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Contemporary electronic-structure methods avoid shape approximations but in doing so en-
counter the difficult problem of integral evaluation over complicated interstitial volumes. In this
paper, we present a simple and efficient technique for applying rapidly convergent Gaussian product
formulas to general interstitial regions. Like the recent methods of Boerrigter, te Velde, and
Baerends, it is based upon partitioning space into Voronoi cells and atomic spheres. In the present
work, introduction of a general pseudospherical local-coordinate system unifies the integration pro-
cedures and effects a simplified approach. A systematic procedure is derived for determining the
number of Gaussian points required for a specified level of numerical precision.

I. INTRODUCTION

A common problem encountered in molecular and
solid-state electronic-structure calculations is the need to
evaluate three-dimensional multicenter integrals without
imposing shape approximations on the charge density or
potential. In the local-spin-density approximation,' the
exchange-correlation potential is not a linear functional
of the charge density, and matrix elements of the poten-
tial must be evaluated numerically. Matrix elements of
the electron-electron potential can be determined analyti-
cally in some basis sets, but even for these integrals nu-
merical methods have sometimes proven to be more
efficient.? Many workers have discovered that a com-
bination of numerical and analytical algorithms seems to
offer the most effective approach.?

One approach to the multicenter integration problem
involves partitioning the space of a molecule or solid into
Wigner-Seitz—type cells, called Voronoi polyhedra,
around each atom. The Voronoi polyhedron about a par-
ticular atom is constructed by enclosing the atom with
the closest planes that are perpendicular bisectors of lines
drawn from the atom to the other atoms in the solid or
molecule. Becke* has proposed an interesting scheme for
multicenter numerical integration which is based on such
partitioning, but with modifications to reduce the multi-
center integration to a sum of single-center integrals.
The present work is more in the spirit of that of Boer-
rigter et al.,® who find it advantageous to treat singulari-
ties at the nuclei by surrounding each atom in the Voro-
noi cell by a sphere in which integration in spherical
coordinates can be carried out. Integration over the
Voronoi cell is then composed of two parts: (1) integra-
tion within the atom sphere, and (2) integration over the
interstitial region (i.e., the region outside the sphere but
inside the cell). The integration inside the atomic sphere
is easily handled using product Gaussian formulas®’ over
spherical coordinates, but because of the nonspherical
shape of the Voronoi-cell faces, the integration over the
interstitial region is more problematic.

In order to deal with the interstitial region, Boerrigter
et al. suggest that the Voronoi cell be filled by polyhedra
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in such a manner that the base of each polyhedron is a
planar region on the surface of the cell and the major ver-
tex of the polyhedron is at the center of the atom. This
polyhedron will have n +1 planar faces, where n is the
number of sides of its base. The faces of a Voronoi cell
will be planar polygons with possibly differing numbers of
sides, but each face can always be divided into a connect-
ed set of triangles and quadrilaterals. In principle, trian-
gles alone would be sufficient, but our experience has
shown that this is not always the best choice. Division
into quadrilaterals is found to offer added flexibility to
the cell face partitioning procedure.

In the development presented here, each polyhedron
inside the cell will be chosen to have either four faces (for
a triangular base) or five faces (for a quadrilateral base).
We will refer to such polyhedra as generalized cones or
just simply cones. However, it must be understood that
unlike a regular cone or a regular pyramid, the vertex of
a generalized cone will not necessarily be located directly
over the center of its base, i.e., a generalized cone may be
skewed. We note that this definition of the generalized
cone is somewhat different from that of Refs. 5 and 6.

