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An ab initio model is developed for calculating the approximate electronic structure of local ex-
cited states in alkali metals and alloys. Core excitations of Na and K metals are calculated along
with core impurity excitations of K in Li and Rb in Li. Unrestricted Hartree-Fock method is used
in conjunction with pseudopotentials, cluster theory, and Rayleigh-Schrédinger many-body pertur-
bation theory to yield a spectroscopic accuracy of 0.1 eV when compared to experiment. Local res-
onance states below the interband threshold are found in the (n —1)p3s? excited configurations in
Na and K metals. Similar states are not found for the analogous excited configurations in dilute al-
loys'of K in Li and Rb in Li. These results suggest that electron-hole pair interactions dominate the
x-ray absorption process in pure alkali metals. Results are contrasted with current models for the

enhancement of x-ray absorption.

I. INTRODUCTION

Recent experimental data on the x-ray edge in alkali-
metal alloys has renewed the controversy over what
effects dominate the threshold spectra in simple metals.
It is observed that the shape of the threshold spectra
changes as a function of isovalent impurity concentra-
tion,! and the controversy centers on the interpretation of
these trends. Specifically, low concentrations of alkali-
metal impurities in an alkali-metal host produce rounded
edges in the excitation profile. Though practitioners of
MND (Mahan, Nozieres, and De Dominicis)? theory find
alloys beyond the scope of their model,? the above trends
seem to contradict MND theory since this model depends
solely on the response of the host conduction electrons to
the core hole. In an attempt to explain the observed ex-
perimental trends, Chiu et al.! have produced a model
which is based in part on the Z + 1 approximation. They
find a qualitative agreement with experiment even though
the model does not account for the dynamic response of
the conduction electrons in the presence of a core hole.

Almost 20 years ago Mahan observed that exciton
effects could alter the one-electron picture of the x-ray-
absorption and -emission edge. He went to predict a
power-law dependence of absorption near threshold that
was improved by Nozieres and De Dominicis. Using a
noninteracting electron gas subject to a sudden change in
potential, they derived the threshold behavior to have the
form

wo)=[£/(w—)]" fl0)B(o—n,) . (1)

Here £ is a typical bandwidth, w, is the threshold fre-
quency, and f(w) is a slowly varying function of w, and
O(w—w,) is the step function. We also have
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where / is the angular momentum, and §, is the scattering
phase shift of conduction electrons in response to the
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core hole. Theoretical values for a; have been calculated
for a variety of metals, and fits to experimental data agree
with theory after being scaled to sum rules. For systems
where excitonic effects dominate the transition process,
spectral line shapes have been qualitatively predicted.’

However, it is difficult to explain the recent experimen-
tal results of Chiu et al.! using the MND model. It
seems unlikely that the response of the conduction band
would be fundamentally different for an alkali atom with
a core hole in a like host or as an isovalent impurity.
This led Chiu et al. to offer an alternative explanation for
the source of the x-ray-edge anomaly. Their analysis was
based in part on the Z+ 1 approximation, which we will
briefly review.

The Z+1 approximation is based on the assumption
that the lowest-energy core excited state of an atom is
chemically similar to its right-hand neighbor in the
Periodic Table. For example, it is assumed that
Na(2p°3s2) and Mg(2p©®3s?) have a similar 3s? valence
structure. This approximation can be used to predict en-
ergy levels in the bulk by removing from the host lattice
one atom (Na) and replacing it by its Z +1 neighbor
(Mg). Energy levels are predicted by adjusting the atomic
excitation energy of the atom by the cohesive energies of
the atom and its Z-+1 neighbor, the energy of solution,
and the energy associated with relaxing the lattice around
the excited state. This procedure has been successfully
applied to a variety of metallic systems, including the al-
kali, noble, and transition metals.*

