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Frequency-dependent conductivity from carriers in Mott insulators
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The unusual broad absorption band in the infrared observed in the high-T. superconductors
YBa,Cu307 - is explained as a consequence of the diffusive character of the higher energy states
of a carrier moving in a Mott insulator. A good fit is obtained to the experimental spectrum of
Thomas et al. with reasonable values of the input parameters.

I. INTRODUCTION

The discovery of high-temperature superconductivity in
the Cu oxides! and Anderson’s proposal? that the essen-
tial elements, the Cu-O; planes, are described by a strong-
ly correlated band near to half filling has given new im-
pulses to the theoretical study of the properties of carriers
in Mott insulator. The continual improvement of experi-
mental results in terms of accuracy and reliability has
reached the point where direct confrontations of experi-
ment and the theoretical models can be undertaken. As
an example, a series of infrared and optical experiments
on single crystals of YBa,Cu3O;-;s by Schlesinger, Col-
lins, Kaiser, and Holtzberg® and by Thomas and co-
workers* has found an unusual frequency dependence of
the conductivity in the energy range 0 < w <2 eV. In the
present work we show that this behavior finds a natural
explanation within the strongly correlated model. In this
model the charge carriers are holes (formal charge Cu3*,
spin 0) moving in a background of localized spins on the
sites with formal charge Cu®*. The localized spins are
coupled with a Heisenberg exchange coupling. A number
of years ago Brinkman and Rice® showed that the majori-
ty of the hole states in a Mott insulator have a diffusive
character which arises from the strong coupling between
the motion of the holes and the spin configurations. In
this work we show that this diffusive character causes an
essential broadening of the optical conductivity due to
these holes. The result is a broad continuum absorption
stretching up to quite high energies whose form can quan-
titatively fit the experiments.

II. FREQUENCY-DEPENDENT CONDUCTIVITY

Our starting point is the Kubo formula for the real part
of conductivity
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where the summation is over eigenstates |n) with energies
E, and Z is the partition function, J, the current operator
in x direction, 8 =1/kgT, Q the volume (in d dimensions).
If the current operator J, commutes with the Hamiltoni-
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an, the current matrix element (n|J.|m)e«<3s,» and
o(w) is simply a & function at @ =0. For a normal metal,
umklapp scattering between electrons, and between elec-
tron and other particles causes a finite relaxation time and
the conductivity is usually of the Drude form. However,
the situation can be very different for systems with strong-
ly diffusive motion. In the latter case, [<n|Jelm)|?%is
roughly constant, relatively independent of |n) and | m).
Applying Eq. (1) to such systems, we have at low temper-
atures (Bw>1),
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where E is the ground state energy of the system. If the
density of states is relatively flat, then o(w) < 1/w, very
different from the frequency dependence of carriers with
propagating motion.

In the following we show explicitly that such a
frequency-dependent conductivity is realized in doped
Mott insulators at frequencies > J, where J is the spin-
spin interaction coupling. We argue further that o(w)
should show additional structure at low frequencies,
w=J.

Let us consider the effective Hamiltonian of the strong-
ly correlated Hubbard model in a d-dimensional cubic lat-
tice. Note this form can also be derived more generally.®

H=H,+H;,
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In Eq. (3), {ij) represents a nearest-neighbor pair, P is the
operator which projects out all doubly occupied sites, and
H, and H, describe the kinetic and spin-spin interaction
parts, respectively. We shall be interested only in the case
J/t <1, and a low density of holes, which can be treated
independently.

At frequencies w>>J, the hole does not see the spin
fluctuations on the time scale J ! so that the high-
frequency part of conductivity is essentially independent
of H,. Therefore, we can replace H by H, in calculating
o(w).

Almost two decades ago, Brinkman and Rice’ investi-
gated the motion of a single hole in various spin con-
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figurations in the limit J/z— 0. In that work, the prob-
lem was formulated in terms of the number of paths which
return to the origin leaving the spin configuration un-
changed. It was found that the dominant contribution is
from the class of paths in which the hole completely re-
traces all steps and that such paths contribute indepen-
dent of the spin configuration. This class has also been re-
ferred to as paths with no closed loops or paths on a Bethe
lattice. The density of states of a single hole was calculat-
ed with this retraceable path approximation (rpa). The
density of states D (w) is given by

2tD (o) =%(z — 1= 0¥/ 21 = (w/z1)?],

where z is the coordination number of the lattice. In Fig.
1 we plot the density of states for a square lattice. Note,
D(w) is relatively flat except near the edges. Assuming
the current matrix elements to be constant, we would ex-
pect o(w) e« 1/w from Eq. (2).