If the portion of a cone inside the atomic sphere is
eliminated, the remaining part of the cone lies entirely in
the interstitial region of the Voronoi cell. In fact, the set
of all such truncated cones will form a partition of the in-
terstitial volume of the Voronoi cell. An integral over the
interstitial volume alone can consequently be written as a
sum of integrals over truncated cones. In their paper,
Boerrigter et al.® point out that the integral of the func-
tion f(x,y,z) over the volume of the truncated cone can
be written in spherical coordinates centered at the atom
as

ffff(x,y,z)dx dy dz

=fﬂo[fr:0(mf(r,ﬂ)r2dr dQ, M

where r; is the atom sphere radius, r,(£) is the radial dis-
tance from the origin to the base of the cone at angle Q,
and Q) is the set of angles which sweeps over the base of
the cone. :
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In Ref. 5 only the case of a cone with a quadrilateral
base is treated by use of Eq. (1). The case of a cone with a
triangular base is also treated, but by a different approach
using a Cartesian-coordinate system. In the present
work, we present a unified development of integration
over cones with triangular and quadrilateral bases. We
anticipate that this unification of the two kinds of cones,
along with the computational details on grid-point gen-
eration that we present, will simplify the computational
implementation of three-dimensional Gauss integration
procedures for interstitial volumes.

II. PSEUDOSPHERICAL COORDINATES
IN GENERALIZED CONES

The starting point of our development is to consider in-
tegration of a function f (x,y,z) over the volume of a gen-
eralized cone with an arbitrary surface (B) as its base
(Fig. 1). For every point P, on B, we define an ordered
pair of coordinates (s,¢) which is local to that surface.
We also assume that Cartesian coordinates of points on
the surface are known functions of the variables s and ¢:

Xo=xXxo(5,1), Yo=yol(s,t), zo=2zy(s,t) . (2)

The Cartesian coordinates of an arbitrary point P defined
by vector r inside the cone (Fig. 1) can be given in terms
of the direction cosines of the point as

x =rcosf,, y=r cosOy, z=rcosb, , (3)
where
X y z
cosBx=—0, cosBy-———O, cos62=—0 , (4)
ro To . ro
ro=(x3+y+zH'"2. (5)

The vector r; is determined by the extension of r to the
surface B (Fig. 1) at P(s,?).
It is then a straightforward exercise in vector calculus

3

FIG. 1. Pseudospherical coordinate system with local surface
variables s and t. An arbitrary point, P, in the space can be
specified by its distance from the origin (7) and the local surface
variables (s,7) determined by the intersection of r, (the exten-
sion of r to the surface B) at the point Py(s, ).
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to show that the Jacobian for the volume integration over
the variables (r,s,t) can be written as

ds ot

J=rliy , ©)

where T, is the unit vector, Ty=r,/|ro|. An important as-
pect displayed by the Jacobian, Eq. (6), is that the unit
vector does not depend on 7. All the r dependence of J is
contained in r? and all the dependence of J on the basal
parameters s and ¢ is contained in the triple product func-
tion of s and ¢,

vis,)= s ot

A
ro'

I

For the sake of geometric interpretation, it can be
shown that the vectors 9df,/ds and 9%,/dt are vectors
tangential to the surface B at the point P,(s,?). The tri-
ple product v (s,?) is the volume of a parallelepiped with
sides formed by the vectors T, dT,/3ds, and 9T, /0t.

Equation (6) is quite general and is appropriate to any
surface which has the properties we have described. For
instance, by letting s and ¢ be the standard spherical coor-
dinates 6,¢ of points on the surface of a sphere, one ob-
tains the familiar Jacobian, J =rZsin(0). It is now
perhaps clear to the reader why, for an arbitrary surface
B, we refer to the coordinates (7,s,¢) as pseudospherical.
The local coordinates (s,?) specify points on a surface B
and define a direction in space in much the same way as
the spherical coordinates (6,¢).

