+u [1 P(u +—K„,)] 'P, (6)

K„ includes the effect of exchange and correlation. The
correct K„ is not known, but in the LDA K„, is given by

K„,(r, r')= [BV„,[n (r)]/Bn I5(r —r') .

where U is the bare Coulomb interaction, P is the
independent-particle polarizability, and K„, is the func-
tional derivative of the exchange-correlation potential'
with respect to the charge density,

K„,(r, r') =5V„,(r)/5n (r') .

where G is the dressed electron Green function and 8'is
the screened Coulomb interaction. This is the first-order
term in a perturbation expansion of the self-energy. Ver-
tex corrections are neglected. 8 can be expressed in
terms of the bare Coulomb interaction and the time-
ordered dynamical dielectric function:

IV(r, r';co) = f e '(r, r";co)u (r"—r')dr" . (3)

Once G and 8' are known, the self-energy operator can
be obtained and the quasiparticle equation solved. Here,
a quasiparticle approximation is used for G:

G(r, r', co)= g V„k(r)
n, k

X %'„*k(r')/[co E„k i 5 sg —(En+ ——E„&)] .

(4)

The screened Coulomb interaction is determined by the
dynamic dielectric function. For a crystal, calculation of
e '(r, r';co), or, in reciprocal space, eG'o. (q, co), for all co

is a formidable task which we circumvent by use of a gen-
eralized plasmon-pole approximation. In the plasmon-
pole model, for each matrix element of e ', we postulate
the following simple analytic form:

eo 'o (q, co)=5G o.+ Ao G (q)[co—coo o.(q)+i5]
—Ao o (q)[co+coo o (q)+i5]

The matrices Ao o (q) and So o (q) are determined by
the requirements that the generalized f-sum rule and the

The validity of this local approximation, in which K„, is
independent of q, is explored in calculations for the elec-
tron gas described in Sec. V. Setting K„,=0 in Eq. (6) re-
sults in the RPA dielectric function. Thus, the RPA cor-
responds to neglecting exchange and correlation effects in
calculating the total potential induced by the external po-
tential.

We have emphasized the importance of including ex-
change and correlation effects in the dielectric function
when calculating the self-energy for the alkali metals. '

For the semiconductors and insulators, on the other
hand, the RPA dielectric function gives very good results
and the inclusion of exchange and correlation effects in
the screening has a rather small effect on the band gaps.
For Si the inclusion of exchange and correlation effects in
the dielectric function alters the quasiparticle energies by
less than 0.1 eV in the static COHSEX (Coulomb-hole
plus screened-exchange) approximation of Hedin.

We should emphasize that the plasmon-pole model is
especially useful when attempting to go beyond the RPA
dielectric screening because a detailed theory of the co

dependence for the exact K„, is not known. It is, of
course, the exact dielectric function which should satisfy
the generalized f-sum rule. "

In principle X, 8' and the vertex function I are relat-
ed by a coupled set of integral equations. ' The manner
in which these equations are decoupled is very important.
In principle, we have employed different approximations
for the vertex function I in the expressions for 8'and X.
The justification of this decoupling procedure has been
discussed by Strinati et al. '
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III. CALCULATIONAL PROCEDURE

The calculation begins with a LDA (Ref. 15) first-
principles pseudopotential calculation of the band struc-
ture. The pseudopotentials employed here are generated
with the Kerker method. ' The Kohn-Sham equations
are solved in a plane-wave basis' containing waves with
kinetic energies up to 8 Ry for Li and Na and 11 Ry for

Al. The spatial dependence of the electron Green func-
tion and the polarizability is determined by the wave
functions obtained in these calculations.

For each metal the static independent-particle polari-
zability matrix Po G (q) was calculated on a grid contain-
ing 29 q points in the irreducible wedge of the first Bril-
louin zone (8Z). The static LDA polarizability can be ex-
pressed in terms of matrix elements between occupied
and empty states;

po o (q)= g g (n, kate
'q "~m, k+q) (m, k+qie'q+ "in,k)[f (E k+q)

—f (e„k)]/(e~ k+q
—s„k) .

n, m k

(9)

Here
~
n, k) denotes the wave function for the nth band

with Bloch wave vector k, and f (e„k) is the occupation
number of that state. The calculation of PG &., for each
q, requires an integration of k over the Brillouin zone.
This integration is performed by performing a weighted
sum over special points. ' For Li and Na, 140 points in
the irreducible wedge of the first BZ are summed over,
while, for Al, 408 points are included. Calculations em-
ploying smaller sets gave quasiparticle energies which

were essentially identical to the results obtained with the
larger set. Table I compares test results obtained for Al
with various integration sets.

