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Comparisons with other calculations in the literature are used to demonstrate that the quadratic
Korringa-Kohn-Rostoker band-theory method gives excellent eigenvalues for full self-consistent po-
tentials with no shape approximation. The equations for the Green function are reformulated, thus
eliminating a problem that had hampered calculations of self-consistent potentials and total energies

with the use of this method.

I. INTRODUCTION

The Korringa-Kohn-Rostcker!? (KKR) method differs
from other band-theory methods in that it is derived from
the multiple-scattering theory.> It has the great advan-
tage that it does not require explicit orthogonalization to
core states, the orthogonality of the conduction-band
wave functions to the core functions arising from the for-
malism. The eigenvalues are the roots of a secular deter-
minant which is quite small compared to the ones that
occur in other theories, but all of the matrix elements de-
pend on energy in a complicated way. The multiple-
scattering theory has been used to derive another
method* called the quadratic KKR (QKKR), which re-
tains the advantages of the KKR and circumvents some
of its drawbacks. The derivation is based on equations
derived in Ref. 5. A major advantage of the QKKR is
that all of the eigenvalues for a given k are obtained from
one matrix diagonalization. There are a number of
band-theory techniques based on the Rayleigh-Ritz varia-
tional method that share this advantage. They include
such methods as linear augmented-plane-wave® (LAPW),
linear combination of Gaussian orbitals’ (LCGO), linear
muffin-tin orbitals® (LMTO) and linear augmented-
spherical-wave (LASW) methods.® These methods either
require the diagonalization of a much larger matrix than
the QKKR or they yield accurate eigenvalues over a
smaller range of energies.

Another advantage of the QKKR is that it does not re-
quire any shape approximation in the self-consistent (SC)
potential function. As it was originally derived, the
KKR theory appeared to require that the SC potential
must have the muffin-tin form. Self-consistent muffin-tin
(SCMT) potentials are spherically symmetric within
spheres, constant outside, and the spheres cannot over-
lap. Full SC potentials for metals can be approximated
by SCMT potentials with no great loss of accuracy, but
this is not true for covalent or ionic materials. Even for
metals, the muffin-tin approximation can lead to
difficulties in precise calculations of the total energy. It
will be obvious from the equations in this paper that it is
no more difficult to carry out a QKKR calculation with a
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full SC than a SCMT potential. Computational results
are shown that demonstrate the applicability of the
QKKR theory to potentials with no shape approxima-
tion.

The price that must be paid for its advantages is that
the algebra of the QKKR seems somewhat more convo-
luted than that used in the other methods, particularly to
those who are not very familiar with the multiple-
scattering theory! ~® of Rayleigh, Kasterin, Ewald, Kor-
ringa, Lax, and Kohn. The development of a self-
consistent version of the QKKR as well as programs for
calculating the total energy was, in fact, slowed by a
subtlety in the algebra that was not understood until re-
cently. The problem was difficult to recognize because it
appears only in the evaluation of the Green function, not
the eigenvalues, and the errors it causes are so small that
they were thought to be due to a lack of convergence.
Now that a cure has been found,!© all aspects of the cal-
culations are behaving correctly, as will be demonstrated.

An equation for the Green function is derived in the
next section within the QKKR formalism, and the
difficulty that arises in its evaluation is pointed out. A re-
formulation of the equation that eliminates that difficulty
is given in the following section. Numerical examples of
the application of the QKKR are presented in Sec. IV.
In the last section, the future developments that can be
expected from this theory are discussed.