The purpose of this investigation is to calculate the ap-
proximate electronic structure of the excited state in
several metals and alloys. These results will then be relat-
ed to experiment, the Z +1 approximation, and MND
theory. Both MND theory and the Z + 1 approximation
predict a resonance or bound state at or below the inter-
band threshold for alkali metals. Where the models differ
is in their interpretation of the source of divergence in
the excitation threshold. MND theory predicts an
enhanced absorption in excess of one-electron theory due
to the interaction of the forming core hole with the elec-
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trons at the Fermi edge. The core hole attracts a screen-
ing cloud of electrons from states near E; and this in-
teraction increases the number of correct symmetry
states that the excited electron can occupy. The final
state of this system consists of a core hole screened by the
conduction-band electrons which exhibit a characteristic
phase shift. Alternately, Chiu et al.! have argued, using
the Z+1 approximation, that the sharp excitation
threshold is due to a local atomiclike excitation occurring
within the bulk. Atomic transitions occurring locally and
forming an electron-hole pair condensing at or below the
band bottom would produce white lines in the absorption
spectra. Using the Z+1 approximation they go on to
show that in dilute alkali alloys the ns? levels are degen-
erate with the host conduction band. These nonlocal
states produce a rounded excitation edge. In order to
gain some insight into this problem we develop here a
general many-body theory for the local photoexcitation
of electrons in a metal coupled to the conduction-band
electrons within the framework of a cluster model.

An accurate model for these excitations must allow for
core relaxation and two-particle interactions throughout
the conduction band. We accomplish this by implement-
ing unrestricted Hartree-Fock theory augmented with
correlation corrections using a size-consistent approach.
This approach is more satisfying than self-consistent
methods which use a rigid potential, be it a pseudopoten-
tial or a static delocalized electron orbital. Such models
do not allow for the interaction of open-shell impurity-
atom electrons with the hole in the excited state. The dy-
namic interaction of the hole with the conduction band is
of paramount importance; any relaxation of the hole in
the excited state must be included in such an interaction.
The importance of using the final-state picture of the ab-
sorption process has been noted in the literature.> We in-
tentionally do not use the orthogonalized—final-state
(OFS) rules in these calculations. OFS rules are useful
away from the Fermi edge, but underestimate excitonic
enhancement near the Fermi edge.® The model
developed here circumvents the fundamental difficulties
encountered when running a band-structure calculation
with a deep core hole.

To form the excited-state wave function we remove a
one-electron eigenfunction from the ground-state occu-
pied space and occupy a one-electron eigenfunction in the
unoccupied space. In this case the two one-electron wave
functions were chosen to satisfy the dipole selection rules.
Therefore, by symmetry the ground- and excited-state
eigenfunctions are orthogonal. Further, if we assume
that there is no relaxation of the other occupied eigen-
functions in the excited state, then the ground- and
excited-state determinantal wave functions are orthogo-
nal. The oscillator strength is then proportional to the
matrix element of the one-electron eigenfunctions be-
tween the dipole operator. In this study the latter ap-
proximation is invalid for the following reasons. First, in
some of the excitations that we will consider, there is a
substantial relaxation of the electrons not directly in-
volved in the transition. This introduces a finite uncer-
tainty as to which electron in the conduction band is the
excited electron, and makes the simple one-electron pic-
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ture of the oscillator strength inappropriate. Second, in
the MND description of the x-ray-absorption process it is
precisely the response of the passive electrons that pro-
duces, or quenches, the x-ray edge. Therefore, including
the relaxation of the passive electrons in the presence of
the core hole is a fundamental requirement when calcu-
lating the oscillator strength for these excitations.

In fact, though the general formalism to calculate os-
cillator strengths from nonorthogonal wave functions has
been developed,7 few workers attempt such calculations.
This is due in part to the poor results obtained from such
calculations using uncorrelated wave functions.® In the
present calculations we do not actually construct the
correlated wave functions. We avoid calculating the os-
cillator strength by considering the qualitative response
of the conduction electrons to the core hole in the excited
state in terms of phase shifts. Phase shifts are central to
the MND picture and have been used extensively to infer
the qualitative line shapes of x-ray-emission and -absorp-
tion spectra. We are interested in how the shifts differ for
x-ray absorption in pure alkali metals and dilute alkali al-
loys, and if these phase shifts are consistent with experi-
ment.

These studies are made possible by the use of state-of-
the-art computer programs and computer systems. The
programs are based on the unrestricted—Hartree-Fock
(UHF) cluster method augmented with Bachelet-
Hamann-Schliiter (BHS) pseudopotentials,”!® and ex-
tended by explicit calculation of correlation corrections
by means of many-body perturbation theory (MBPT).
These programs are implemented on a Floating Point
System FPS-164-MAX scientific computer operating
through a Digital Equipment Corporation VAX11750
computer at Michigan Technological University’s recent-
ly formed Center for Experimental Computation. The
programs are designed to take advantage of the parallel-
pipelined architecture, which is enhanced by the addition
of a set of vector-processor boards to increase the speed
of computation.

