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Intraband absorption of infrared radiation in a semiconductor quantum dot
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The energy spectrum and bound-bound intraband transitions in semiconductor quantum dots are
analyzed. Numerical results for the GaAs-Al Ga& As system indicate that a considerable absorp-
tion at a number of distinct wavelengths in the infrared range ( -7—25 pm) may be obtained, which
greatly exceeds free-carrier absorption.

Much attention has recently been focused on zero-
dimensional semiconductor structures, called quantum
dots (or quantum boxes). ' Due to the fully discrete en-
ergy structure, the absorption spectrum, either intraband
or interband, is expected here to be a series of discrete
lines, which is of interest in the application of this struc-
ture in lasers, optical modulators, etc. Most papers
on this topic deal with interband absorption. Here, we
shall consider intraband transitions of the finite-wall
quantum dot, specifically the GaAs dot, in the
Al Ga& „As matrix.

An eigenfunction of Schrodinger's equation (we use the
envelope-function effective-mass approximation) can
be separated into radial and angular parts as
[X(r)lr]Yt (0,$), and the radial part satisfies

$2 g2X"+ U(r)+ l (l + 1) X =EX,
2m 2m r

being valid in the regions (O, R) and (R, + ~) separately,
with appropriate values of the efTective mass m'. The
boundary conditions at the interface may be shown to be
(see Fig. 1)

/, „=int[ —0.5+0.5(1+4to)'~ ],

m =2m&R Uo/A

With rectangular U(r), wave functions may be expressed
through Bessel or Hankel functions with boundary condi-
tions (3) and X(0)=X(+~ ) =0, as usual.

We also note that the number of bound levels Nb is
largest for I =0, and may be determined as follows.
Defining

k, =2m )E/fi, k2 =2m2( Uo E)/A—
f (E)=k, R /[1 —m, (1+k2R)/m2],

y =int(2kiR/m),

we have N„= (y + 1 ) /2 for odd y and Nb =y /2+ E for
even y, where c is equal to zero if
tan[(2m, Uo)' R /A'] ~f (Uo), and s= 1 otherwise. Note
that for m, =m2, E=0 because f ( Uo)~ —~. For /&0,

1

m& dr
X

«=R

1 d X
m2 dr r

X(R ) =X(R +
) . (2)

In (1), U(r) is the potential energy, which is taken here
to have a rectangular shape as in Fig. 1, i.e., space-charge
e6'ects are neglected because they are not expected to in-
troduce any qualitative efT'ects. Also depicted in Fig. 1 is
the shape of the effective potential [the expression in
large parentheses in (1)] for values of the azimuthal quan-
turn number 1=0,1,2. Obviously, the discrete part of the
energy spectrum lies in the interval [E;„(l),Uo], where
E;„(/)=A' l(l +1)/(2m, R ); therefore, there is a maxi-
mal I permitting bound levels to exist and may be shown
to be
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FIG. 1. Effective potential of quantum dot with radius R for

values of azimuthal quantum number l =0, 1, and 2.
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however, no explicit expression for Xb can be derived.
We shall specialize here to electron intraband transi-

tions between bound levels with energies E; and Ef corre-
sponding to the values of radial, azimuthal, and magnetic
quantum numbers n;f, I;f, and m;f, respectively. The
transition rate m;f is given by the Fermi "golden rule"

m,. =1,. mf =1,.

iP; fi 5(Ef E; —R—co)
m. = —I. m = —1.i i f i

X FFD(E;,Ef ), (4)

where FFD(E;,Ef) is the difference of Fermi-Dirac distri-
bution functions for E; and Ef. The transition matrix
element P; f is equal to (8,.~8~8f ), where 8;f are the
complete electron wave functions, and 8=e A.p/mp ( A
is the magnetic vector potential, p is the momentum
operator, and mo is the free-electron mass). Following
the conventional procedure, the expression for P,-f may
be reduced to
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P;f = . (E; Ef)f f—f 1t; A.rgfr sin8d8dgdr,

where g; and tJf are the corresponding wave functions.
As shown in, e.g., Ref. 7, only transitions with
l; —lf =+1 are allowed, and the transition rate takes the
form

w;f = e co 3 )(,X;~r~Xf J[ FFD(E;,Ef)q(1;),

1, /3, 1, —lf = 1

(1;+1)/3, 1; —lf = —1 .(1)= ' (6)

