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dc and ac soliton conductivity of disordered charge-density-wave
systems and long Josephson junctions
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A model of a commensurate charge-density-wave system with randomly distributed charge im-

purities, based on a driven damped or overdamped sine-Gordon equation with additional random
terms, and a similar model of a driven damped or overdamped randomly inhomogeneous Joseph-
son junction are considered. A fundamental assumption is that the system contains phase solitons

trapped by an eA'ective random potential. With the increase of the dc drive, the solitons are
released gradually. The corresponding I-V characteristics are found with regard to dissipative and
radiative losses. A frequency dependence of the ac conductivity is also found.

It is generally believed that the nonlinear conductivity
of one-dimensional metals is accounted for by the action
of commensurability' and impurity pinning on a charge-
density wave (CDW). An interesting problem is a joint
effect of the two factors. Evolution of a phase misfit of a
commensurate CDW in a system with charged impurities
is governed by a perturbed sine-Gordon (SG) equation,
which is a slight generalization of that put forward by
Fukuyama
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where Mili is the phase misfit, M is a commensurability in-
dex, y is a dissipative constant, f is an external drive (dc
voltage), ep is a constant of coupling of the CDW to im-
purities, and x„are their coordinates. In a commensurate
CDW system, charge is carried by phase solitons. If the
parameters y, f, and ep in (1) are small, a soliton is close
in form to the unperturbed SG kink,

pk(x, t) =4arctan(expkr[x —&(t)](1—V ) ' ]), (2)

where rr ~ 1, g(t), and V are the kink's polarity, coordi-
nate, and velocity (V & 1). According to Ref. 3, in a real
one-dimensional metal a mean distance l between the im-
purities is small compared to the soliton s size, i.e., in our
notation, I « 1. The coordinate x„ofan individual impur-
ity may. be regarded as a random quantity. Therefore,
being interested in the soliton's dynamics, one may re-
place Eq. (1) by the equation
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gl 2(x) being random Gaussian functions subject to the
correlations

&g&,2(x)) -&g, (x)g, (x')) -0,
&g ( )g (x )) &i/2( )gz( )) e b( ),

where e =ep/2l will also be regarded as a small parame-
ter [a different but similar continuum approximation of
Eq. (1) was employed by Fukuyama ]. The model (3)
and (4), with g2—=0 and M 1, was considered earlier as
a model of a dc-driven damped long Josephson junction
(JJ) with the maximum supercurrent density subject to a
random spatial modulation.

According to Refs. 6 and 7 in real one-dimensional met-
als in which the commensurability takes place (e.g. ,
NbSe3 and TaS), dissipation is very strong, so that an ap-
propriate model for them is the overdamped sine-Gordon
(OSG) equation

yp,
—p„„+sing+ f g~ (x)sin +$2(x)cos

In the JJ theory, this model [with (2(x)=0 and M 1]
describes a randomly inhomogeneous junction of the
superconductor-normal-metal-superconductor type, i.e.,
two bulk superconductors separated by a thin layer of a
normal metal.

A few comments about the commensurability index M.
As is well known, it may take values ~ 3. At the same
time, M 1 and M=2 may be generated by an external
spatially periodic potential (ionic superlattice) imposed on
the CDW system. " An argument can be made in favor
of the presence of such a superlattice in the one-
dimensional metals KCP (Refs. 8 and 11) and NbSe3.
M =2 is also possible when interaction of two sorts of pho-
nons with a CDW must be taken into account. ' In the
present work, all the values M ~ 1 will be admitted.

A known model of the nonlinear conductivity of the
CDW systems developed by Maki' is based on a quan-
tum-mechanical calculation of the rate of production of
kink-antikink pairs in electric field. In that model, impur-
ities do not play a crucial role. The aim of the present pa-
per is to propose another model based on electric-field de-
pinning of kinks trapped by a random potential relief (a
conductivity model based on depinning of an incommens-
urate CDW is well elaborated. ' ' ) In the spirit of the
perturbation theory for SG solitons, ' it is easy to find an
effective kink's potential corresponding to the models (3)
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and (S):
f+ +OO

dx g gk(x)Uk(g —x),
k 1,2

Ui(z) =Mt l+cos[M 'pl, (z)]j,

U(g)-

U, (z) =M[I —sin[M 'y, (z)]],
where pk is the wave form (2) with V~O.