In this work we focus on planar surfaces, and in the
following we assume that the reference surface is of this
type. We also assume that the plane of the surface is per-
pendicular to the x axis. This assumption is not a restric-
tion since for an arbitrary plane the Cartesian-coordinate
system may be rotated so that the x axis is aligned along
the perpendicular from the origin to the plane. Since the
Jacobian depends only on the local coordinates (s,#) and
the radial variable 7, it will be independent of the rota-
tion. Once the vector ry(s,t) and its derivatives 0r,/ds
and 9r,, /9t are specified as functions of s and ¢, it is then a
simple matter to evaluate the Jacobian J for an arbitrary
point P(r,s,t) using Eq. (6). In the next section we will
define local coordinate systems (s,?) for quadrilateral and
triangular surfaces which are particularly well adapted to
the use of product Gaussian formulas for numerical in-
tegration.

ITII. CONES WITH QUADRILATERAL
AND TRIANGULAR BASES

We begin our discussion by considering some possible
choices for the local coordinates (s,?). In Fig. 2 the s and
t coordinates for integration points on the surface of pla-
nar quadrilateral and triangular regions in the rotated
coordinate system are defined. The quadrilateral and tri-
angular regions are the type surfaces that form bases of
the cones (Fig. 1) we consider. Since the plane of each
base is chosen perpendicular to the x axis, the x coordi-
nate of points on each polygon will be a constant, and the
derivatives 0x,/0s and dx, /0t will be zero. One has to-
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tal freedom in the choice of the local variables (s, ), but it
is best to choose a parametrization of y, and z, in terms
of s and ¢ which facilitates specification of points on the
polygonal surface.

One suitable choice for the quadrilateral in Fig. 2(a) is

Yo=y1+pa—y 0+ =y )+ 3ty —ys—py)tls

(8)
and
zo=z,H(zy—z )t +[(z,—z ) H(z3+z,—2,—2,)t]s ,

9

QUADRILATERAL BASE

P 1=O/ L

TRIANGULAR BASE (SIDE FOCUS)

() Fa

FIG. 2. (a) Quadrilateral and (b) and (c) triangular bases for
generalized cones. Constant s and constant ¢ contours are gen-
erated by (a) Eqgs. (8) and (9) for a quadrilateral, (b) Egs. (10) and
(11) for a triangle, and (c) Egs. (8) and (9) applied to a triangle
with an artificial vertex (P, ) introduced on the largest side.
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where (y;,z;) denote the yz coordinates of vertex “i.” In
this scheme the contours of constant s will be straight
lines in the quadrilateral which approach the side P,P,
as s —0 and which approach side P,P; as s — 1. Similar-
ly, the contours of constant ¢ will be lines approaching
P,P, as t —0 and approaching P;P, as t—1. Assand ¢
range between zero and one, the points (y,,z,) will be on
or inside the quadrilateral.

A comparable parametrization can be carried out for
the triangle in Fig. 2(b) using area coordinates.”® Here

Yo=y1+(ya—y s +(p;—y )t (1—s) (10)
and
zo=z,+(zy,—z)s +(z3—2z )t (1—s) . (11)

Unfortunately, this choice for y, and z, has the asym-
metric feature that all contours of constant ¢ converge at
P,. However, we have used integration grids generated
by Egs. (10) and (11) and have found them to be satisfac-
tory, although the efficiency of the grid (i.e., the total
number of points necessary to obtain a given level of nu-
merical accuracy) may depend upon the way the vertices
of the triangle are chosen. In particular, if the integrand
is large and changing rapidly in the direction of a partic-
ular vertex, it is logical to choose that as the vertex where
the highest density of points in the integration grid will
occur [e.g., P, in Fig. 2(b)].

An alternative way to handle the parametrization of
the triangle is to introduce an artificial vertex in the mid-
dle of one of the sides of the triangle and to treat the tri-
angle as a pseudoquadrilateral with Egs. (8) and (9). The
result of this approach [Fig. 2(c)] is a concentration of
points about the artificial vertex. Again, as was the case
with the first parametrization of the triangle [Egs. (10)
and (11)], there may be circumstances under which this
clustering of points can be used to advantage.