II. GREEN FUNCTION
FOR THE PERFECT CRYSTAL

The mathematics of the QKKR band-theory technique
starts with a simple observation® about the one-electron
Schrodinger equation

[V + V()W) =E (kK)YHr) . (D

The potential V(r) that is obtained from the local-density
approximation may be written as a sum of potentials

V(r)=3 v(r—R,) 2)

n
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by partitioning it so that v(r) is zero outside the unit cell.
Subtracting the same constant from the eigenvalue and
the potential, (1) is transformed into

[—V2+ VA W (r)=E ¢i(r) , (3)
where the potential V2(r) is a sum of potentials

vA(r)=v(r)—Ao(r) . 4)

The value of the unit step function o(r) is 1 when r is in-
side the unit cell, and O elsewhere. It is clear that

YR(r)=9¢&r) (5)
when the constant A is equal to
A Kk)=E_k)—E, . (6)

Thus band-theory calculations can be carried out in a
mode in which the wave functions all correspond to the
same eigenvalue, but the potential is continuously shifted.
The advantages of this approach will be described.

The eigenfunctions can be expanded as the linear com-
bination

YR(r)=3 ¢2(r)df(k) , @)
L

where the ¢7 (r) are solutions of
[—V2+0A(r) 192 (r)=E (2 (r) 8
that satisfy the boundary condition
1ir%¢ﬁ(r)=YL(r)j,(Kor) , 9)
r—
and are continuous. The constant « is the square root of
E,, j(x) is a spherical Bessel function, Y, (r) is a real
spherical harmonic, and L ={I,m} is a collective angular

momentum index. It has been shown® that ¢4 (r) can be
obtained by iteration from the integral equation

¢ﬁ(r)=YL(r)j,(K0r)+f’ K(r,r' (1 )¢ (r')dr ,
r<r
(10)
where the kernel is

K(r,r')=—ky 3 Y (0)[j,(kor)n;(kor')
L

“nI(Kor)j](Kor')]YL(fI) . (11)
For r >0, ¢2(r) can be expanded in spherical harmonics

PXO)= Y, ()3 (r) . (12)
<

It follows from the KKR theory for SC potentials that
have no special shape’ that the coefficients d(k) in (7)
are solutions of the set of homogeneous algebraic equa-
tions

3 DA (k)df(k)=0, (13)
<

where the matrix D4(k) is

DAk)=k,C*+B(Ey,k)S* . (14)
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The elements of B(E,,k) are taken to be the ordinary
structure constants of KKR theory that were derived for
the special case of muffin-tin potentials."? There has
been a hot debate in the recent literature!! concerning the
existence of near-field corrections (NFC) that should be
added to these structure constants when potentials that
are not of the muffin-tin form are used. The outcome of
this debate is that the NFC are either negligible or nonex-
istent for all cases studied so far.

The cosine and sine matrices, C® and S, are obtained®
from the equations

ChL =k [ ny(kor ) YL (1WA (0)$LA)dr—8,.
(15)
SA =ko [ jikor) YL (1 A(0)g5(r)dr .

The ¢ matrix that describes the scattering of an incoming
wave of energy E, from the isolated potential v(r) is
such that

[TAHE] '=keCMS®) ik, . (16)

The matrix elements of C® and S are entire functions of
A, which means that the matrices may be written as
Taylor’s series

CA=C(0)+C(1)A+C(2)A2+ cee

SA=S(0)+S(1)A+S(2)A2+ e (17

The eigenvalues A (k) in (6) are, from (13), the values
of A for which

detD4(k)=0 . (18)

Calculating these eigenvalues for a given k requires that
Egs. (10) and (15) must be solved and the determinant in
(18) evaluated for very many values of A. Such a calcula-
tion is essentially exact, but it is even more time consum-
ing than one done with the ordinary KKR method.
However, these equations provide the basis for some very
useful approximations. Inserting the Taylor’s expansion
of (17) into (14) leads to

DAK)=H—OA+ AN+ -+ | (19)
with

H(k)=k,C'O+B(Ey,k)S© ,

0(k)=—k,C'"—B(Ey,k)S 'V, (20)

A(K)=k,C' P+ B(Ey,k)S? .