The present model is based on the assumption that at
f=0 the system contains "ready-made" kinks with a den-
sity no [in the SG model (3) they may be of both polari-
ties, while in the OSC model (5) they must be unipolar].
With the increase of f, at some f f,„a trapped kink es-
capes at a point g („where U" (g) 0. The basic in-
gredient of the model is to calculate a share p(f) of the
points („for which f„(f (for a given f, kinks trapped in
a vicinity of these points have escaped already). Proceed-
ing from the probability-density functional for the Gauss-
ian fields

r f
p(f) „p(f,„)df„=erf(J2nf/ JI)e) . (9)

P [g) z(x) ] -exp (2e') ' [g)'(x) + &22(x)]dx

one can easily find the probability distribution for the
values ( f„~ corresponding to the potential (6):

p(f,„)=2(2z/I )) '~'e ' exp( —2n'f,',/I ie'), (7)

I, = "dx —g [d'Uk(x)/dx']' (j-l,2, 3). (g)a-],2

It is now straightforward to find the above-mentioned
p( ):

Further analysis differs for the two models (3) and (5).
The OSG mode/. In this case it is necessary to take ac-

count of the fact that a released kink may be trapped by a
vicinity of another point g„with f„)f. So, to find the
density of free kinks which contribute to the conductivity,
one must know the maximum density n, (f) of the kinks
that may be trapped at a given f n., (f) is proportional
to a density v of the points g„. It is easy to find v

x '(li/I2) ', l2 i being defined in Eq. (8). The prob-
lem may be considered in the one-kink approximation pro-
vided no« v, i.e., no«1. In this case, a range of concern
is f» e, where one can easily obtain, from the expressions
(7) and (9),

n, (f)= (2ir') '~' JI) vef 'exp( 2n'f—'/Iie') . (io)

when n, (f) no (the assumption no«1 was strengthened
to lnno '»1). At f&fo, the density of free kinks is

n(f) no n, (f—). The mean velocity of a free kink in the
overdamped model is

V(f) -nf/4y . (i2)

Thus at f)fo the dc current-voltage characteristic
(CVC), i.e., a dependence of the current j on the voltage
f, takes the form

The points („with f,„&mf can trap m kinks, but a corre-
sponding many-kink correction to the expression (10) is

negligible.
The system becomes conductive at

f ~fo2~ (I~/2n2)e2lnno ',

j—=qV(f) [no n(f)] =qno(zf/4y) [1 —exp[ —(4n fo/I)e2)(f —fo)](, (i3)
where fo is defined in (11),and q 2e/M is the kink's electric charge. In the range 0 &f—fo &I ie2/4n2fo, the conduc-
tivity

p(f) =dj /df = (zqno/2y)(lnno ')exp[ —4n fo(f —fo)/I~e ] (i4)

differs strongly from the usual po =nqno/4y
SG made1. Let us proceed to model (3) with y«e. If

the trapped kinks are distributed uniformly along the sys-
tem at f 0, at f) 0 the share of free kinks is equal to
p(f) defined in (9). Let us formulate conditions which
guarantee that the released kinks will not be trapped
again. A potential hill of a height Uo will trap a free kink
if' f Sy Uo. As is seen from Eq. (9), of basic concern
are the values f-e. So, to avoid repeated capture of the
released kinks, it is necessary to demand that the values
taken by ~ g~ 2(x) ( be limited by some g such that
y g «e . Because of the above assumption y«e, this
limitation is not significant.

The velocity of a free kink in the SG model is'

V(f) - [1+(4y/nf) '] (i5)
A CVC determined by Eqs. (9) and (15) takes the form
[cf. Eq. (13)]

j qV(f)nop(f) = qnoerf( J2nf/ JI&e)

l

in the range f—e. A full CVC is hysteretic (Fig. 1): The
branch (16) (lower in Fig. 1) is observed if f increases
from zero, and the usual (upper) branch corresponding to
p(f) —= 1 is observed iffdecreases from the values » e. If
f increases along the lower branch up to some f ~

-e, and
then turns back, one will observe an intermediate branch

cI rto-

gyy (f„')—

FIG. 1. The hystcretic CVC (I-V characteristic) of the SG
mode) (3). The arrows indicate the sense of different branches.
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W~ exp( —n/V) . (17)

In the opposite range 1 —V = (4y/tcf) 2« 1; for M =1,

(dashed curve in Fig. 1) corres onding to p -p(f~). The
CVC terminates at f—y(g ) ', where, according to that
stated above, the kinks will be trapped by maxima of the
random potential.