The energy-dependent matrix element

(n, kiX(r, r', E)~n, k)

of the nonlocal self-energy operator X can be written in
the following form,

(n, k~2(r, r', E)~ n, k) = g g g (n, kate'q+ "im, k —q)(m, k —qie ' + "in, k)
m q GG'

+ [SG,G'(q E e~, k —q)f (Em, k —q)+SG, G'(q E e,k —q)]

In this expression (SX denotes screened exchange, CH Coulomb hole),

So o.(q, co)= —
t 5& o +Go G.(q)/[ni —co G G.(q)]IV(q+G'),

SPo (q, ai) =
—,'(Qo G (q)/In~«(q)[n~ —ao o (q)]J )U (q+G') .

(10a)

(10b)

(10c)

TABLE I. Test results obtained for quasiparticle energy
differences (in eV) for Al with several diC'erent k-point sets em-

ployed in the Brillouin-zone integration for Po o (q) [Eq. (9)t.
These results were obtained with the LDA dielectric function
and the LDA energy spectrum in the Green function.

28
Number of k points

145 408

E —E,x'
4

Ex —ExX4

7.23

1.41

7.24

1.41

7.24

1.41

The matrices Qo G,(q) and coG G.(q) depend only on the
crystalline charge density and the static dielectric matrix
(see Ref. 4). Evaluation of this expression requires a sum-
mation over all q in the first Brillouin zone, a double sum
over Cx and G', and a sum over bands m. The sum over q
is accomplished by performing a weighted sum over a
discrete set. The number of q points needed in the set to
obtain reliable quasiparticle energies was determined by
the following test: The self-energy operator was evalu-

ated in an approximation where local fields are neglected
(i.e., only the terms with G =G' are included in the sum)
and the diagonal elements of the static dielectric matrix
are given by the Lindhard dielectric function correspond-
ing to the appropriate electron density. The electron
Green function was obtained from the LDA pseudopo-
tential calculation. Table II contains the results obtained
with this approach for the various quasiparticle energies
in Al as a function of the number of q in the set. Clearly,
the results are very insensitive to Nq over the range from
N =8 to N =104. The fluctuations in the quasiparticle
energy differences are of the order of 0.01 eV, and so we
conclude that the set containing 29 q points will give reli-
able results in the full calculations employing the actual
crystalline dielectric function and including local-field
eftects. The summations over reciprocal-lattice vectors Cx

and G' include all G for which iq+Gi (6,„. For Na
and Li we found 6,„=2.0 to be adequate. For Al,6,„=2.6 was sufFicient to obtain a reliable quasiparticle
band structure. The sum over unoccupied bands was
truncated at N= 36 for Na and Li and at N=46 for Al.
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Number of q points
29 72 104

TABLE II. Test of convergence for the number of q points,

Xq included in the calculation of the self-energy operator for
Al [Eq. (10)]. The calculation employs the electron-gas RPA
dielectric function and a crystalline Green function for Al. En-

ergy differences are given in eV.

the only experimental information pertaining to the
valence-band electronic structure of Li is the soft-x-
ray —emission data obtained by Crisp and Williams. ' On
the basis of these measurements, the occupied valence-
band width was estimated to be 3.0 eV. This is in good
agreement with our result. An experimental determina-

E~ —E,I.
2E, —E

2

E —E,
] X4

X[
4

E —E

1 3

0.23

7.79

1.45

9.82

0.68

6.07

0.24

7.67

1.43

9.81

0.70

7.67

1.43

9.80

0.70

6.06

0.24

7.67

1.42

1.0

0.5—

+ 0.0

-0.5—

X
X

X
Xg

X x ~Xx x"x
+x

X

X x

Rather than solve Eq. (1) directly, a perturbative ap-
proach is adopted. We solve Eq. (1) to first order in the
dift'erence between the self-energy operator X and the
LDA exchange-correlation potential V". The zeroth-
order solution is the Kohn-Sham eigenvalue e„k and cor-
responding eigenfunction ~nk). The self-energy operator
is energy dependent and must be evaluated at the quasi-
particle energy E,k. With the assumptions that the ener-

gy dependence of the matrix element X„k(E)
= ( n k

~
X(E)

~
n k ) is linear for E near E„t, and that

E„k=c.„k, we obtain the first-order solution,
'

E„k=&„k+Z„&[X„&(e„k)—V„"z ] .