II. METHODS AND COMPUTATIONAL DETAILS

Consider the normal nonrelativistic Hamiltonian

H=— +1'3
i=1 2m —11—1 RI' 2f,j=1 |"i_"j|
N ZIZJe

+ (3)

1 —_—
’ LJ=1 IR, —R,|
We use lower-case letters to designate electronic proper-
ties and upper-case letters for nuclear properties. The ith
electron has coordinate r; (x; including spin), mass m,
and charge e. The Ith nucleus has atomic number Z; and
position R;. It is assumed that the nuclei are infinitely
massive; the Born-Oppenheimer and Franck-Condon ap-
proximations are used as needed. In principle, one must
solve the n-electron Schrodinger equation

H(xq, ..., x, )=E ¢ (x,...,x,) . (4)

Exact solutions to (4) are impractical for systems with
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large numbers of electrons. We choose instead to resort
to a set of systematic approximations, the lowest order of
which is the unrestricted—Hartree-Fock (UHF) approxi-
mation. One assumes that the many-particle wave func-
tion ¥ may be written as

Yo(X1s - ooy x,)=(n)) " 2det|d%(x;)] . 5)

That is, the solution is approximated by a single Slater
determinant of one-electron orbitals, ¢¢. In the UHF ap-
proximation these orbitals are constrained to be ortho-
normal and eigenstates of the z component of spin. They
are not constrained to be doubly occupied nor to satisfy
precise symmetry restriction. If the orbitals ¢ are
chosen variationally, the Hartree-Fock equation deter-
mines the orbitals:

Flp8 )7 =c3¢% , )

where the density matrix p, is defined by

pox,x")= 3, $Hx)$(x") %)

i=1

and
#* ez,
F a =—-_V2._
(p*) o z—lr—R,’l
a ’ ’ 2 a ’
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In Eq. (6), P(x',x) is the operator which replaces coordi-
nate x by x'.

The resulting approximation is known as the unre-
stricted Hartree-Fock approximation and has been used
to perform numerous practical calculations for atoms,
molecules, solids, and surfaces with a high degree of suc-
cess.!12 The electronic energy becomes

(x')|?
E=Se— [ 133 lgex)l2 |'|’5r xr || dx’
i i Jj
—13 3 ¢ (x)g(x)
i

at
quﬂj(x ¢,x) dx’

e—r'] dx .

9)

Using the UHF system of equations it is necessary to
limit our summation over electrons and nuclear centers
to a finite number. The response of a solid to some local
process can be accurately modeled using a finite cluster of
atoms if the process is contained within the cluster
boundaries. Formally, it is useful to take advantage of
the arbitrariness of the UHF equation to rotate from
solid spanning Bloch-like orbitals to solutions localized
within the cluster. The existence of such a rotated solu-
tion has been demonstrated by Kunz and Klein."

Correct representation of the crystalline environment
is a central problem when using clusters of atoms to
simulate bulk materials. Proper boundary conditions will
provide the correct environment for a metal. Free space
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boundary conditions are appropriate for metals which are
by definition locally charge neutral. Another main
feature of the environment is to act as a source or sink of
propagating electrons. Electrons are donated or ab-
sorbed by the environment in such a way as to keep the
Fermi energy constant. In this work we impose free
space boundary conditions on the cluster to satisfy local
charge neutrality and constrain the Fermi energy to be a
constant. We will return to this latter point in Sec. III.
This model has been used successfully by a variety of in-
vestigators to simulate bulk materials. For example, clus-
ters of Zn and Cu atoms have been shown to duplicate
bulk properties to within 0.2 eV at modest cluster sizes
(6—13 atoms).'*

In order to reduce the number of parameters needed to
describe the electronic structure of the system, we have
employed norm-conserving pseudopotentials. Norm-
conserving pseudopotentials have been shown to yield ac-
curate pseudo-wave-functions in the Hartree-Fock ap-
proximation.” These pseudopotentials ensure the accu-
rate representation of the charge density of the
conduction-band electrons while reducing the computa-
tional effort.

