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The surface-plasmon dispersion relation is derived for the plane-bounded electron gas when there
is an inhomogeneous charge-density distribution in the plasma. The hydrodynamical model is used.
Both y and dq/dx are taken to be continuous at the surface of the slab, where y is the scalar poten-
tial. The dispersion relation is compared with the theoretical works of Stern and Ferrell and of
Harsh and Agarwal. It is also compared with the observations of Kunz. A dispersion relation for
the volume-plasmon oscillations is derived which resembles the well-known relation of Bohm and
Pines.

I. INTRODUCTION

The surface plasmons at the interface of a bulk metal
and vacuum were first predicted by Ritchie. ' They were
observed by Powell and Swan. Stern and Ferrell
found that the surface plasmons at the interface of a met-
al and its oxide can account for some of the perplexing
peaks occurring. in the inelastic scattering of fast elec-
trons by metal foils. Bloch * proposed a quantum-
hydrodynamical model which was extended by Ritchie
and Wilems.

Recently Smithard and Gariere et al. have experi-
mentally studied the surface-plastnon modes of small me-
tallic particles. Kunz, ' Swan et al. ," and Kloos' have
found the dispersion of surface plasm ons from the
electron-energy-loss measurements. A double-we11 model
has been used by Boardmen et al. ' ' to study the sur-
face plasma oscillations. This problem has also been re-
cently studied by Arakawa et al. ' and Harsh and
Agarwal.

We propose here a dispersion relation of surface plas-
ma oscillations for the semi-infinite plane-bounded elec-
tron gas with inhomogeneous electron density along the
normal to the plane (that is, along the x direction). We
use the hydrodynamic al model. The calculated
surface-plasmon dispersion relation shows good agree-
ment with other models' ' ' and also with experi-
ments. '~

We also obtain a dispersion relation for the volume-
plasmon oscillations which agrees with the well-known
relation of Bohm and Pines. ' '

II. MATHEMATICAL FORMULATION

Consider a uniform positive neutralizing background
for the electron gas in a plane-bounded region of thick-
ness a along the positive x direction. The other edges are
along the y and z directions. The plane-bounded region
has been taken in such a way that the particle density is

Eq. (l) becomes, on simplification,

d%, + 2 l
J

~dP(n') e

The equation of continuity is

Bn/Bt=V (nV%') .

Using the process of linearization, we write

n (x,y, z, t) =no(x, y, z)+ n &(x,y, z, t)

+nz(x, y, z, t)+

(6)

tp(x, y, z, t) = tpo(x, y, z)+ tp, (x,y, z, t)

+ tp2(x, y, z, t)+

4'(x,y, z, t) = %&(x,y, z, t)+%'2(x,y, z, t)+ .

no+ n csin(Kx ) for the region 0 & x & a and is zero
beyond it. We name the region 0&x (a as interior and
x )a as exterior, for convenience. The velocity v and
electrostatic potential y of a hydrodynamic fluid satisfy

dv n(x, yz, &) dP, (n')
m =eVy —V

dt o n'

V tp=4me[n (x,y, z, t) D;(x,y, z)]—,

where m is the electron mass, e is the e1ectron charge, n
(and n') the electron concentration, P the Fermi pressure,
D; the ion density, and d Idt a comoving time derivative.

The Fermi pressure P (n'), which accounts for the Pau-
li exclusion principle, is given by

( 3~2 )2/3 g2

5 m

Defining a velocity potential +(x,y, z, t) by

(4)
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f "o dP(n')
=ego

o n' (10)

where it is assumed that for the electron densities
lip &&n

&
&&n2. The particle density decreases as the Quid

spreads in the medium. Substituting Eqs. (7)—(9) in Eq.
(5), to zeroth order,

X =We*"
l (24)

lcok l
q&, (x,y, z, t) =y, (x,y, z)e (25)

where I =[(K') —K ] and A is a constant.
We have taken the boundary conditions of finiteness of

X& at the origin. Therefore, Eq. (18) implies

and Eqs. (1) and (2) reduce to

—,Pn 0 =ego,2/3

V' tpo=4m. e(no D; ) —.
To first order, Eqs. (5), (2), and (6) become

e SI' n

Bt m ' 3 mno)~'

(12)

(13)

g, (x,y, z) =yq, (x) W(y, z), (26)

(t} y) IBx ) (K'—) y((x)=4~eX)(x) .

Rewrite Eq. (27) by adding K (It)((x) on both sides,

(27)

(t} p, /Bx )+[K (K')—
]q&,(x)=RX,(x)+K y, (x),

V y) =4mn )e,
Bn t IBt =V.[no(x,y, z)V(tI't )] . (15)

where R =4me.
The interior solution of Eq. (28} is of the form

tp(('""(x)= RK X—((x)+ A'e ", 0&x &a . (29)

For a plane-bounded electron gas, the coordinate axes
may be taken so that the particle field or Quid density
varies as

In the exterior region, there are no real charges (n, =0),
and the tp((x) obeys V yi =0, or

nQ+ nosin(Kx), inside ( I)
0, outside ( II )

(16)

where X is a wave vector. The variation of the electron
density is only along the normal to the plane (that is,
along the positive x axis).