Very recently Joynt,” and Lederer and Takahashi® have
calculated density of states for a single hole in a quantum
antiferromagnetic (AF) configuration and in a resonant
valence-bond state, including also some closed loops.
Their results show that the hole density of states in these
different configurations is similar and so the deviations
from a 1/w law should not be large.

Given the above qualitative discussions, we now are in a
position to calculate o(w) quantitatively. The Kubo for-
mula Eq. (1) can be rewritten as
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where we use notation oo(w) for single-hole conductivity,
and
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FIG. 1. Conductivity of a charge carrier in a Mott insulator,
in units of d2a?/Q, for ®>J,T. The inset shows the density of
states D(w) and the function u%(w) of Eq. (10). All quantities
are calculated for a square lattice, and within the retraceable
path approximation.

In Eq. (6), we have replaced H by H, for the reasons
given above. The current operator J, for systems in (3) is
given by

Jx=eatiz(cjf+x,scjs_CJT—x,sts) s (7)

Js
with a the lattice constant, and (j + x) the lattice site next
to j in the positive x direction. The dc conductivity for-
mula given in Ref. 5 is a limiting case of Egs. (4)-(7) as
o— 0.
In the temperature region Bw > 1, Eq. (5) becomes

1
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where — vy is the lower band-edge position and vy

=2+/z — 1t within rpa.

The function F(w;,w,) was evaluated in Ref. 5 within
the rpa, and using the result given there, we obtain for
w>Jand T,

oo(@) =——2r(eat)2D(— vo+ 0)u (@) | ©)
w N

where
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with @ =w/vy.

If u?(w) were independent of w, Eq. (9) would reduce
to Eq. (2), so that the w dependence of u 2(w) given in Eq.
(10) may be regarded as a correction to Eq. (2). The
form of u%(w) in a square lattice (z =4) is plotted in Fig.
1, and it is apparent that u?(w) depends only weakly on
.

Note, in a one-dimensional (1D) system, in which z =2,
we obtain u2(w)=0. Therefore oo(w) vanishes every-
where except at o =0. Note in one dimension the current
operator J, commutes with H, but not in higher dimen-
sions.> The f-sum rule then requires the dc conductivity
to be infinite, in accordance with the infinite mobility in
one dimension obtained in Ref. 5.

We are primarily interested in a square lattice (z =4),
and oo(w) as a function of w is plotted in Fig. 1. In a
wide region of o, oo(w) is close to 1/w. As a test for the
rpa, we have compared our results against the exact f-sum
rule. For the model Hamiltonian (3), all contributions to
conductivity are intraband transitions and the f-sum rule
in this case was derived in Ref. 9,

oo 2.2
ne-a
j:) do Gexact(w) =- 20 T,

where T, is the kinetic energy in the x direction. In-
tegrating oo(w) of Eq. (9), we find

J:) do Uo(w)/J:) dw Gexact (0)=0.87,
which shows that the rpa is quite good.

III. COMPARISON WITH EXPERIMENT

We now wish to compare our results with available ex-
periments. Within this independent hole approximation,
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the conductivity contributed from all Cu-O, planes in
bulk superconducting Cu oxides is