Here, V„"k is the matrix element of the LDA exchange-
correlation potential and Z„k is the renormalization con-
stant,

(12)

-1.0
-4.0

1.0

0.5—

o 0.0

-0.5—

-2.0 0.0
ELDA(«)

x
x

X
x

x
X

X
x ..

X

I

2.0

x
X

4.0

The excitation spectrum entering the Green function in
the self-energy operator should be the quasiparticle spec-
trum. Initially, we employ the LDA spectrum but, subse-
quently, we replace it with one which closely approxi-
mates the quasiparticle spectrum. We found that to a
good approximation the Kohn-Sham eigenvalues and the
quasiparticle energies are related to each other in a linear
fashion. This is apparent in Fig. 1 (see text below).

-1.0
-4.0 -2.0

1.5

0.5

1.0
X

I

0.0
E.o.(«)

I

Al

I

2.0 4.0

(c)

IV. RESULTS FOR Li, Na, AND Al METALS 0.0.

Self-energy calculations were carried out for Li in the
bcc structure. The volume of the unit cell was taken to
be 143.617 a.u. , corresponding to an average r, of 3.25.
[In terms of the electron density n, r, =(3/4rrn)' . ] The
LDA calculation gives an occupied bandwidth of 3.45
eV. The calculated quasiparticle bandwidth is 2.84 eV,
The self-energy correction reduces the dispersion from I
to N in the Brillouin zone from 3.72 to 3.09 eV, and the
energy gap between the first and second bands at N is re-
duced from 2.83 to 2.39 eV. Thus, on average, the LDA
band structure is simply compressed by about 15% when
the self-energy correction is included. To our knowledge,

—0.5 X
X

x%

—1.5
—12 —8 —4

FIG. 1. Self-energy correction A=E„k—c.„k plotted vs LDA
energy c„q for (a} Li and (b} Na. In (c} 5 for Al is plotted as a
function of the quasiparticle energy E„k. The LDA and quasi-
particle spectra are aligned at EF=0.



8202 NORTHRUP, HYBERTSEN, AND LOUIE

tion of the Li band structure would be of considerable in-
terest.

For Na we used a bcc cell with volume 258.504 a.u. ,
which corresponds to an r, of 3.95. We obtain a LDA
bandwidth of 3.16 eV. When self-energy corrections are
included, the bandwidth is reduced to 2.52 eV. The
dispersion for I to N is reduced from 3.98 to 3.18 eV.
The width of the unoccupied part of the band between
the Fermi energy and the N point is reduced from 0.82 to
0.67 eV. A photoemission experiment by Jensen and
Plummer indicated a Na bandwidth of 2.5+0.1 eV. A
more recent photoemission experiment by Lyo and Plum-
mer indicates a bandwidth of 2.65+0.05 eV. These
values are consistent with an earlier estimate based on
angle-integrated x-ray-photoemission experiments. ' Our
result for the bandwidth, 2.52 eV, is in excellent agree-
ment with the available experimental data. Recently, x-
ray-absorption experiments by Citrin et al. have indi-
cated a 16% contraction in the width of the unoccupied
part of the spectrum just above E~. Our calculation pre-
dicts an 18% reduction.

The calculations for Al were carried out in a fcc unit
cell with a volume of 112.010 a.u. , corresponding to an
r, of 2.07. Results were obtained for the first four bands
at 29 points inside the irreducible wedge of the first BZ.
We compare the calculated quasiparticle energies with
experimental values determined in an angle-resolved pho-
toemission experiment by Levinson et al. ' in Table III.
Overall, the agreement between experiment and theory is
very good. There is, however, one discrepancy. Our cal-
culations place the X& level at —1.51 eV below the Fermi
level, while the photoemission experiment places it at—1.15 eV. On the other hand, the X4, Z„Z3, and 8'3
points are all found to be within 0.1 eV of the experimen-
tal energies. As a result of the difference in the place-
ment of the X& level, the experimental energy gap, Ez-

1E, , is 1.68 eV, whereas the corresponding gap in the
4

quasiparticle spectrum is only 1.38 eV. Another conse-
quence of the disagreement in the energy of the X, level
is the relative energies of the X& and 8'3 points. The ex-
perimental result is a 0.25-eV difference in energies; the

theoretical result is a 0.64-eV difference. The origin of
this difference between theory and experiment remains
unclear to us at this time. Analysis of the theoretical re-
sults in Tables I and II indicates that the values for the
E~ -E, energy gap and the Ez -E~ energy are both