The UHF method omits correlation effects. This
deficiency is corrected here using Rayleigh-Schrodinger
many-body perturbation theory (RS-MBPT); perturba-
tion is an obvious candidate for this problem, given the
small corrections and the fact that the perturbing Hamil-
tonian is well defined (i.e., the nonaverage part of the
electron-electron interactions). Correlation methods for
extended systems are constrained by size-consistency con-
siderations. RS-MBPT, on the other hand, has been
shown to be size-consistent order by order to all orders in
the perturbing potential.'* The correlation model and
how it applies to these systems has been developed else-
where and is not the main thrust of this paper. 16 The re-
sult is shown below though the general formalism will not
be worked out here:

(8iiab —&iiba )
_ jab ijba
E,= 3 pep— (10)
i,j occupied EiTETE TE
a,b virtual
(i >j)
(a>b)

where the €, are eigenvalues, g, = (ij|H,|ab), and E,
is the second-order energy correction to Eq. (9). Virtual
orbitals are, by definition, unoccupied states and typically
have positive eigenvalues. In principle, there is a com-
plete set of one-electron orbitals from which to construct
E,. In practice, a finite basis set of m functions is used.
If we have n occupied states, E, becomes
—1 n n m m
o 21 j§1 a=§+l b=n+1 EiTE TETE
(i) (b£a)

8ijab — 8ijba

(11)

Truncation of the virtual space is a good approxima-
tion if the virtual space is carefully selected. Bartlett and
co-workers have shown that, given the proper virtual
space, typically 90% of the correlation energy contained
in a given basis set can be recovered using this tech-
nique.!” For most observables only the differential corre-
lation is important. Beck and Nicolaides!® have devised a
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prescription for constructing virtual orbitals that will
produce the maximum amount of correlation correction
for a pair of occupied orbitals. This method has been
used extensively in atomic physics and has been imple-
mented here for the first time in a study of bulk materials.
Also, the UHF equations are solved to self-consistency
for every configuration in question (unless otherwise not-
ed). Electronic relaxation effects and the electron-hole in-
teraction are included explicitly. The photoexcitation en-
ergy is calculated by taking the energy difference of two
many-electron configurations.

III. RESULTS

We considered the two alkali metals, Na and K. Four
electronic configurations were calculated for each metal.
For metallic clusters, the degree to which properties
achieve size independence depends strongly on the prop-
erty under consideration. Properties which require infor-
mation from the entire cluster may change dramatically
with cluster size. On the other hand, the electron density
near the central cell is quite insensitive to the size of the
cluster. For clusters of approximately 15 atoms the ener-
gy shifts due to cluster size are within the intrinsic error
of the Hartree-Fock~MBPT method (0.1 eV).!® For the
approximation to be valid the cluster must be large
enough so that the charge density in the region of interest
(center of cluster) approximates the charge density at any
arbitrary point in the bulk of an extended solid. Also, the
spatial extent of the excited state must not extend beyond
the boundaries of the cluster.

The alkali-metal clusters considered here consist of 15
atoms assembled in a bcc lattice using the bulk-nearest-
neighbor distance. The central site is represented using a
tightly contracted basis set in an attempt to keep linear
dependence to a minimum. Correlation primitives are
added to the central site, according to the Beck and
Nicolades prescription,'® and may have a large overlap
with the atomic basis set. The other 14 sites are modeled
using a polarizable basis set on a pseudopotential site.
The polarization functions are determined by minimizing
the np atomic excited-state energy. The functions are
found to be relatively local in nature with () approxi-
mately equal to the nearest-neighbor distance.

Consider the ground-state configuration of the two
metal clusters, Na and K. Our first task is to show that
these clusters do indeed represent the bulk. Plotted in
Fig. 1 is the electron density of the two different clusters
compared to band calculations of Moruzzi, Janak, and
Williams.?® The HF electron density was taken along the
[111] direction, whereas the muffin-tin electron density
does not have an angular dependence. Agreement is ex-
cellent for the central cluster region with a relative error
of approximately 10%. The charge density of the
cluster’s interstitial region replicates the charge density
calculated using periodic boundary conditions. This sug-
gests that the bulk environment has been successfully
modeled by the cluster.