For grids with particular numbers of points, there are
so-called symmetric point distributions for triangles
available in the literature.®®° Unfortunately, the sym-
metric grids that presently exist are not generally dense
enough to provide sufficient accuracy for electronic-
structure calculations. In any -case, the problem of the
truncated cone with a triangular base can be successfully
dealt with using either Eqgs. (8) and (9) or Egs. (10) and
(11).

The integral of a function f(x,y,z) over the volume of
a truncated cone, with either a quadrilateral or triangular
base, can be written as

o[ 7% s

. 1 1 ro(s,) 2
fo fov(s,t) [f’s f(r,s,t)rdr |dtds .
(12)

A product Gaussian formula can be used directly to
evaluate the integrals over the variables s and ¢, and the
integral over r, which depends on s and ¢, can also be
treated by Gaussian quadrature using the method of
iterated integrals.
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IV. COMPUTATIONAL DETAILS
AND EXAMPLE

In this section we look at some of the computational
details associated with the method of truncated cones.
As a specific system for illustration, we chose a cluster of
six nickel atoms arranged at the vertices of a regular oc-
tahedron, (£d,0,0), (0, +d,0), and (0,0,+d). Results from
a study of this system using an earlier three-dimensional
Gaussian integration scheme have been published else-
where, ! and we focus here only on the problem of gen-
erating a numerical integration grid for the interstitial re-
gion.

A. Symmetry wedges

The first step in setting up the point grid is to partition
the space around the atoms in an optimum way. In the
preceding sections we have discussed the partitioning of
the volume around the atoms in a molecule or a solid into
Voronoi cells about each atom. It should be understood,
however, that the use of Voronoi cells is only one way to
fill the space with polyhedra. The method of truncated
cones is independent of the details of the specific parti-
tioning. Since most of the molecular integrals of interest
need only be performed over the smallest volume which
can generate the space by symmetry operations, the parti-
tioning should be carried out so as to take advantage of
the spatial symmetry of the cluster.

In the Nig cluster, we have chosen a wedge which pro-
jects out from the center of the octahedron (Fig. 3) which

D
(}
CONE /
o,

FIG. 3. Irreducible ;; symmetry wedge defined for numeri-
cal integration in the interstitial region of an octahedral Nig
cluster. The wedge can be partitioned into a minimum of two
cones with vertices O, 4,C,D for cone 1 and vertices 4,B;C,D
from cone 2. The atom in the wedge is located at 4. The
Cartesian coordinates of the vertices are, in a.u., 0(0,0,0),

A(2.6,0,0), B(16,0,0), C(8,8,0), and D(8,8,8).
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encompasses 5 of all space. The edges of the wedge are
along the (1,0,0), (1,1,0), and (1,1,1) directions. Although
molecular integrals formally require integration over all
space, in practice the integration space can be terminated
at some appropriate finite distance. We have chosen to
enclose the L wedge with a triangular face whose ver-
tices are (in a.u.) at (16,0,0), (8,8,0), and (8,8,8). It should
be mentioned that the coordinates that are given for this
triangle and those that will be given later for the truncat-
ed cones and atom positions are for a reference space.
The points and atom positions in this reference space are
then linearly scaled to produce isotropic expansions and
contractions of the cluster. In other clusters with more
than one inequivalent atom, it may be necessary to intro-
duce more than one scale factor in order to allow the
cones associated with the different types of atoms to
move independently of one another. In the present case,
the finite ;. wedge is a four-sided polyhedron (Fig. 3)
with vertices (in a.u.) at (0,0,0), (16,0,0), (8,8,0), and
(8,8,8) with the nickel atom located at (2.6,0,0).

B. Choice of cones

The second step in the point-grid construction is to fill
the L wedge with cones, each with its major vertex at the
atom site. In the present case, there is a minimum num-
ber of two such cones which fill the space. These two
cones have triangular bases on sides of the ;L wedge with
base vertices (0,0,0), (8,8,0), and (8,8,8) for one cone and
(8,8,8), (8,8,0), and (16,0,0) for the other. Experience has
shown that more efficient grids (i.e., grids with fewer
points for the same level of numerical accuracy) are often
obtained by using more than the minimum number of
cones.