X4 1 3

rather insensitive to the approximations involved in the
momentum-space integrations. Possible sources of uncer-
tainty in the experimental determination of the X& level
were discussed by Levinson and co-workers. '

In general, our results for Al are consistent with a
weak pseudopotential model of the Al band structure.
Pseudopotential parameters V(200) =0.72 eV and
V(ill)=0. 16 eV can be obtained by fitting the IV-point
energies in a four-plane-wave model. In this model the
energy gap at X is just twice V(200), or 1.44 eV, and the
X-8' lineup is 0.84 eV. Both of these estimates are in
reasonably good agreement with our calculations, but not
with the experimental results. One possible conclusion is
that the Al band structure simply cannot be described ac-
curately by a weak empirical pseudopotential model, even
over a limited range of energies near the Fermi surface.

The quasiparticle bandwidth for Al is found to be 10.0
eV. This is 0.6 eV (about 6%) smaller than experiment.
Some of the discrepancy may result from the plasmon-
pole approximation, which, as discussed in Sec. V, tends
to overestimate the bandwidth narrowing for systems
with r, =2. A more accurate approximation for the q
dependence of E„,also discussed into Sec. V, may lead
to better agreement.

The general trend in the self-energy correction versus
energy is illustrated in Fig. 1 for the three metals. The
self-energy correction is found to be, for the most part, a
linear function of energy with very little scatter. The
shape of these plots is very different from the correspond-
ing plots for the semiconductors Si and Ge, where local-
field effects are important. In Ge and Si the energy
dependence of the self-energy correction is dominated by
a -0.7-eV discontinuity occurring between the valence
and conduction bands. We found that local-field effects
have very little effect on the quasiparticle energies for the
alkali metals. '

&x
1

X4

Ez
1

3

Ew
3

W~

Ew
1

L~

E„
1

guasiparticle

—1.51
—2.89

—1.00
—2.39
—0.87

0.25

0.90
—4.39

—10.01

Experiment

—1.15
—2.83

—0.95
—2.4
—0.90

—4.55

—10.6

TABLE III. Quasiparticle energies in eV calculated for Al,
relative to E&-, compared to experimental angle-resolved photo-
emission results of Levinson et al. (Ref. 21).

V. ANALYSIS QF RESULTS
AND SYSTEMATIC TRENDS

In the preceding section complete results have been
given for the quasiparticle spectrum of Li, Na, and Al.
Here, we wish to understand several aspects of these re-
sults: (i) the validity of the plasmon-pole model, (ii) the
validity of the LDA for K„„(iii) the role of the crystal-
line potential in the self-energy; (iv) a simple explanation
for the density dependence of the bandwidth reduction,
(v) the behavior of the screened-exchange and Coulomb-
hole parts of the self-energy, (vi) density-of-states mass
enhancements due to correlation, and (vii) comparison to
other schemes for including correlation effects in simple
metals. For this purpose, the homogeneous electron gas
(jellium) is quite convenient. There are no crystal-
potential or local-field effects. This renders the calcula-
tion using the present scheme straightforward. Also,
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most previous calculations of correlation effects in metals
have been performed for the jellium model.

For the electron gas, the self-energy can be written in
the same approximation as used above:

X(k)= —g U (q)n (k —q)(1+ra /I [E(k)—E(k —q)] —co (q)[ )+ g U(q)[co /2'(q)]/[E(k) —E(k —q) —co(q)],
q q

(13)

where rd(q) is an eff'ective plasma frequency given by the
f-sum rule, U(q) is the bare Coulomb interaction, co„ is
the plasma frequency at q=0, n (k) is the electron occu-
pation number, and E(k) is the quasiparticle energy.
The first term is the screened exchange (SX) and the
second is the Coulomb hole (CH). Since E(k) itself de-
pends on X, an iterative procedure is required to deter-
mine E and X. In the present plasmon-pole model for the
electron gas, the static dielectric function determines the

q dependence of the effective plasma frequency:

co (q)=co~/[I —e '(q)] . (14)

This result for the effective plasmon frequency was first
employed by Overhauser. This is a special case of the
general result employed in the calculations for the inho-
mogeneous systems.