One criterion for the validity of the cluster model is
that the physical phenomena must not be larger than the
physical size of the cluster. With this in mind it should
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FIG. 1. Charge density in the interstitial region for Na and
K metals. Solid lines represent the results of a band-theory cal-
culation (Ref. 15) and the dotted line is from the present (SCF)
cluster-model calculations.

be clear that the excited-state configuration is the acid
test of this scheme. The transition for Na is
2p®3s'—>2p33s% and for K 3p®4s'—3p34s2. For these al-
kali metals the excited state was found to be contained
within the cluster. As an example, consider the ground-
and excited-state charge-density maps for Na, shown in
Figs. 2 and 3. The plots have been rotated into the plane
of the (n —1)p hole and show only mild perturbations of
the second-nearest-neighbor (NN) charge distribution in
the excited configuration.

Two other configurations were considered for each
metal: the ionization of the highest-lying conduction
electron and the ionization of a core electron. Total ener-
gies for each of these calculations including correlation
corrections are shown in Table I. From these total ener-
gies, observable quantities are calculated. The energy
differences we are interested in are shown in Table II.
One-particle relativistic corrections'® have been included
for states that involve the removal of core electrons with
sizable relativistic energy. The theoretical results for the
photoexcitation match experimental data quite accurate-
ly and give an indication of the accuracy of our ground-
and excited-state wave functions.

In a metal the conduction electrons will conspire to
keep the Fermi energy constant throughout the excita-
tion process. For a cluster in free space this may not be
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Na METAL GROUND STATE
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FIG. 2. Ground-state charge-density plot for Na metal. The
crosses represent atoms in the plane of the contour plot. The
diamonds represent atoms above and below this plane. The
contour intervals are 0.01 e/(bohr)*.

the case. However, we expect that shifts in the top of the
conduction band will approach zero monotonically with
increasing cluster size. Ab inito calculations at this level
of approximation can yield results within 0.1 eV of exper-
iment. Therefore, cluster sizes which exhibit approxi-
mately 0.1-eV shifts in the Fermi level, in the excited
.onfiguration, are within our theoretical accuracy. Our
results for Na metal indicate this degree of accuracy.

The two, metals exhibit an excitonic resonance state
below the interband threshold in the excited
configuration. This claim may be verified by constructing

Na METAL EXCITED STATE

[T11]

-11.0

-11.0 [211] 11.0

FIG. 3. Excited-state charge-density plot for Na metal. The
crosses represent atoms in the plane of the contour plot. The
diamonds represent atoms above and below this plane. The plot
intervals are 0.01 e/(bohr)’. '
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TABLE 1. Total HF-BHS energies for alkali-metal clusters;
MBPT results are also included.

Metal State Eyr (H) Eyg+E, (H)

Na 2p63s! —164.5450 —164.8815
2p*3s? —163.4904 —163.7576
2p¢ —164.4436 —164.7517
2p53s! —163.3746 —163.6144

K 3pSas! —600.7558 —601.0977
3p33s? —600.1494 —600.4181
3p —600.6778 —600.9916
3p34s! —600.0563 —600.3064

a simple picture of the conduction band using the data
from Table II and the eigenvalue of the lowest-energy
electron in the conduction band. We construct the band
diagrams for the ground and excited states using the fol-
lowing procedure. The top of the band is defined as the
minimum energy required to remove a conduction elec-
tron from the ground-state cluster. The band bottom is
assumed to be the lowest-energy eigenvalue in the con-
duction band. In order to keep the Fermi energy con-
stant the excited-state energies are shifted by the small
positive energy (E,—Ef). The conduction band and the
shifted energies for the excited-state system are shown in
Fig. 4. We observe a significant lowering in the band bot-
tom in the excited configuration, 0.63 and 0.35 eV for Na
and K, respectively. Assuming that the disturbance to
the metal is small, the periodic symmetry of the metal ex-
cludes electrons from the band gap. Therefore, we identi-
fy the electron at the band bottom as local screening state
which is formed in response to the core hole. The elec-
tron has a large effective mass and indicates the presence
of a local resonance state at or below the band bottom.
In order to observe the nature of this state the total
charge densities of the ground and excited states were
subtracted, yielding a picture of the flow of electrons in
response to the excitation. For example, as shown in Fig.
5, the excitonlike screening electrons for K form a local
1 =0 state extending half the NN distance into the bulk.
Na forms a similar excitonlike state in the excited
configuration. These calculations are consistent with
both the Z+ 1 approximation and MND theory, in that
we observe the formation of a local resonance at or below
the band bottom. The self-consistent-field (SCF) calcula-
tions also show a localization of an ns? pair of electrons
around the excited atomic site. This is consistent with
the Z + 1 approximation’s basic premise that the excited
state of an alkali (n —1)p°ns? looks chemically like that
alkali metal’s neighbor to the right in the Periodic Table.
The response of the conduction electrons is also con-
sistent with MND theory, which predicts a large positive
8, (scattering phase shift). This phase shift is evident in
Fig. 5.