o(w) =n,Qo0(w) , an

where n; is the number of in-plane holes per cm?, Q here
is the area of a Cu-O; plane. For YBa;Cu3;07-5 com-
pounds there are also holes on chains which contribute to
o(w). It is far from clear how to separate the chain and
plane contributions. Since in the insulating regime (e.g.,
8=0.8 in Fig. 2) only the chains contribute to o(w) for
®S2 eV and since o(w) is approximately constant here
we make the, admittedly ad hoc, assumption that a con-
stant form continues to hold also for all values of 6. The
form of o(w) is compared in Fig. 2 to experimental values
obtained from the reflectivity measurements by Thomas
and co-workers.* The experimental o(w) are replotted
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FIG. 2. Comparison between theory and experiments on the
frequency-dependent conductivity. The solid curves are the ob-
served conductivity (replotted from Ref. 4) obtained by
Kramers-Kronig transformation of the reflectivity of YBa,-
Cu3O7-5 samples. (a) from Ref. 4, with 7.=50 K, at five
different temperatures as listed, and (b) from Ref. 4, with
6=0.1 and §=0.8 (AF). The dashed curves are the results of
the theory of Brinkman and Rice, given by Egs. (9) and (11).
In the calculations, the hopping integral |z | =0.5 eV, and the
density of the in-plane holes ny =2.5%x10% ¢cm~? in (a) and
np=3.4x10%" cm "3 in (b). A flat background has been includ-
ed in o(w) to approximately include the effects of the chains as
indicated by the dashed horizontal lines.

here from Ref. 4. In the theoretical calculations, we use
the hopping integral |¢ | =0.5 eV, Cu-Cu lattice constant
a=38 A, and the density of in-plane holes are
ny=2.5%10?! ¢cm ~? [in Fig. 2(a)] and n;=3.4x10%
cm 3 [in Fig. 2(b)]. These values correspond to formal
valence estimates of +2.21 and +2.29, respectively, for
the Cu ions on the planes. The calculated o(w) are al-
most unchanged if we change the value of ¢ (for example,
t=0.3 eV) while keeping nyt fixed. At high frequencies
> 2000 cm ", the theoretical results of o(w) agree well
with the experiments.

At low frequencies, @ 52000 ~!, the experimental o(w)
show strong temperature dependence [this can be seen
from Fig. 2(a), also from Ref. 4], indicating strong in-
teraction between the moving holes and the background.
As discussed above, Eq. (9) for the conductivity is evalu-
ated under the assumption w>J. If we were to simply
continue to @ =0, then the theory of Ohata and Kubo!°
and Ref. 5 for the temperature dependence of the mobility
of independent holes gives u(T) & T ~! (or the resistivity
p < T) but only for higher temperatures (7 = czt where ¢
is a numerical constant =0.1). At lower 7, there is a
crossover to T ~'/2 behavior. However, this theory is not
applicable to real Cu-O; planes because of the large value
of J and the finite density of holes. Note, however, that
the experimental result that p(T) « T, as T— 0 requires
additional structure in o(w,T) to preserve the sum rule.
A detailed discussion of this low (@, T) behavior is beyond
the scope of this work. There are two approaches in the
literature. One concentrates on charge carriers with a
broad bandwidth (~2zt) which are strongly coupled to
spin excitations. This is the approach taken by Anderson
and Zou,'' who describe the transport properties with a
strongly coupled holon-spinon model. A related interpre-
tation in terms of carriers strongly coupled to excitations
is discussed in the paper of Thomas and co-workers.* In
this approach our calculation can be viewed as a way of
treating the optical matrix elements in the very strong
coupling limit in which the optical transition is accom-
panied by the emission of many spin excitations. The
second approach discusses the existence of coherent states
within an energy J of the bottom of the hole band.'?~!7
Kane, Lee, and Read!” have recently given an extensive
discussion of these coherent states and their influence on
o(w) for ®SJ. Our calculation is complementary to
theirs and describes optical transitions to the strongly
diffusive states above the coherent band. Finally, it is
worth noting that the existence of these higher energy op-
tical transitions will strongly screen the Coulomb repul-
sion between holes moving in the coherent band and may
thereby aid pairing.

IV. CONCLUSIONS

We find a good fit to the unusual form of optical con-
ductivity in the optical and infrared region of the spec-
trum (@S2 eV) of the high-T, superconductors, YBa,-
Cu3;07-5, using a one-band effective Hamiltonian with
holes moving in a background of localized spins. The pa-
rameters used in the fit give very reasonable values for the
number of carriers and hopping matrix element.
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Note added in proof. Since the submission of this work we have become aware of related theoretical treatments of the
frequency-dependent conductivity from carriers in Mott insulators by M. M. Mohan (unpublished) and earlier by H. G.
Reik [in Conduction in Low-Mobility Materials, edited by N. Klein, D. S. Tannhauser, and M. Pollak (Taylor and
Francis, London, 1971), p. 134]. We are grateful to Dr. Mohan for drawing our attention to these works.
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