A. Accuracy of the plasmon-pole mode)

We have tested the validity of the plasmon-pole model
by comparison to Hedin's original self-energy calcula-
tions, in which the co dependence of the RPA (Lindhard)
dielectric function was employed. To make a meaningful
comparison, we must employ the RPA static dielectric
function as well as the free-electron spectrum, rather
than the self-consistent quasiparticle spectrum, in the
G reen function. The free-electron spectrum must be
shifted by a constant amount so that the free-electron and
quasiparticle Fermi levels are coincident. Results for the
bandwidth corrections obtained with these two methods
are given in Table IV and Fig. 2. The plasmon-pole ap-
proximation is seen to be very good in the region r, )2.
Also listed in Table IV are results obtained by Lundqvist
with use of a different plasmon-pole dielectric function.
However, unlike ours, this dielectric function does not
reduce to the RPA dielectric function in the static limit

and, consequently, those results are slightly different
from ours.

B. Different approximations for K„,

In order to determine the sensitivity of the calculated
quasiparticle spectrum to the approximations employed
for K„„we have carried out self-energy calculations with
several difFerent dielectric functions including the LDA,
RPA, and the Singwi-Sjolander-Tosi-Land (SSTL) dielec-
tric functions. The LDA dielectric function corre-
sponds to a constant (q independent) K„,. The constant
depends on r, . The RPA dielectric function corresponds
to K„=O. The SSTL dielectric function corresponds to
a q-dependent K„, of the form

lrC„, "(q)= —av(q)[1 —exp( bq /kF)]—.

The parameters a and b depend on r, and were obtained
from numerical calculations of the dielectric function in-
cluding many-body effects. A Hubbard form for the
dielectric function was also considered:

~Hubbard
( ) ~LDAk 2 /( k 2 + 2)

The static dielectric functions studied here are plotted in
Fig. 3 for the electron gas (with r, =4). The renormalized
Hubbard and SSTL dielectric functions have values
which lie between the LDA and RPA curves. A static
perturbation in the electron gas is more completely
screened by the LDA dielectric function than with the
RPA function. Corresponding to this more effective
screening, the e6'ective plasma frequency [given by Eq.
(14)] obtained from the LDA dielectric function is
significantly smaller than the RPA effective plasma fre-
quency. From Eq. (13) we see that a reduction in the
effective plasma frequency increases the strength of the
coupling between the electrons and plasmons. Thus, the

TABLE IV. Test of the accuracy of the plasmon-pole approximation for the electron gas. The band-
width correction (in eV) is calculated for several different values of electron density (r, ). Calculations
do not include an updated quasiparticle spectrum in the Cxreen function. Hedin's results are obtained
with the full frequency-dependent Lindhard dielectric function. Other results are obtained with

plasmon-pole dielectric functions as described in the text.

Lindhard (Hedin)
Plasmon pole (Lundqvist)
Plasmon pole (present)

0.99
1.18

—0.04

—0.29
—0.08
—0.41

—0.33
—0.18
—0.31

—0.27
—0.16
—0.23

—0.23
—0.14
—0.18
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0.10

0.08

0.06

0.04

0.02

0.00

Dielectric
function

RPA (E„,=O)

AW
(eV) Z(kF)

TABLE V. Electron-gas results for the bandwidth correction
AW, the Fermi-level mass enhancement 1+A., and the renor-
malization constant Z(kF). Results are obtained using four
different static dielectric functions (i.e., different E„,).

—0.04

—0.06

—0.08

—0.10

FIG. 2. Many-body correction 58' to the free-electron band-
width plotted as a function of r, . Crosses indicate bandwidth
corrections calculated by Hedin (Refs. 6 and 7) with the full co-

dependent RPA dielectric function. Solid circles indicate the
corrections calculated here with the RPA plasmon-pole dielec-
tric function. The plasmon-pole dielectric function gives Q W in

good agreement with that obtained with the full m-dependent
RPA dielectric function for r, ~ 2.

=x"'A
XC XC

—g Hubbard
XC XC

g SSTL
XC XC

2
3

5

—0.56
—0.46
—0.35
—0.25

—1.17
—0.86
—0.64
—0.51

—0.95
—0.72
—0.54
—0.44

—1.20
—0.84
—0.61
—0.46

0.994
1.026
1.060
1.075

1.028
1.092
1.163
1.247

1.016
1.066
1.121
1.176

1.029
1.087
1.150
1.197

0.775
0.703
0.646
0.601

0.757
0.672
0.602
0.539

0.765
0.688
0.626
0.573

0.758
0.677
0.612
0.560

self-energy corrections obtained with the LDA dielectric
function are larger than those obtained with the RPA
dielectric function.