The alkali alloys are chemically similar to pure alkali
metals in the free-electron model. In these calculations
two dilute alkali alloys were considered, corresponding to
7% concentrations of K in Li and Rb in Li. The x-ray
edge of alkali impurity atoms is almost uniformly round-
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TABLE II. Experimentally measurable quantities derived using the ASCF method with MBPT.

Configuration Experimental

Metal Initial Final AE (eV) energy (eV)
Na 25%3s! 2p33s? 30.66 30.68(24)

2p®3s! 2pt 3.53

2p33s? 2p33s! 3.89

2p°3s! 2p33s! 34.55
K 3pS4s! 3po4s? 18.65 18.5(25)

3plas! 3p¢ 2.89

3p3as? 3pias! 3.04

3p%4s! 3p4s! 21.68

ed for low impurity concentrations.! The two alloys K-Li
and Rb-Li are no exception, as shown in the experimental
data after Chui e al.! (Fig. 6). The clusters used to mod-
el these alloys were developed using the same techniques
described earlier in this paper with the addition of intro-
ducing a relaxation of the host lattice around the impuri-
ty atom. This was carried out by dilating the cluster in a
breathing mode and satisfying the energy-minimization
principle. Movement of the impurity atom off the central
site was found to be energetically unfavorable. Ground
and excited states were calculated using the same pro-
cedures outlined for the alkali metals. These data are
shown in Table III. The excited state is contained within
the cluster in both cases and the cluster model is valid for
these excitations.

Using the ASCF approximation we calculate observ-
ables by taking energy differences from Table III. For
these excitations it is necessary to correct for one-particle
relativistic effects.?! For example, the ionization of a 4p
electron from Rb can contribute 0.61 eV to the
4p5s! —>4p35s% excitation energy. Including these
corrections, we find an excitation energy of 18.45 eV for
the 3pS'—3p3s? transition of K and 15.04 eV for the

Energy (eV)
- -2

FIG. 4. Simple band diagrams for the conduction band in Na
and K. ’

4p®5s'—>4p35s? transition of Rb. The experimental
values for these excitations are 18.5 and 15.5 eV, respec-
tively.! The results are quite good, though the difference
between experiment and theory for Rb in Li indicates
that a better approximation of the relativistic effects may
be needed.

The two alloys do not exhibit the formation of a local
state at or below the band bottom. This can be seen by
plotting the conduction bands for the two alloys using the
procedure outlined for the alkali metals (see Fig. 7). The
excited-state conduction-band bottom actually rises rela-
tive to the ground state. There is evidence that the core
hole and associated screening cloud is acting as a repul-
sive potential to the conduction electrons. Charge-
density-difference plots show that the response of the
band is local but an admixture of several angular momen-
tum states. Qualitatively, §, is approximately equal to
zero. The excited electron in the two alloys is degenerate
with the conduction band and has even parity. We inter-
pret this to be consistent with the prediction of Chiu

K BAND EXCITED-GROUND STATE

7.5

[100]

-7.5

FIG. 5. Charge-density plot for the difference between the
charge densities of the excited and ground states of K metal.
Solid lines represent an accumulation of charge. The contour
intervals are 0.002 e/(bohr)>.
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FIG. 6. X-ray-absorption spectra after Ref. 1.

et al.! that the ns? level is degenerate with the host con-
duction electrons.

In connection with MND theory we offer a heuristic
model for the repulsive nature of the impurity atom with
a core hole. This may be due in part to the Pauli ex-
clusion principle. The host conduction electrons are or-
thogonal to the core states at every site in the crystal.??
For host sites this entails producing enough local nodes
to form an ns state. At the impurity site the host conduc-
tion electrons feel a repulsive potential because they can-
not occupy the ns shell. In the ground state the phase
shifts introduced by the impurity must sum to zero for
isovalent solutes. We deduce that electrons are being
scattered from s to higher angular momentum states.
Therefore, the interaction of the impurity with the host
conduction band may reduce the Mahan enhancement
term for excitation to an /=0 symmetry state. The
screening of the hole by the host conduction electrons
must compete between the Coulomb attraction of the
hole to the band electrons and the Pauli repulsion of the

TABLE III. Total HF-BHS energies for alkali-metal alloy
clusters; MBPT results are also included.