Ignoring the matrix 4 (k) and all coefficients of higher
powers of A would lead to a linearized version of the
KKR (LKKR). Approximations to the eigenvalues
A,(k) are found from a single diagonalization of a matrix
E(k),

E(k)=0"Yk)H(k) . (1)

All of these matrices are made finite in the usual way, by
ignoring elements corresponding to values of angular
momentum greater than some /... The dimension of
these matrices is then (I, +1)%. An algebraic compar-
ison between this LKKR and other linearized band
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theories that are related to the KRR, the LMTO and the
LASW, was given in an earlier paper.’ The LKKR ei-
genvalues for a niobium potential are compared with the
exact eigenvalues in Fig. 5 of Ref. 4, and can be seen to
be disappointing if very accurate eigenvalues are desired
over the entire range of the conduction band.

The quadratic KKR (QKKR) is obtained* by including
the next term in the expansion in (19). The eigenvalues
for a given k are again found by diagonalizing a single
matrix which has a dimension that is twice that of E(k),
2(1pax +1)%. The value of /,,, that has proven most sa-
tisfactory in the calculations done to date is four, so this
dimension is 50. The QKKR eigenvalues for niobium
can be seen from Fig. 5 or Ref. 4 to agree very well with
the exact ones. At this point we are more interested in
the Green function since that is the quantity that is need-
ed in self-consistent calculations and in the evaluation of
total energies.

By a straightforward transformation of a previous re-
sult'? it can be shown that the Green function for a
periodic solid can be written

GArr== [ Girr K, @2)

where () is the volume of the Brillouin zone, with

Ger,r)= 3 ZAn)r (K)ZA () =3 ZAr)TA(T) .

LL L
(23)

The function Z(r) is defined by
Zf(r)=K0§¢2'(1‘)[(§A)_I]L'L (24)

and the matrix 72 is the inverse of the symmetrical KKR
matrix. We write

MA=—k,CHS2) ' —B(Ey,k) . (25)

The function J{(r) is the solution of (8) that satisfies the
boundary condition
lim JA(r)= Y (r)j,(kor) - (26)
r—
For most values of A this function approaches infinity as

r approaches zero.
The Green function can be rewritten

GR(r,r')=k, 3 2 (r)WA(T') , 27
L
with
WiD=—ko 3 Fir[(§) 1o ép(r)
L',L"
=3 (S JE(r) . (28)
<

The matrix F2 is the inverse of the D2 defined in (14),
and it follows that it can be expanded in terms of the ei-
genvalues of D2

E*(k)

A =
FK=3 35370 - (29)
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In the QKKR the dimension of F*(k) is 2(/,,,, + 1) and
there are that many terms in the sum. The valence
charge density is calculated by an integration over the
Brillouin zone,

pr=o [ 4tkr,0dk , (30)

where the function A4 (k,r,r’) is obtained by integrating
the Green’s function from the bottom of the band A, to
the Fermi energy Ap=Ep—E:

’ __i AF A ’
Al rr)=——Tm [, "GR(r,r')dA . G1)

This integration can be carried out along any trajectory.
If it is carried out along the real axis, all of the functions
and matrices in G§(r,r’') are real, so the only imaginary
parts in the integrand arise from the poles in the sum in
(29). This will lead to an expression for A4(k,r,r’) that is
a sum of wave functions evaluated at the eigenvalues
A,(k), as might be expected.

The fact that the determinant of the sine matrix S2 is
zero for a set of energies A; must be taken into account.
It follows that the inverse of the sine matrix can be ex-
panded as a sum

_ S"
(SH7l=3—=
- %A——A;

, (32)

and there should be contributions to the imaginary part
of Gﬁ(r,r’) from both inverses in (28). A very careful
analysis shows that these two contributions cancel each
other, so that the function J2(r) does not appear in the
imaginary part of the Green function. The charge densi-
ty can be found by integrating over k the contributions

an

e T ATNEE)

Ak,1,r)=—E B(p)— kL
nr)==E 2 40

a,n

Lr
The sum over a is such that the only terms that are in-
cluded are those for which A, <A_(k)<Ap, and the
wave functions are evaluated for A=A (k). The matrix
Q°" in this equation is the product of F* and S ". This
expression has the usual advantage obtained from a
Green-function formulation, there is no need to normal-
ize the wave functions ¢7(r) beyond the application of
the condition in (9).