Table V contains the calculated corrections to the
free-electron bandwidth for 2&r, &5. The SSTL and
LDA functions give similar corrections over the entire
range considered. The renormalized Hubbard function
gives slightly smaller bandwidth corrections. For exam-
ple, the renormalized Hubbard function gives a self-
energy correction that is smaller than that obtained with
the LDA function by 0.1 eV for r, =4. Thus the band-
width correction is not very sensitive to the q dependence
of K„.

1.000

0.750—

C. Role of the crystal potential

The results obtained here for the occupied bandwidth
reductions in the electron gas are very close to those ob-
tained in the calculations employing the crystal Green
function and the full dielectric matrix. This suggests that
we can obtain meaningful comparisons to experiment by
adding the corrections determined for the electron gas to
the LDA bandwidths. For Na, with r, =3.9S, we obtain
an occupied valence bandwidth of 2.52 eV; for Li, with
r, =3.25, we obtain 2.65 eV; and for Al, with r, =2.07, we
obtain 9.90 eV. These values are all within 0.2 eV of the
results obtained in the full calculations and deviate from
experiment by 3% for Na, 12% for Li, and 7% for Al.
For Li the comparison with experiment is somewhat less
meaningful because the crystal potential has a relatively
more important effect on the Green function and the
dielectric function. In this sense, the free-electron model
is better for Na and Al than for Li.

0.500— D. Bandwidth correction: Dependence on electron density

0.250—

0.000
0.000 1.000 2.000

q/kF
3.000 4.000

FIG. 3. Inverse static dielectric functions (see text) plotted as
a function of q/kF. Plots are for r, =4.

The dependence on electron density of several aspects
of correlation effects in the electron gas are given by
Hedin and Lundqvist. Here we focus on the correction
to the occupied bandwidth. This is illustrated in Fig. 2
for the case of RPA screening. For intermediate density,
68'is negative and of order —0.25 eV. With decreasing
density it tends to zero. In the high-density limit, A8'is
positive, with the crossover occurring for 1 & r, & 2 in the
work of Hedin. As noted above, for r, )2 the present
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plasmon-pole model follows the full dynamical RPA cal-
culation. The inclusion of K„, systematically enhances
5W in that range of r, .

In the simplest terms the systematic trends for 58' re-
sult from the competition between the SX and CH terms
in X. From Eq. (13) the CH term has precisely the form
of the self-energy of the large-polaron problem (weak
coupling). In accordance with that analogy, the CH term
enhances the mass, and hence reduces 8'. This is purely
a dynamical effect; the CH term is k independent in the
static COHSEX approximation discussed by Hedin. The
bare-exchange term obviously increases 8. For q near
zero in Eq. (13) there is twice as much available phase
space for k=0 as for k =kF. This causes the bare-
exchange term to be larger in magnitude for k=0 than
for k =kf, and leads to an increase in W. In the static
approximation, the screened-exchange term corresponds
to replacing v(q) with e '(q)v(q) in the Hartree-Fock
expression for bare exchange. Thus, the range of the stat-
ically screened Coulomb interaction is determined by the
Thomas-Fermi wave vector qT„. The magnitude of the
effect of including screening depends on whether q TF & kF
or qT„(kF. In the former case (r, & 1.5), e '(q)v(q)=0
over most of the Fermi sphere; thus the SX term is
suppressed. In the latter case (r, ( 1.5) screening is

ineffective and the bare-exchange result pertains. This is
the qualitative reason for the crossover in sign for 58'
near r, =1.5 in Hedin's RPA results. Dynamical effects
complicate this picture of SX as noted below.

K. Momentum decomposition of screened-exchange
and Coulomb-hole parts of the self-energy

For the range of r, covered by Al, Li, and Na, a large
fraction of the bandwidth reduction results from the fact
that the Coulomb-hole contribution to the self-energy is
negative and increases in magnitude (monotonically) as k
is increased from k=0 to k =k~. The bandwidth correc-
tion arising from the SX term is typically somewhat
smaller than that from the CH term, and can be positive
or negative depending on the q dependence of the static
dielectric function. With the RPA dielectric function the
SX term increases the bandwidth by a small amount, but
with the LDA dielectric function the SX term leads to a
reduction in the bandwidth. With the LDA dielectric
function the CH term contributes —0.44 eV and the SX
term contributes —0.21 eV to the di6'erence X(kF )

—X(0)
for r, =4. With the RPA dielectric function the CH term
contributes —0.36 eV and the SX term contributes 0.01
eV.

