PHYSICAL REVIEW B

VOLUME 39, NUMBER 12

15 APRIL 1989-1I

Connection between blazes from gratings and enhancements from random rough surfaces
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We show that the blaze effect for the antispecular orders from deep reflection gratings is intimate-
ly connected with the enhancement of the mean backscattered intensity from deeply rough random
surfaces. We also prove that when the illuminated structure has a center of symmetry then the in-
tensity in the specular direction can also be enhanced.

I. INTRODUCTION

In a previous paper! we showed that the light-
diffracted intensities from perfectly conducting deep
reflection gratings have a remarkable tendency to be
enhanced either in the specular or in any of the antispec-
ular orders. The curves of the diffracted intensities
versus grating depth, for a certain profile and a given in-
cidence angle 6, exhibit a characteristic oscillatory be-
havior (cf. Ref. 1 and references therein) whose ampli-
tudes are markedly larger for the specular or the an-
tispecular (if it exits at that angle of incidence). Thus, al-
though it is possible to devise a particular grating with
blaze in a chosen order, statistically, over a set of profiles
a priori given, are the specular, or the antispecular
diffraction orders, those with the highest probability of
enhancement.

Blaze of antispecular intensities under a particular in-
cidence angle and for a certain profile in the Littrow
mount is a well-known phenomenon.>*® However, what
we show here is the tendency of deep reflection gratings
to present blaze in all antispecular orders (or in the spec-
ular, alternatively).

The gratings studied in Ref. 1 were sinusoidal or com-
binations of two sinusoidals. We hinted there, without
giving a proof, that the aforementioned enhancements
might be intimately connected with the phenomenon of
enhanced backscattering from deep random rough sur-
faces.* ¢ Nevertheless, the question of why on the aver-
age over many samples the antispecular is dominant over
the specular was left unanswered in Ref. 1. The gratings
studied in Ref. 1 were, however, symmetric. The first
purpose in this paper is to show that this property is the
determinant for the enhancement of the specular.

It appears at first sight to be an analogy between the
enhanced backscattering from random rough surfaces
and the effect of photon localization in random media (a
brief review with references on this phenomenon may be
found in Ref. 7). In fact, a simple picture, based on
geometrical optics with k vectors, of the way in which
multiple reflections at a rough surface may lead to back-
scattering enhancements was drawn by the authors of
Refs. 4 and 5. This argument is analogous to the so-
called coherent backscattering process used in some of
the references quoted in Ref. 7 (in particular, in Refs. 8
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and 9). However, the question of whether or not this
backscattering enhancement from very rough random
surfaces is indeed similar in nature to the one due to pho-
ton localization in random media remains still open.'®

The second main task of this work is to prove the inti-
mate connection between the high probability of blaze in
the antispecular intensity diffracted from deep reflection
gratings, as pointed out in Ref. 1, and the effect of
enhanced backscattering from very rough random sur-
faces. In order to carry this out, we shall work with grat-
ings of arbitrary profile and a great deal of Fourier
coefficients, constructed in the following manner: We
computer generate a random series of numbers with zero
mean, normal statistics, and rms ¢ and correlation length
T; the correlation function being Gaussian. (We believe,
however, that this particular statistics and correlation
function are not essential for our purpose.) Then, an in-
terval of length a (with typically 220 sampling points) is
extracted from that series. The grating z=D(x) of
period a is subsequently simulated by periodically repeat-
ing this interval of length a. Obviously, a random surface
would be the limiting case when a becomes very large.
(See in this connection the classical work of Ref. 11.)

II. NUMERICAL RESULTS

Calculations of the diffracted intensities are made for
incident plane waves, linearly polarized under s or p po-
larization, interacting with the interface z =D (x) that
separates a vacuum from a perfect conductor. These in-
tensities are

I;
I7
A, and B, the diffracted amplitudes corresponding to s
and p waves, respectively. The induced current densities,
necessary to obtain A4, and B,, are calculated from the

extinction theorem!>!'* according to the method of Ref.
1 \

[4,1?
|B, |2

an

:7(;* > (1)

In Egq. (1) ky, and k,, are the z components of the in-
cident and nth-diffracted wave vectors, respectively.
Therefore
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K3+k3,=k?, (2a)

K2+kXL=k?* k=2m/A (2b)
and

K,=K,+2mn/a . (3)

The diffracted intensities should satisfy the unitarity
condition
> =1, )

n=-—o

Equation (4) is used as a criterion of numerical accura-
cy of our calculations.

All results shown in this work are for s polarization,
unless explicitly stated otherwise. It should be pointed
out, however, that no significant differences were ob-
served between the results from s and p polarization for
large depths characterized by the rms o (in agreement
with Ref. 14). Calculations have been done obtaining er-
rors in the unitarity no larger than 3% and usually small-
er than 1%.