This process of partitioning the % wedge into cones in
a more or less optimal way requires some trial and error,
but the basic idea is to heavily partition the regions of
space where the integrands are large and rapidly chang-
ing and to sparingly partition regions where integrands
are small and smooth. Obviously, it is impractical to use
a different grid for each of the many different integrands
that occur in a large electronic-structure calculation.
One must obtain one grid which is likely to be satisfacto-
ry for all the required molecular integrals. What is need-
ed is a representative integrand which (1) has the gross
features of all molecular integrands, i.e., is large and rap-
idly changing near the atoms and is small and slowly
varying at large distances; (2) is easily and efficiently eval-
uated on the computer; and (3) provides an accurate
check, i.e., the integral value is known. One can then
proceed to optimize the point grid for this representative
integrand in the expectation that the same mesh will be
efficient and accurate for each of the molecular integrals.

In earlier augmented-Gaussian-basis calculations,?
only integrals over the exchange-correlation and
Coulomb potentials, each multiplied by a pair of basis
functions, are evaluated numerically. We have found
that a point grid optimized to integrate the total charge
density of a particular system efficiently also evaluates
general molecular integrands quite satisfactorily. We
have, as a consequence, chosen the total charge density as



PSEUDOSPHERICAL INTEGRATION SCHEME FOR . ..

TABLE I. Gaussian product grid for the two-cone partitioning of the interstitial region of the -

wedge in the Nig cluster (see Fig. 3). The atom sphere radius was chosen so that the spheres of nearest
neighbors touch but do not overlap. In cone 1, the base OCD was parametrized so that the edge CD
corresponds to s=0 and the vertex O to s=1 [see Figs. 2(b) and 3]. For cone 2, s=0 at edge BD and
s=1at C. The exact interstitial charge of the model superimposed atom charge density over the entire
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cluster is 6.294 661 9.

Cone Number of Number of Number of Total number
number r points s points t points of points Charge
1 20 40 7 5600 4.4280407
2 20 7 5 700 1.866 6169
_Total 6300 6.294 657 6

our representative integrand. The total charge integral
has the added advantage that its value is exactly known,
and with Gaussian basis sets partial charge densities (e.g.,
the interstitial charge) can also be evaluated exactly using
analytic Gaussian-function integral algorithms. The er-
ror of the numerical integral of the charge density can
then be precisely determined.

C. Grid-point selection

The third step of the grid construction is to optimize
the number of Gaussian integration points in each cone
necessary to obtain a specified level of accuracy in the in-
tegral of the representative integrand over the cone. The
point grid in each cone is optimized independently. Also
within a given cone, integration in each of the three vari-
ables is successively optimized independent of the other
two. The number of Gaussian points in each of the three
coordination variables is incremented in turn until the
absolute change in the integral between increments is less
than some specified value. We have found, for example,
that an accuracy of 0.000 002 in each of the three integra-
tion directions within a cone will generally give a total
charge integral over all cones with an error no larger
than about 0.00005. This accuracy in the charge density,
in turn, ensures that the total energy of the final self-
consistent calculation will have a numerical error no
greater than about 0.05 eV. Higher precision requires
commensurately finer integration grids.

Of course, the point grids of the three coordinates
within a cone are not truly independent of one another
and some ‘“‘cycling” in the optimization process may be
necessary before the point grid becomes “‘self-consistent.”

By self-consistent we mean that if the optimization pro-
cess is begun with that point grid, the outcome of the
process will be the same point grid. Usually only a single
cycle is necessary.

The point-grid—optimization process described above is
carried out on the computer. In the early stages of the
process, we have found it efficient to use a molecular
charge density approximated by a superposition of atom
charge densities as the representative integrand. These
atom densities are given in terms of analytic Gaussian
functions and can be evaluated very quickly on the com-
puter. This superimposed charge density, however, is
typically more spherically symmetric about the atom sites
than the density from molecular wave functions. There-
fore, in the final stages of the optimization in the “angu-
lar” directions of s and ¢, the superimposed atom density
is replaced by a more realistic calculated molecular
charge density.