0.100— I I

SX LDA-dielectric function
0.100

SX RPA-dielectric function

0.000 0.000

K

~ -0.100

V)
lh

-0.200—

k=kF K

- -0.100

th
N

-0.200-

rs=40 rs =4.0
-0.300 I

0.000 0.500
l

1.000 1.500
q/kF

2.000
-0.300

0.000 0.500
I

1.000
q/kF

1.500 2.000

0.600 I I I

CH LDA-dielectric function
0.000

CH RPA-dielectric function

-0.200—

tX:

- -0.400
X

(D

-0.600

~/

k=0g-. I
k=kF

rs=40

-0.200—

K

-0.400

M

k=O

-0.600 ~
r =40

-0.800
0.000

I

0.500
I

1.000
q/kF

1.500 2.000
-0.800

0.000 0.500
I

1.000
q/kF

!

1-500 2.000

FICx. 4. Momentum decomposition for the screened-exchange (SX) and Coulomb-hole (CH) terms in the self-energy for k=o and
kF. Plots correspond to r, =4. Results obtained with both the RPA and LDA dielectric functions are plotted. The area between the
curves is the bandwidth correction.
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The self-energy can be written in terms of an integra-
tion over momentum transfer q:

X(k)= J [Ssx(k, q)+ScH(k, q)]dq .

The functions Ssx and ScH are plotted in Fig. 4 for k=O
and kF for both the RPA and LDA dielectric functions.
The bandwidth reduction is just the area between the
curves for k =kF and 0. With the RPA dielectric func-
tion there is a nearly complete cancellation between the
contributions from the regions 0&k &kz and k )kF.
Thus the SX term contributes very little to the bandwidth
reduction in the RPA for r, =4. This cancellation is
somewhat less complete when the LDA dielectric func-
tion is employed. It should be noted that the screened-
exchange contribution for k=0 depends rather sensitive-
ly on the screening. The function Ssx(O, q) can be writ-
ten

Ssx(O, q) = —(4/m. )(1+co~II [E(q) E(0)]—
—8 (q)] )e(kF —q) .

(18)

A singularity will occur at q, if the quasiparticle energy
difference E(q, ) —E(0) becomes equal to the effective
plasmon energy co(q, ) for a value of q, (kF. Clearly,

q, ) kF in both cases shown in Fig. 4(a), but with the
LDA dielectric function q, is nearer to kF and an in-
crease in Ssx occurs as q approaches k~. Of course, the
validity of the plasmon-pole approximation requires

q, ) kF
As noted, the CH term can be interpreted as the in-

teraction energy, calculated with second-order perturba-
tion theory, of a single electron with the plasmons. It is
larger in magnitude (more negative) for k =kF than for
k=O because, for a given ~q~, the energy denominator
E(lt) —E(k —q) —co(q) is, on the average, smaller in
magnitude for the intermediate states available to an elec-
tron with k =kF than to one with k=O. In physical
terms this corresponds to a greater probability for a mov-
ing electron to emit and reabsorb a virtual plasmon than
for one at rest. The strength of the effective electron-
plasmon interaction is inversely proportional to co(q),
and the CH contribution is larger with the LDA dielec-
tric function than with the RPA dielectric function be-
cause co(q) is smaller.

F. Fermi-level density-of-states enhancement

Other interesting quasiparticle properties include the
density of states (effective mass) at the Fermi level and
the discontinuity in the momentum distribution at the
Fermi surface [Z(kF)]. The effective-mass enhancement
due to exchange correlation, m*=(1+A, )mo, and Z(k~)
have been calculated using the present approach for the
electron gas. The results for 1+A, and Z(kF) are shown
in Table V, with and without K„, in the screening. Clear-
ly, the LDA dielectric function gives a significantly larger
A, than the RPA dielectric function. The calculated
values of 1+A, are sensitive to the form of K„. Compar-
ison with heat-capacity measurements and estimates for
the electron-phonon contribution to A, indicate that the
electron-gas results in Table V overestimate A, due to
electron-electron interactions. For example, in K,
1+k, , =1.09+0.03 as measured and corrected for X pQ.