The formula in (33) is completely correct, but it is obvi-
ous that there is a practical difficulty that could arise
when it is used for calculations. The integral over k is
done by evaluating the contributions for a finite set of k;
and summing with the help of a weight function w(k;).
It might be thought that it would be very unlikely that a
A,(k;) would equal a Aj to such an accuracy that the
denominator in (33) would appear to be zero to the
machine. Unfortunately, there are usually one or two
zeros of the sine matrix in the range of energies covered
by the band, and many eigenvalues are generated in the
process of iterating to self-consistency so that this unlike-
ly event happens several times during the course of a
band-theory calculation. The contribution to the charge
density from the wave function associated with one
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A (k;) is very small, which suggests that a few trouble-
some points could be identified and simply ignored. Such
a procedure works well enough so that reasonable eigen-
values can be obtained, but the step in which the total en-
ergy is calculated requires another level of consistency in
the calculation of eigenvalues, potentials, and charge den-
sities. After many iterations the calculated total energies
continued to oscillate with an amplitude that is small but
unacceptable. This is the problem with the formula in
(33) that caused the slow down in the development of the
QKKR alluded to in the Introduction.

III. REFORMULATION OF THE EQUATION

The resolution of this problem is found with the help of
some algebra that starts with the alternative formula for
&% (r) from scattering theory

¢L(r 2 [NL SL 'L —JL

in which Nf(r) is the solution of (8) that satisfies the
boundary condition

r)ChL T, (34)

lim NA(r)=Y,(r)n(kyr) . (35)
Inserting (34) into (28) and manipﬁlating the terms leads
to

Wio= 3 Hp [(C*

Lo

-2 [(C
=

where H2 is the product of F2 and the matrix of KKR
structure constants B(E,,k). The determinant of the
cosine matrix is zero for the energies A, so the inverse of
that matrix can be written

- c
(CA) 1— &
- %A—-Af,

)" pprie(r)

871 NA(T) (36)

) (37

and, from the same arguments that were used before, p(r)
is obtained by integrating

an

R/T
—K02¢L —————¢L . (38)

A(k,r, 1)
A (k)—

LL'

The matrix R*" is the product of F%k), B(E,,k), and
C". The comments made after (33) concerning the terms
in the sum apply here.

The calculation is done by switching back and forth be-
tween the expressions in (33) and (38). If a A, (k) is too
close to a zero of the sine matrix, (38) must be used, while
(33) is used otherwise. This process seems a bit labored,
but it is quite easy to put into practice. It does not add
appreciably to the time required for the calculation. The
zeros of the sine cosine matrices, A} and A{, are not
dense in energy, and scattering theory requires that the
zeros of the cosine matrix will fall between those of the
sine matrix. These quantities do not depend on k, so the
relevant values can be calculated and stored at the begin-
ning of each iteration.

This is the practical resolution of the difficulty in
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evaluating the Green function, but it might seem ad hoc.
The process can be clarified by noting that WA (r) can be
written

W(r)=3 Ff . UA(T) , 39
<

where

(r)__zBLL Eo,k)J KONL . (40)

It is clear that when this function is used in the formula
for the Green function in (27) there will be no problem
from the inverse of either a sine or cosine matrix. The
formula for the contributions to the charge density is
simply

AKk,r,r)=ky, 3 ¢F(OFF. UL, (41)
a,L,L'
where ¢2(r) and UP(r) are evaluated at A=A (k). This

formula is not useful because the functions that appear in
UpA(r) are singular at » =0, but it provides the best proof
that the problems caused by the inverse of the scattering
matrices must be only formal. Equations (28), (36), and
(39) are all correct, since (40) may be rewritten

Up(r= _KOE[SA)_l]LL'¢ﬁ'(r)
— 3 D USH ppdp(r)
L'L"

~ 42)
Ar)=3 By (Eo,K)[(C )], L2(r)
2.