For a given period a, 200 samples (i.e., gratings) of the
same period are simulated. Each grating is built by
choosing a different interval of the same random series of
given o and T according to the procedure described
above. The distribution of diffracted intensities is ob-
tained from each grating. Then the average of the result-
ing 200 intensity patterns is performed, thus giving a dis-
tribution of orders whose envelope will become close to
the mean scattered intensity from 200 samples of a ran-
dom surface of the same parameters o and 7, when a be-
comes large. The statistical bias of the mean scattered in-
tensities produced slightly asymmetric diffraction pat-
terns at incidence angle 6,=0° that were artificially sym-
metrized at this particular angle of incidence by averag-
ing every two intensities at 6 and —0.

Figure 1 shows the mean diffracted intensities from 200
gratings of period a =1.78A extracted from a random
series with T'=0.24A and 0 =0.5XA and 0.6A, at 6,=0°,
16°, 46°, and 57°. As seen, on the average over 200
profiles, the antispecular intensity is enhanced at those
angles of incidence at which it exists. At a large in-
cidence angle, e.g., 6,=46°, the specular intensity is
higher; this is not only due to the nonexistence of an-
tispecular order at this value of 6, but also to the fact
that, since few propagating orders exist, the specular can
grow in an interval of 6, between the passing-off of two
consecutive propagating orders; namely, between angles
of incidence at which these orders emerge at grazing an-
gle. These effects are illustrated in Fig. 2, where the
efficiencies of the averaged diffracted orders over the 200
gratings are plotted versus 6,. In Fig. 2 the maxima of
the diffracted intensities are exactly at those 6, at which
they become antispecular. On the other hand, the specu-
lar tends to grow at incidence angles larger than 20°, but
suffers abrupt decreases whenever a passing off of a prop-
agating order exists. This is a direct consequence of the
Rayleigh anomalies at those values of 6, (see, e.g., Refs.
3, 15, or 16). There is a narrow interval around 45° at
which the specular is the largest intensity (Fig. 2) prior to
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FIG. 1. Mean diffracted intensities from 200 gratings of
period a =1.78A, at four angles of incidence 6,=0°, 16°, 46°, and
57°, simulated from a random series with 77=0.24A. Left bars:
o=0.5A. Right bars: 0=0.6A. Tic marks at the top: antispec-
ular, left; specular, right.
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FIG. 2. Mean diffracted intensities vs incidence angle 6, from
200 gratings with 7"=0.24A. Solid line: o =0.5A. Dashed line:
o=0.6A.
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the appearance and growth of the order n=—3 that
reaches its peak about 6,=55°, where it becomes an-
tispecular. Also, the peaks of the antispecular intensities
are larger the greater o is. The specular, on the other
hand, grows faster the smaller the depth o is.

The Rayleigh anomalies due to the passing off of prop-
agating orders are associated with the prevention of the
growth of the specular peak in deep gratings with a large
period. Then many propagating orders are continuously
appearing as 6, varies, so that the specular has ‘“no
room” to grow in the 6, diagram unless 6, is very large
(almost grazing, in fact). This is seen in Figs. 3 and 4,
which show the mean diffracted intensities at 6,=0°, 26°,
and 43°, and the efficiencies versus 6, for gratings with
period a =8A, constructed from a random series with
T =0.7A and o =1.2A and 1.3A, respectively. (In Fig. 4
only the mean efficiencies for o =1.3A are shown; those
for 0 =1.2A are similar.) Once again, we observe that the
larger o is, the greater the enhancement of the antispecu-
lar. For any angle 6, at which an antispecular exists, the
intensity of this order appears enhanced. One can see
from these figures that when the period a becomes large,
so that virtually every 6, has an antispecular order, the
corresponding intensity will appear enhanced in the
backscattering direction when it is averaged over many
samples. Then the envelope of mean diffracted intensities
will be very close to the mean scattered intensity from a
random surface.

It is remarkable that, although at those 6, at which
there is a passing off of some order there exists a neat
Rayleigh anomaly for the other mean diffracted intensi-
ties, no resulting anomaly in the 6, diagrams exists for
those mean intensities which at that value of 6, grow to-
wards a peak at which they become antispecular. Other-
wise no backscattering enhancement would occur.
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FIG. 3. Same as Fig. 1 at 6,=0° 26°, and 43°, a =8A,
T =0.7A. Left bars: 0 =1.2A. Right bars: o=1.3A.
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FIG. 4. Same as Fig. 2 with a =8A, T =0.7A, and o =1.3A.

III. SYMMETRIC PROFILES

The above results are in agreement with the enhance-
ment of the antispecular intensities found for some par-
ticular profiles of large depth in Ref. 1. However, an
enhancement of the specular was also found in that work.
We are now going to show that this enhancement appears
when the profile is symmetric.