D. Numerical example: Nig

Tables I, II, and III illustrate successive tests of
different partitions of the interstitial region of the k%
wedge in the Nig cluster.

For the result of Table I, the minimum number of two
cones was used (see Fig. 3). The point-optimization pro-
gram was started with only five points in each of the
three dimensions in each of the two cones. The program
proceeds to increase (and decrease) the number of points
in each of the three dimensions in each cone until the ab-
solute change in the superimposed atom charge integral
between increments is =0.000002. Although Gaussian

TABLE II. Results for interstitial charge integral with five-cone partitioning of % wedge interstitial region. For cone labels, see

Fig. 4 and text. Exact charge integral value is 6.294 661 9.

Cone No. of No. of No. of Total no. Total Total

no. r points s points t points of points points Charge charges

la 3 7 5 105 0.399408 1

1b 3 5 7 105 0.7669105

Iec 8 8 5 320 2.3290981

1d 20 7 5 700 1230 0.9326214 4.428 038 1

2 20 7 5 700 700 1.8666169 1.8666169
Total 1930 6.294 6550
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TABLE III. Results for interstitial charge integral using eight-cone partitioning of % wedge. See Fig. 4 and text for cone

definitions. Exact integral value is 6.294 661 9.

Cone No. of No. of No. of Total no. Total Total
no. r points s points t points of points points Charge charges

la 3 6 5 90 0.399 408 2

1b 3 5 6 90 0.7669106

1c 7 7 5 245 2.329099 8

1d.1 5 5 5 125 0.704 539 1

1d.2 8 6 5 240 790 0.228 0819 4.4280396

2.1 5 6 5 150 1.4557257

2.2 9 6 4 216 366 0.4108915 1.866 6172
Total 1156 6.294 656 8

grids of 40 points are readily handled, as a rule of thumb,
we usually partition space until the number of points in
any dimension within a cone is less than about 10. The
excessive number of points (Table I) required in the s and
r channels of the first cone and the r channel of the
second cone is indicative of the need to further partition
the cones in those variables.
- Figure 4 shows how the first cone (of Fig. 3) can be
partitioned in the s direction and Table II gives the
point-optimization outcome for that partitioning. It can
be seen from Tables I and II that the total number of
points required in the first cone has been reduced from
5600 to 1230.

Consider now the partitioning of cones 1d and 2 in the
r direction (where r extends from the atomic site). The
large number of r points in cones 1d and 2 is due to the
fact that these cones extend out from the atom sphere to
the practical infinity of the outer wedge surface. Experi-
ence has shown that a satisfactory result can be obtained
by partitioning out the region close to the atom where the
charge density is particularly large. We therefore parti-
tion cones 1d and 2 into cones 1d.1 and 2.1, respectively

J
/ ‘d
l.
ic
H
]
b
fa
]
F

E

vl\__._.., c

G

FIG. 4. Partitions of the (110) surface of cone 1 into the four
cones la, 1b, Ic, and 1d. The Cartesian coordinates of the ver-
tices of these cones are, in a.u., 0(0,0,0), E(1.45,14.5,0),
F(2.44,24.44.0), G(4,4,0), C(8,8,0), D(8,8,8), J(4,4,4),
1(1.53,1.53,1.53), and H(0.82,0.82,0.82).

(not shown), which project out from the atom sphere sur-
face (r, =1.8384) to a radius of 3.0 and cones 1d.2 and 2.2
which proceed from r=3.0 out to the 1 wedge surface.!