— 3 D€ N ()
L',L"
Inserting these functions into (41) leads to (33) and (38),

because the product of F¢ with DA, the inverse of F2, is
zero when A=A (k).

IV. COMPUTATIONAL RESULTS

The basis for the proposition that the QKKR formal-
ism will give the correct results for full SC potentials fol-
lows from the derivation sketched above and the fact that
it has already been demonstrated that it yields accurate
eigenvalues for SCMT potential.* The function Ao (r) in
the potential v2(r) is a larger non-muffin-tin contribution
than any difference between a SC and SCMT potential
that will arise in practice, so the method would not work
at all if non-muffin-tin potentials posed a problem. A nu-
merical demonstration of this proposition is provided by
the results of a QKKR calculation of the differences be-
tween eigenvalues calculated with two niobium potentials
shown in Table I. One of the potentials was generated
without a shape approximation and the other was ob-
tained by a muffin-tin truncation of that one. The shifts
predicted by the QKKR show the same trends as those
calculated with other band-theory methods that are
shown in that table. At the present time, it is as reason-
able to believe that the QKKR shifts are correct as any of
the others.

A calculation of the energy bands of niobium using a
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TABLE I. A comparison of the differences between eigenval-
ues of niobium using a potential with no shape approximation
and a potential which is its muffin-tin truncation, as calculated
with the QKKR and other band-theory methods. The discrete-
variational-method (DVM) calculations are described in Ref.
13, while the ones done with the modified augmented-plane-
wave (APW) method are reported in Ref. 14.

QKKR DVM APW
Symmetry (mRy) (mRy) (mRy)
T, —42 —1.6 0.8
Ty —10.5 —9.8 —132
s 5.7 7.6 7.7

full SC potential has recently been published by Jani,
Brener, and Callaway.!® They gave a table comparing
differences between selected eigenvalues from their calcu-
lation with those published by several other groups. We
have revised and extended this table by removing two cal-
culations that were done with exchange-only potentials
and inserting three QKKR calculations, and the results
appear in Table II.

The lattice constant in our SCMT calculation
QKKRMT(1), 6.20 a.u., is the same as the one used in
the KKR muffin-tin calculations of Moruzzi, Janak, and
Williams!7 that appears in the preceding line of Table II.
The close agreement between the KKR and
QKKRMT(1) energy separations demonstrates the pre-
cision of the QKKR when operating in a muffin-tin
mode.

The lattice constant used in the QKKR and
QKKRMT(2) calculations, 6.227 a.u., is the same as the
one used in the linear combination of Gaussian orbitals
(LCGO) calculations of Jani, Brener, and Callaway.'®
The agreement between the results of the calculations
with full SC potentials using the QKKR and the LCGO
is reasonably good, but there are significant differences at
the H point. This may be attributable to small differences
in the way that the potentials are generated. We used
168 k points in an irreducible ;t wedge of the first Bril-
louin zone in generating our SC potential.

The lattice constant of 6.236 a.u. was used in the linear
combination of muffin-tin orbitals (LMTO) calculation,!®
and the lattice constant used in the mixed-basis pseudo-
potential (MBP) calculation'® is presumably about the

0.7
0.6
0.5+
0.4 -

ENERGY(Ry)

r H

N P r N

FIG. 1. The energy bands for niobium plotted so that the
zero of energy is the Fermi energy. The solid lines show the
bands calculated with the QKKR and the full SC potential that
led to the eigenvalues separations in the last line of Table II.
The dotted lines show the bands for the muffin-tin calculations
denoted in the text and Table II as QKKRMT(2).

same as the others. The energy separations calculated
with the MBP and LMTO are outside the range estab-
lished by the other calculations, including the ones done
with a muffin-tin approximation.