From Eqs. (13)—(16),

(ext)(X } g —K'x

Using the boundary conditions at x =a,
+(tnt)(x) (ext)(x)

aq('""/ax =aq( ""/ax, (II) .

We have from Eqs. (29)—(31)

(30)

(31)

e vF
2

at m" +
3n, "' (17} A'=, [K'X)(a)+X)'(a)],R

2K K'e (32)

V y, =4~n, e,
Bn, /Bt=n()V tIt, ,

(18)

(19}

where u~=(5P/m)nP =(t)i/m) (3m. no) ~ for the abso-
lute temperature T =0. Eliminating %'t between Eqs. (17)
and (19), and using Eq. (18), we obtain

a2
+(t) —p V n, (x,y, z, t)=0,t' (20)

where co =(4nne /m) and P =u~/3. Equation (20)
represents the condition for the volume-plasmon oscilla-
tions. Due to rectang'ular symmetry we can write

where X'(a)=[OX(x)/Bx], . Thus the complete solu-
tion for the interior is

n", ""'(x,y, z) =QX&(x) W(y, z),
I

(33)

tp(('""(x,y, z)= —RK X((x )

R eK'x+, [K'Xt(a)+X('(a)] . (34)
2~2~ '~ K'a

To obtain the surface-plasmon dispersion relation, we
now introduce the hydrodynamical condition of zero
electronic velocity normal to the surface. The accelera-
tion v& of electrons at x =a is given by

look f
n, (x,y, z, t) =n, (x,y, z)e

n, (x,y, z) =QX, (x ) JY(y, z) .
1

(21)

(22)

2

v)= Vpt
m ' n,

From (33)—(35),

Vn) =0 .

We can interpret co and cok as the circular frequencies of
plasma oscillations and Qow of charged particles, respec-
tively. In view of Eq. (20), X((x) in the expansion (22)
satisfies

X(a) 2 +—'1+ KX'(a) K'[1+sin(Ka)]

(36)

a'X, /ax'= [(K )' —K']X,(x), (23)

where K =(ct)z to~)lp and K'—is a constant. Its solu-
tion is

If e+ is the dielectric constant of the medium in which
the rectangular metal slab is embedded and e is the
dielectric constant of the dielectric slab, then (36) can be
modified to
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X(~) (1+~*)
X'(z) K'[1+sin(Ka )]

2+2 E~
X l'~+1+

Q) ' 1+E+
[1+sin(Ka )] . (37)

In deriving the dispersion relation (37), the boundary
conditions at x =a have been taken as

(int)(x ) ~(ext)(x )

1.4-

P
/

l.2-

1.1- B--
1.0~-

(tnt)(& )

clx

g+text)(x )

t)X

(38) 3
3

0.6-
Al

{:
E {K=O)

III. RKSUI.TS

A. Surface-plasmon dispersion relation
0.3-

0.2-

'a~

'cx

-~D {K=O)
o

(i) If we put a+=+1, sin(ICa)=0, and K'=0 in (37),
the well-known results of Stern and Ferrell may be ob-
tained in the long-wavelength limit as

t i t I

D.O 0.'l 0.2 03
t I

0.4 0.5

K (A )

0.6
i I

0.7 0.8

(39)

At e+=+1, (37) represents the general characteristic of
surface-plasmon oscillations.

(ii) For a fixed electron density (varying the thickness
a), (36) is plotted for Mg (n =8.6X10z2 electrons/cm 3)
and compared with the experimental data of Ritchie and
Kunz. ' As K —+0 and EC'=0, the surface mode ap-
proaches co~ I~2. Curves D and E are monotonically de-
creasing, and curve E is well fitted with Ritchie's' and
Kunz's' results (Fig. 1).

(iii) Surface-plasmon dispersion relation (36) has also
been compared with the surface-plasmon dispersion rela-
tion obtained by the x-ray emission spectra technique, '

for the plane-bounded electron gas (Fig. 1, curve C).

FIG. 1. Plot of {8'/8'~) as a function of K. Curve A,
volume-plasmon dispersion curve [Eq. (40)]; curve B, volume-
plasmon dispersion according to Bohm and Pines {Refs. 18 and
20); curve C, surface-plasmon dispersion curve for x-ray emis-
sion spectra in case of semi-infinite-plane boundary (Ref. 17);
curve D, surface-plasmon dispersion curve using the hydro-
dynamical model, in-plane bounded electron gas, Eq. (36), for
comparatively large thickness and K'=0; curve E, the surface-
plasmon dispersion curve using the hydrodynamical model, in-
plane bounded electron gas, Eq. (36), for comparatively low
thickness and K'=0. The solid points are the experimental data
of Kunz (Ref. 10).

Fermi velocity. Dispersion relation (40) closely resembles
the Pines formula' '

B. Volume-plasmon dispersion relation

From (18) and (20)
2 2+ 3U2~2
K p 5 F (41)

cog =cop + -UFK2 2 i 2 2 (40)

where co+ is the angular frequency of the free charges, mp
is the frequency of the plasmon oscillations, and Uz is the
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