Figure 5 shows the mean diffracted intensities at
6,=0°, 26°, and 43° from 200 gratings with period a =8A,
each of them simulated from a different interval of the
same random series of 77=0.7A and o =1.3A and having
subsequently introduced symmetry in the profile within
the period a. As seen, the specular can be now as large
as, or even stronger than, the antispecular at any 6.

Finally, by using the method established in Ref. 6, we
show in Fig. 6 (solid line) the mean scattered intensity for
s waves (there is not much difference in the result for p
waves) for three different incidence angles 6,=0°, 10°,
and 40° for 200 samples of a random one-dimensional sur-
face with 0 =1.5A and T=A, having introduced symme-
try in the samples. A remarkable enhancement of the
specular peak (as well as of the backscattering, as expect-
ed) is seen. For comparison, the mean intensity from ran-
dom samples without symmetry is depicted (dotted lines),
showing the usual backscattering peak only. At T fixed,
the backscattering peak increases versus the incidence an-
gle 6, for two different values of o, 0 =X\ and 0.5A, hav-
ing been averaged, as before, over 200 random samples in
which symmetry has been introduced, and with T=A.
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Figure 7 also shows that the specular increases with o,
and decreases (like the backscattering) as 6, increases. At
very large 6, the specular grows further, approaching to-
tal specular reflection at grazing incidence, as expected.
At 6,=0° the specular and backscattering enhancements
are superimposed.

The enhancement in the specular direction from deep
random surfaces, in which a center of symmetry has been
introduced, can be understood by an argument equivalent
to the one employed in the geometrical optics picture of
Figs. 5 and 13 of Refs. 4 and 5, respectively.

Consider a wave with wave vector k, suffering a series
of scattering events according to, for example, sequence
(a) [Fig. 8(a)], kg, k{,k,, k3, so that k; is the wave vector
after the ith scattering, and the emerging wave vector k;
is specular with respect to the incident k,. This loop has
a reversed counterpart (b): —k;, —k,, —k;,—k, [Fig.
8(b)]. Due to reciprocity, the emerging waves from loop
(a) and loop (b) have complex amplitudes A, and A4,, re-
spectively, that are equal (A, = A,). On the other hand,
if loop (b) is reflected about the z axis, one obtains loop (c)
[Fig. 8(c)]: kg, ki, k3,k3. Nevertheless, since the structure
is symmetric with respect to the z axis, the scattering
centers 1’, 2’, and 3’ of path (c) produce, respectively, the
same scattered waves as their corresponding symmetric
centers about OZ: 3, 2, and 1 of path (b), so that
A.= A,; and because of the reciprocity quoted before,
A,= A,. Then the coherent interference between paths
(a) and (c) is constructive and yields 4| 4,]?, instead of
2| 4,]% which would be obtained neglecting this interfer-
ence. This interference produces an enhancement in the
specular direction when the average over many random
loops is made. The generalization of this argument to
any number of scattering centers N = 1 is obvious.
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FIG. 5. Same as Fig. 1, for symmetric gratings, at 6,=0°, 26°,
and 43°,a =8A, T=0.7A, 0 =1.3A.
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The process of averaging over many samples will wash
out any constructive interference due to k vectors corre-
sponding to directions other than the specular or the an-
tispecular. In this connection, it is important to note the
analogy with speckle:>!7 although a particular realiza-
tion of a random profile can produce a speckled intensity
with the maximum in a direction other than backscatter-
ing (or either backscattering or specular if symmetry ex-
ists), like a given grating can produce blaze in a certain
order other than the antispecular (or either the antispecu-
lar or specular if it is symmetric), the averaging over
many profiles yields the enhancements just discussed. (It
is known®!7 that the backscattering peak is swamped by
the speckle fluctuations when one considers the intensity
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FIG. 6. Mean diffracted intensity from 200 random samples
with T=A and o =1.5A at three angles of incidence 6,=0°, 10°,
and 40°. Dotted line: random samples without any symmetry.
Solid line: random samples to which a center of symmetry has
been introduced.
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FIG. 7. Variation of the mean scattered intensity in the spec-
ular direction with the angle of incidence 0,, for two different
depths: o=A and 0=0.5A. T =A. The average is done over
200 random samples to which a center of symmetry was intro-
duced.

from a single realization of the random scatterer.)

Regarding the connection of blaze for the antispecular
in reflection gratings and the enhanced backscattering
from random surfaces (or the connections established for
the specular in symmetric profiles), it is likely that an
equivalent relationship can be established between waves
reflected from volume gratings, with the periodic modu-
lation being in the permittivity (or equivalently refractive
index), and waves reflected from volumes with random
permittivity.'®1°

Concerning transmission, although it is possible to dev-

FIG. 8. Geometry used for the illustration of the specular
enhancement. (a) Multiple scattering path. (b) Reciprocal path.
(c) Reflection of path (b) about OZ.

ise gratings with blaze in a certain transmitted order, ar-
guments based on reciprocity for random media, as the
one used above, cannot be made.
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