Alloy State Eyr (H) Eyr+E, (H)
K-Li 3plas! —601.4025 —601.6994
3pS4s? —600.8098 —601.0244
3p® —601.3096 —601.5837
3p3as! —600.6913 —600.9040
Rb-Li 4pSss! —2938.5577 —2938.7704
4p35s? —2938.0599 —2938.2398
4p® —2938.4697 —2938.6427
4p5s! —2938.9407 —2038.0822

Energy (ev
KLi RbLi )

-2

- -10

FIG. 7. Simple band diagrams for the conduction band in
Li-K and Li-Rb.

impurity core levels. A consequence of this dynamic in-
teraction is that the hole perturbs the wave functions of a
large number of the host conduction electrons and the
transition probability to states near threshold is severely
reduced due to the “orthogonality catastrophe.”?’ Our
calculations support the idea that the rounded x-ray edge
for the dilute alkali alloys is due in part to Anderson
suppression effects at threshold. Further trends in
threshold behavior in alloys can be qualitatively ex-
plained using these ideas.

Two trends are evident in considering the enhancement
of x-ray absorption in alkali-metal alloys. First, for low
impurity concentrations, the larger the disparity in atom-
ic numbers of the host and impurity atoms, the more
rounded the x-ray edge. Also, as the impurity concentra-
tion increases, the edge gets more pronounced. In the
first case, as Z increases for the impurity atom, the ns?
shell becomes more localized around the core hole, mak-
ing screening by the host ns band more difficult. For the
second case, as the number of impurity atoms increases,
the number of electrons with quantum numbers favorable
for Mahan enhancement increases. When enough con-
duction electrons are available to enhance absorption by
forming a bound ns electron—(n —1)p hole complex, the
sharp x-ray edge emerges from the background. These
observations are consistent with what has been proposed
using the Z +1 approximation.

Our results are consistent with what has been calculat-
ed using MND theory® and the experimental alkali-metal
alloy data. In the pure alkali metals we find that the
core-hole interaction is attractive and for the most part
an [ =0 interaction. This corresponds to a large positive
8, for the scattered electrons in the alkali metals. For the
alloys, experimental results would suggest a weakly at-
tractive potential for / =0 electrons. In MND theory this
corresponds to small values of 8, which is consistent
with our calculations.

The scattering phase shifts used in MND theory can-
not be calculated explicitly using this model. The finite
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nature of the cluster model produces a surface dipole
charge imbalance in the cluster. This effect, which is
small compared to the excitations outlined above, has an
effect on the wave functions in the region of space where
the scattering phase shifts would be evaluated. Also,
even if one were to calculate these parameters, they
would not match other theoretical results which imple-
ment a static core potential.

IV. CONCLUSION

The intent of this paper was to settle some of the ambi-
guities between the various theoretical pictures of x-ray-
absorption and experimental results for some simple met-
als. We hoped to accomplish this by calculating the ap-
proximate electronic structure of the ground and excited
states of several alkali metals and alloys using the
unrestricted—Hartree-Fock method with correlation
corrections. This model yields accurate spectroscopic re-
sults (within 0.1 eV of experiment) at a moderate expense
of computer resources. As discussed in the text, we find
evidence for the existence of local resonance states below
the band bottom for excited states in Na and K metals.
Similar calculations on dilute alloys of K in Li and Rb in
Li show no evidence of such states. These observations
are consistent with the recent experimental results of
Chui et al.! The qualitative phase shifts found for these
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excitations are compatible with a MND interpretation of
experimental results. Further, we do not find the predic-
tive attributes of the Z +1 approximation, as applied by
Chui et al., to preclude a MND interpretation of experi-
mental trends in the absorption threshold of alkali alloys.

Excitations for these materials have been calculated us-
ing a variety of approaches but we believe that these are
the first ab initio calculations that verify the existence of
local resonance states below the interband threshold.
The one-electron approximation cannot be used to ex-
plain the absorption spectra of these excitations. This
implies that electron-hole pair interactions produce the
dominant effect in the near-edge x-ray-absorption spectra
for these materials. These results offer a many-particle
interpretation of enhanced x-ray absorption which is in
agreement with the work of Mahan, Nozieres and De
Dominicis.?
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