For r, = 5 our theoretical results fall in the range
1.18—1.25 depending on the form of K„. For Na the cor-
responding experimental result is 1+1,, =1.09+0.04.
For r, =4 our results fall in the range 1.12—1.16. This
disagreement may be due to several possibilities. First,
the plasmon-pole model may be too crude to describe the
Fermi-surface properties if they depend on the details of
the low-energy excitations near the Fermi level. Second,
the present results for A, are strongly influenced (as much
as a factor of 2) by the self-consistent update of the quasi-
particle spectrum. Thus a very precise treatment of the
energy dependence of the Green function, especially near
the Fermi energy, may be important for obtaining the
correct mass enhancements. Precise calculation of the
Fermi-surface properties for the alkali metals requires
treating the electron-phonon interaction, the electron-
electron interaction, and ordinary band-structure e6ects
on equal footing, and remains an open problem.

G. Comparison to other theoretical work

In most early studies emphasis was placed on Fermi-
surface properties. More recently, some work has been
done on the bandwidth, in the context of the jellium mod-
el. The early work of Hedin is summarized in Fig. 2 and
Table IV. In Table VI we compare our results to those of
Ng and Singwi and Zhu and Overhauser. " Both of
these calculations include coupling to spin fluctuations in

TABLE VI. Comparison of m, , /m to other theoretical work.

Ng and Singwi
Present'

0.98
1.095

1.02
1.168

1.06
1.234

1.10
1.296

1.14
1.352

Zhu and Overhauser
Present'

2.07

1.171
1.101

3.25

1.337
1.185

3.93

1.334
1.230

4.87

1.260
1.287

5.12

1.231
1.302

5.62

1.170
1.331

'These results obtained with exchange only, K„,. ; K„„.= —2m. /kF.
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addition to the density fluctuations, but using rather
different models. Ng and Singwi relate the self-energy
approximately to the irreducible particle-hole interaction,
which is, in turn, identified with the "local fields" (in the
sense of short-range correlations in the screening). The
corresponding local-field correction G(q) is approximat-
ed along the lines of the original Hubbard model. Zhu
and Overhauser extend the one-plasmon-pole model to
include a paramagnon branch of excitations. The results
for available values of r, are compared in Table VI where
the average mass enhancement (m„/m =k~/W) is
shown. The present approach yields significantly more
reduction in the bandwidth than does that of Ng and
Singwi. The systematic trend in m, „/m versus r, is rath-
er different in comparison to Zhu and Overhauser, the
latter showing a maximum near r, =4. They obtain a
bandwidth reduction of 0.83 eV for a free-electron gas of
r, =3.93, a reduction of 1.20 eV for r, =3.25, and one of
1.69 eV for r, =2.07. Keeping in mind that the correla-
tion effect on 8'in these simple metals is essentially in-
dependent of the crystal potential, we can reduce the
LDA bandwidths by these corrections. Thus with the
model of Zhu and Overhauser, one obtains widths of 2.33
eV for Na, 2.25 eV for Li, and 9.38 eV for Al. Compared
to experiment, these are too small by about 12% for Na,
25% for Li, and 11% for Al. On the other hand, Ng and
Singwi obtain reductions which are systematically too
small.

Shung, Sernelius, and Mahan have adopted a some-
what different approach to explain the narrowing of the
Na bandwidth. While they include self-energy correc-
tions, similar in magnitude to those given by Hedin, they
also argue that the photoemission process itself yields an
apparent narrowing of the bandwidth. They find that the
measured valence-band width should depend on the
range of photon energies employed in the photoemission
experiments. However, no such dependence is seen in the
experiments. A more accurate determination of the

effect of the surface on the measured photoemission spec-
trum of Na may require a calculation of the self-
consistent surface potential, including atomic relaxation.

VI. CONCLUSIONS

We have shown that it is possible to calculate accurate
quasiparticle band structures for simple metals with use
of the GR' formalism of Hedin and the plasmon-pole
model. In general, the calculated energies are in excellent
agreement with experimental data from photoemis-
sion ' ' ' and soft-x-ray —emission' experiments. The
one exception is the X&-point energy in Al, for which a
0.35-eV difference between theory and experiment still
exists. The theoretical method employed here also gives
accurate quasiparticle excitation energies for semicon-
ductors and insulators. Thus, the GR'formalism is valid
for systems varying from nearly-free-electron low-density
metals, such as Na, to high-electron-density insulators,
such as C, which have highly inhomogeneous charge dis-
tributions. For the low-density metals studied here, in-
clusion of exchange-correlation effects in the dynamic
dielectric function is shown to be important. However,
for the simple metals, local-field effects, resulting from in-
homogeneous charge densities, are very small.
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