The SCMT potential used to calculate the energy sepa-
rations denoted by OKKRMT(2) is defined in the usual
way.!” A comparison of the QKKRMT(2) and QKKR
values illustrates the magnitude of the shifts in eigenval-
ues that can be expected when a muffin-tin or a SC poten-
tial is used for niobium. The main shifts are in the eigen-
values at the H point. One reason for focusing on niobi-
um as a test case is that a previous study!® demonstrated
that the effect on the eigenvalues of this shape approxi-
mation is much greater for that metal than for rubidium
or palladium, presumably because the Fermi energy falls
in the middle of the d bands of niobium.

The energy bands for the full SC potential from which
the QKKR energy separations are excerpted are shown
in Fig. 1. The occupied bands are almost identical to the
LCGO bands in Ref. 16. The small differences are prob-
ably more due to draftmanship than anything else. Our
curves were drawn by a computer with, for example, 21
points between I' and H. The Fermi surface dimensions

TABLE II. Selected energy separations (in mRy) of niobium eigenvalues presented in the references
cited. The abbreviations are explained in text. All of the calculations use the standard local-density ap-
proximation (Ref. 15) for the self-consistent potentials. The LCGO, MBP, LMTO, and QKKR calcula-
tions were carried out with no approximation to the shape of the SC potentials.

Method - Ey —Er, E, —Er, . ~En, Er—Ey, Er—Er  E,—Er,
LCGO (Ref. 16) 404 792 687 282 387 577
KKR (Ref. 17) 410 302 387
QKKRMT(1) 409 799 710 302 389 600
MBP (Ref. 18) 433 795 613 243 425 570
LMTO (Ref. 19) 480 304 452
QKKRMT(2) 409 791 698 296 388 594
QKKR 402 777 656 262 382 582
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from the QKKR calculations agree very well with the
ones reported in Ref. 16. The bands obtained with the
SCMT potential used for the OKKRMT(2) entries in
Table II are also shown in Fig. 1. This provides an illus-
tration of the effects of the shape approximation dis-
cussed above.

It should be emphasized that all the bands in Fig. 1
were calculated with one value for E,. It was not neces-
sary to carry out a number of calculations in energy sub-
intervals and put them together in order to cover the en-
ergy range shown.

As mentioned earlier, the problem with the zeros of the
sine and cosine matrices does not affect the calculation of
eigenvalues. Total-energy calculations are affected, but,
using the new formulas, agreement has been found with
the total energies reported by Moruzzi, Janak, and Willi-
ams!” to within one or two millirydbergs.

These calculations go even faster than might be expect-
ed from a casual perusal of (33) and (38). All of the quan-
tities that are needed can be calculated using power-series
expansions in A. Even the ¢%(r) are evaluated for the
necessary values of A (k) using functions that are calcu-
lated at the beginning of each iteration.

V. DISCUSSION

Self-consistent QKKR band-theory calculations can
now be done for fcc and bec lattices with full SC poten-
tials. Total-energy calculations are working well for
SCMT potentials, but we are not confident about the re-
sults of our total-energy calculations for SC potentials at
the present time. We are convinced that the differences
in the total energies of materials in different crystalline
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phases are meaningful only when they are calculated with
the full potential, so we consider the extension of our
total-energy programs to the SC case to be a high priori-
ty.

Another development that will be very useful is the
ability to do impurity calculations. Our algebraic studies
indicate that the QKKR has advantages in this type of
calculation. One advantage that it has over previous
treatments of this problem is that it is not restricted to
SCMT potentials. For this reason, we can calculate heats
of solution with some confidence. These calculations will
be relatively fast because many operations that are quite
complicated in other approaches are replaced by manipu-
lations of finite matrices.

It is desirable to develop the necessary extensions of
the QKKR so that lattices with many atoms per unit cell
can be treated, and to include relativity and magnetism.
Now that the simpler calculations are going well, we are
encouraged to move into these areas.

The solution of these problems will help us attain our
goal of using quantum-mechanical calculations to design
new materials.
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