It was implied that collisions between free kinks and
trapped ones do not release the latter. A detailed analysis
demonstrates that this is true under the above assumption
e»y if the kinks are unipolar; if both polarities are
present, one needs e» y

Radiative sects If .the y is sufficiently small, the soli-
tonic CVC of the SG model may be affected essentially by
radiative losses (emission of linear waves from a kink scat-
tered by inhomogeneities). Application of the perturba-
tion theory for emission problems elaborated in detail in
Ref. 17 yields the following results. In the range V
= (ref/4y) «1 (see Ref. 15), the energy emission rate
per a kink W is exponentially small (see also Ref. 5):

also belong to random inhomogeneities of the junction's
inductance and capacity. They are described by the ad-
ditional terms [&3(x)]„p +&4(x)p«on the right-hand
side of Eq. (3) with M=1, (2=0. Here f34 are random
Gaussian functions subject to correlations analogous to
(4), with e replaced by some e3, e4. Formulas (6) to (16)
are all directly applicable to this version of the SG model
with the only modification being that in Eq. (8) the sum-
mation index k must take the values 1 and 3, where

U3(x) —= —4(e3/e) sech'x .

However, in the limit 1 —V «1 the energy emission rate
differs drastically from (18):

W = 3 (4e3+ e4) (1 —V )

This means that 1 —V —f t at f ~, instead of
1 —V —f ensuing from Eq. (15).

ac conductivity If ac .drive is applied to the system, a
trapped kink oscillates in a vicinity of a local minimum gp
of the potential (6) according to

W= 2e (1 —V~) 't (18) j+yj+ (K/8) (& —
&p) = (n/4)F exp(icot ), (19)

[if g2—=0, W differ from Eq. (18) by the multiplier —,
' ]. It

is interesting to note that almost all the energy (18) is em-
itted backwards, and characteristic wave numbers of the
emitted radiation are ——(1 —V )

As one sees in comparing the two asymptotic expres-
sions (17) and (18), the function W(V) is nonmonotone.
It has been demonstrated in Ref. 18 that in this case the
dependence V(f), determined by the energy balance
equation

W(V)+ 8 yV'(1 —V') -'"-2~fV,

is hysteretic in the range eJy &f& e, provided e» Jy (a
similar hysteresis has been revealed earliers in the JJ
theory). If the radiative hysteresis takes place, both
branches of the CVC shown in Fig. 1 suffer additional
splitting (see Fig. 5 in Ref. 18). The values f e crucial
for the radiative hysteresis are much smaller than f-e
crucial in Fig. 1, so that two hystereses are well distin-
guishable.

In the case M & 1 dependence W(V) is principally
different: In the limit 1 —V 0 it attains the finite value
WM e sin (x/M). Note that W~ 0 in accordance with
Eq. (18). A preliminary investigation' has demonstrated
that, at least at M 2, the dependence W(V) is monotone,
i.e., the radiative hysteresis does not take place. Never-
theless, under the same assumption e» Jy, which is
necessary for that hysteresis at M 1, in the case M & 1

the dependence V(f) differs significantly from Eq. (15) in
the range ySf &e . This will result in appreciable al-
terations of CVC. In particular, at f—e, the conductivi-
ty becomes larger by a factor —(e /y) .

All the results obtained are applicable, with evident
modi6cations, to long JJ's. However, in the JJ theory the
quantities f and V(f)n(f) have the sense opposite to that
in the CDW theory: f is the bias current density, and
V(f)n(f) is proportional to the dc voltage across the junc-
tion. [In the JJ theory, the kink (2) represents a mag-
netic-fiux quantum. ] In a real JJ, an important role may

where F and co are the amplitude and frequency of the
drive, and x =U"(gp) (in the overdamped model the term
g is absent). A solution to Eq. (19) is

& =:-exp(icot ),
:- -(x/4) (K/8 —co'+iyco) 'F .