Table III is the optimized point grid for the final parti-
tioning of the ;- wedge. This table is the result of iterat-
ing once producing a self-consistent grid. It can be seen
that the cycling has had the effect of reducing the number
of points in cones la, 1b, and lc. At this stage in the
point-generation process the superimposed atom charge
density would normally be replaced by a real molecular
charge density and the last stage of “fine tuning” the
point grid would be accomplished. Typically, such fine
tuning only slightly increases the number of s or ¢ points
in several of the cones.

It should also be pointed out that the point grids of tri-
angular cones used in this partitioning were generated
from Egs. (10) and (11). We have at other times used the
quadrilateral formulas [Egs. (8) and (9)] for the triangular
cones without much change from the results given in the
tables here. Furthermore, the results presented in the
tables were obtained for a specific scale factor (1.211 54)
and would be expected to vary somewhat as the scale fac-
tor is changed to describe different cluster geometries. It
has been our experience that if the scale factor is changed
by more than about 20-30 %, the point grid should be
reoptimized in order to maintain a consistent level of nu-
merical accuracy.

V. CONCLUSION

In the original form of the augmented-Gaussian-basis
technique developed by the present authors, ? integrations
over the interstitial region were performed by first in-
tegrating with Gaussian quadrature over a set of wedges
chosen to divide up the % wedge and then subtracting
out the integrals over the atom spheres. Since the in-
tegrals over the spheres were added in and then subtract-
ed out, the integrand in the spheres could be chosen to be
any function which joins smoothly to the integrand in the
interstitial region. This integration technique proved
quite efficient in practice and was used in a number of
different studies. >1%:12714

The new interstitial integration scheme described in
this paper has now been incorporated into our computer
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codes and requires less computer time while being
simpler to apply. In the previous scheme it was necessary
to partition up the entire ;; wedge, whereas with the
present technique using truncated cones, partitioning ap-
plies only to the interstitial region. The integration
methods presented here are quite general and should be
of value in evaluation of similar kinds of three-
dimensional integrals. Although the technique was
developed for applications within the local-spin-density
method, there is no reason why the numerical procedures
described here could not be implemented in other types
of electronic-structure calculations as well.
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APPENDIX: TRANSFORMATION OF POINTS
FROM THE ROTATED COORDINATE SYSTEM

In order to calculate the Gaussian integration points
and weights from Egs. (8)-(11), it is convenient to rotate
the x axis so that it is perpendicular to the plane of the
base of the truncated.cone. The points so generated must
then be transformed back into the original molecular
coordinate system before they are actually used in the
calculation.

The mathematical development for carrying out this
transformation can be found in most texts'> dealing with
three-dimensional vector spaces. For the sake of com-
pleteness, a brief description of the process is given
below.

A vector normal to the plane of three noncollinear ver-
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tices Py(x,¥1,21), Py(x5,¥,5,25), and P3(x4,y5,2z5) of a
planar polygon can be computed as the cross product of
the two vectors (P;,P,) and (P,P;) as

n:(Pl,PZ)X(PI,P:;):(G,b,C) N (Al)

where the x,y,z coordinate components (a,b,c) can be

. determined from the Cartesian coordinate of the points

P,, P,,and P;.
A perpendicular from the origin to the plane of the po-
lygon intersects the plane at the point (ta,tb,tc) where

ax,+by, tcz, )
2 2, .2 (A2)
a‘+b+c
The vector
?A_ t(a,b,c) (A3)

- ltl(@2+b2+c2)172 4

becomes the x-coordinate unit vector for the rotated
coordinated system. There is considerable freedom as to
how the y and z axes for the rotated coordinate system
are selected, but we have arbitrarily chosen to let the vec-
tor drawn from the first vertex to the second be the direc-
tion of the rotated y axis. Then,

~ (P, P,)

Ja= TP,P, (A4)
and to ensure a right-handed coordinate system,

k,=i,x5,. (A5)

Finally, the elements of the matrix which transforms
points in the rotated system back into the original molec-
ular coordinate system are given by the components
of the unit vectors i 4, j4, and k 4 in the original coordi-
nate system.
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