The absorption coeScient u, f due to the presence of a
single quantum dot in an infinite matrix is given by

s 4ne q(l;) z FFD(E;,Ef )Rcu

co%'cn 2

X5(Ef E; —A'co), —

and obviously tends to zero as matrix volume V increases.
However, with X dots present, making a finite concentra-
tion n =X/V, the absorption coefficient of a such a sys-
tern is
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FIG. 2. Energy levels of GaAs quantum dot with radius R
embedded in Ala 3Gao 7As matrix. The first number in
parentheses is the azimuthal quantum number l and the second
is the radial number n. Also depicted {dashed lines) is the Fermi
level EF corresponding to the doping level of 10' cm at
T =300 K.
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FIG. 3. Values of cross section o;f'" (dashed lines) and
0 ' f FFD (solid lines) for a number of transitions in quantum
dots of radii R. Numbers in parentheses ( l;, n;, lf, nf, R) R in A,
denote values of azimuthal {l) and radial (n) quantum numbers
of initial (il and final (f) states. Matrix is doped to 10' cm
and T=300 K. Note that where values of o.;f" or o.;f'"FFD
exceed the scale of figure, the corresponding lines are cut and
the corresponding values written along them. The transitions
(1,1,0,2, 120) and {0,2, 1,2, 120) at wavelengths 22 and 24 pm and
22 and 28 pm could not be depicted for the sake of clarity, and
have o "=3776 A, o '"FFD =253 A, and o "=9231 A,
a '"FFD =3138 A, respectively.

cx(fcTf~f FFD(E;,Ef ) n'
where o.;f is the absorption cross section

(8)

where single dots are taken to be separated enough not to
interact. In (8), p= —„', is the fine-structure constant, and

n2 the refractive index of the matrix. In real systems,
electron scattering induces finite linewidths ( I ) with
profiles typically described by a Lorentzian

16m Pq ( 1; )Ace

cled

f ( (X ~1 ~Xf ) )'5(Ef E, fg~), — —
n2
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3n
&X, frfxf &~, ', &X, frfxf &

n )+2n2

nt —nz2 2

+ I +r X,Xfdr .
n I +2n 2 ~ I'

(9)

In the GaAs-Al Ga, As system, however, n, is close
to n2 and the corresponding correction is small.

Numerical results are presented for the GaAs quantum
dot in the Al(j 3Ga07As matrix. Matrix doping is set at
10' cm, which determines the value of the Fermi level
EI;. According to the expression for the band-gap
difference, b,E (x)= l. 115x +0.37x (eV), and assum-

ing 60~o of it to be the conduction-band discontinuity, we
get Uo =227 meV. Energy levels calculated for a couple
of dot radii values are given in Fig. 2.

I /sr[I +(Ef E—,
—A'co) ) instead of the 5 function in (7)

or (8).
Throughout the above considerations, the constancy of

the refractive index was assumed. If we take into account
the difference between refractive indices of the matrix
(n2) and dot materials (n, ), it turns out that &X, frfXf &

should be substituted by

In Fig. 3, values of cross sections cr;f'" (at center of
line, Aco=Ef E—;) with I in Lorentzian set at 1 meV for
reference, for a number of transitions whose wavelengths
are less than 25 pm, are given. Transitions with lower
energies can hardly be expected to be visible because of
large free-electron absorption of the matrix. Further-
more, we also omitted transitions that are nominally al-
lowed, but have very small cr (o. (500 A ). Along with
0-,.f, the values of o-, f'"I'"„D, determining the real absorp-
tion, at T =300 K and doping level of 10' cm, are de-
picted. Obviously there are transitions that have large
o.; f'" but do not accomplish significant absorption, be-
cause initial and final states are approximately equally
populated. However, these transitions may become very
strong for some other set of parameters.

Using the above results one can calculate absorption of
a matrix with some definite quantum dot concentration.
For example, dots with 200 A radius may provide absorp-
tion of 10.55 pm CO2-laser radiation at the (2, 2)~(3,3)
transition (Fig. 3). For 2000 A separation between neigh-
boring dots, a I-pm-thick sample would absorb -6% of
incident radiation. On the other hand, free-carrier ab-
sorption is calculated to be -0.075%, so absorption on
bound-bound transitions is very pronounced and may
have applications in quantum electronics.
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