(20)

The ac current can be defined as follows: j (t)
Jexp(ico—t) =np(g), where averaging is realized accord-

ing to Eq. (4). The probability density for a distribution
of the values ic is similar to (7):

p(lc) =2(2n'I2) ' e 'exp( —x /2I2E' ) . (21)

(Or/4V)

halo

FIG. 2. The dynamical conductivity p vs the ac frequency m:

(a) the SG model and (h) the OSG model.

An expression for the ac conductivity p(co):—
~
J/F

~
can

be obtained from Eqs. (20) and (21) in the two limit
cases: For m «e,

p(co) = (2'/I2) 't (npco/e)ln[e /co (y +co )],
and for co )& z,

p(co) = (z/4)npco

In fact, the latter expression pertains to the homogeneous
system. The full dependence p(co) is shown schematically
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in Fig. 2 (curve a). A maximum value p —nor ' is at-
tained at ro ro -v s. In the overdamped model,

p(ro) = (2n/I2) '~'(noro/e) in [a'/(roy) ']
at co« e, and p(ro) = (rr/4y)no at coy» e (curve b in Fig.
2). It is easy to demonstrate that, in contrast with a mod-
el of the homogeneous overdamped system, a contribu-
tion of the continuous spectrum p(ro) is negligible in both
the SG and OSG cases.

In conclusion, investigation of the underlying model (1)
with random x„and I»1 for M 1 (Ref. 18) and M & 1

(Ref. 19) has yielded results which are qualitatively

analogous to those reported in the present paper. So, the
general consequences of the idea that kinks trapped ini-
tially by an eA'ective disordered potential escape gradually
with the increase of the dc drive, or oscillate under the ac-
tion of the ac drive, seem insensitive to details of a model.
It is also noteworthy that the same models (3) and (5) are
applicable, with slight modifications, to a number of other
objects, e.g, a disordered quasi-one-dimensional ferromag-
net. "

I am indebted to I. V. Krive, A. A. Nepomnyashchy, A.
S. Rozhavsky, and A. F. Volkov for valuable discussions.

'P. A. Lee, T. M. Rice, and P. W. Anderson, Solid State Com-
mun. 14, 703 (1974).

2H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1978).
iH. Fukuyama, J. Phys. Soc. Jpn. 45, 474 (1978).
4M. J. Rice, A. R. Bishop, J. A. Krumhansl, and S. E. Trul-

linger, Phys. Rev. Lett. 36, 432 (1976).
M. B. Mineev, M. V. Feigelman, and V. V. Shmidt, Zh. Eksp.

Teor. Fiz. 81, 290 (1981) [Sov. Phys. JETP 54, 155 (1981)].
6M. Weger and B. Horovitz, Solid State Commun. 43, 583

(1982).
7B. Horovitz and S. E. Trullinger, Solid State Commun. 49, 195

(1984).
sH. Fukuyama, J. Phys. Soc. Jpn. 45, 1266 (1978).
G. Gruner, A. Zawadowski, and P. M. Chaikin, Phys. Rev.

Lett. 46, 511 (1981).
' L. K. Hansen and K. Carneiro, Solid State Commun. 49, 531

(1984).

''M. Apostol and I. Baldea, Solid State Commun. 53, 687
(1985).
B. Horovitz, in Solitons, edited by S. E. Trullinger, V. E. Za-
kharov, and V. L. Pokrovsky (North-Holland, Amsterdam,
1986), p. 691.

'iK. Maki, Phys. Rev. Lett. 39, 46 (1977).
'4P. A. Lee and T. M. Rice, Phys. Rev. B 19, 3970 (1979).
'5G. Griiner and A. Zettl, Phys. Rep. 119, 117 (1985).
'6D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652

(1978).
'7B. A. Malomed, Physica D 27, 113 (1987).
'sB. A. Malomed, J. Phys. C 21, 5163 (1988).
'98. A. Malomed and A. A. Nepomnyashchy (unpublished).

S. Sakai, M. R. Samuelsen, and O. H. Olsen, Phys. Rev. B 36,
217 (1987).

'Yu. S. Kivshar, V. V. Konotop, and Yu.A. Sinitsyn, Z. Phys. B
65, 209 (1986).


