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A tight-binding model in one dimension with hierarchical potential strength is investigated. The
problem is reduced to three equivalent recursive relations: (i) for characteristic polynomials, (ii) for
a renormalization-group transformation, and (iii) for traces of transfer matrices. On this basis, the
nature of the energy spectrum and the character of the wave functions is elucidated. The scaling
properties are also analyzed in terms of the stability of fixed points, period two-cycles, and aperiodic
solutions. For short chains, resistance and transmission are calculated as functions of system length
and energy in view of experimental realizations.

I. INTRODUCTION

The one-dimensional Schrodinger equation with quasi-
periodic potential has attracted considerable renewed in-
terest, ' leading to an intermediate case between the ran-
dom potential with localized eigenfunctions and the
periodic one with extended states. Moreover, the new
ability to produce semiconductor heterostructures ' with
control of the growth of each layer allows experimental
realization of such arrangement of barriers. Here, the
one-dimensional Schrodinger equation models the prop-
erties of the heterostructure perpendicular to the layers.
Another important class of irregular deterministic poten-
tial structures is given by a hierarchical array of barriers.
They also arise in the context of classical diffusion,
anomalous relaxation jn spin glasses, ' ' molecular
c". .ff'usion on complex macromolecules, computing struc-
tures, ' etc. It is therefore useful to investigate the struc-
ture of the spectrum and the nature of the eigenfunctions
in a tight-binding model with a suitable hierarchical ar-
rangement of potential barriers. We hope that the results
of these novel structures will lead to experimental realiza-
tions and to the observation of new phenomena. For a
preliminary account of our work we refer to Ref. 11.

In Sec. II we characterize and specify the model, giving
an introduction to the general properties of the spectrum.
The problem is reduced to recursion relations for the
characteristic polynomials. The characteristic function
associated with a given product of transfer matrices is
studied by deducing the energy dependence of the in-
tegrated density of states and the inverse localization
length. Further information is obtained from the partici-
pation ratio. In Sec. III we follow a renormalization-
group (RG) approach through an exact decimation pro-
cedure. The fixed points are discussed, evaluating the
corresponding eigenvalues for the linearized RG transfor-
mation. They yield the scaling exponents at specia1 ener-
gies for the integrated density of states and for the wave
functions. Scaling allows derivation of a simple scheme
for evaluating the ground-state energy and the top of the
spectrum very accurately. In Sec. IV we analyze the
problem in terms of a trace map for the transfer matrices.
In addition, we discuss period-2 cycles and aperiodic and

bandlike solutions of the trace map. Further, we derive
exact expression for the whole transfer matrix, which al-
lows discussion of the Euclidean norm and the resistance
on a given sublattice. The properties on the real lattice
are considered in Sec. V. For short chains up to 1000
sites, which are of interest for experimental realizations,
we calculate the length and energy dependence of the
transmission and resistance. Finally, in Sec. VI we sum-
marize our main results.

II. GENERAL PROPERTIES OF THE MODEL
AND ITS SPECTRUM

has local-site potentials V„and constant nearest-neighbor
hopping matrix elements which will be set to unity and
define the energy scale. The Hamiltonian leads to the fol-
lowing recursion relation for the wave function P„:

0"+i+4. -i —(V. F-)4'. =o. —

For the potential strengths V„we assume a hierarchical
structure

V„=UoR

where

k =m xaIl
~

(nmdo2')=01

(2.3)

(2.4)

denotes the level of hierarchy. Without loss of generality,
we assume Uo )0. Depending on the magnitude of R, we
can distinguish different situations, as illustrated in Fig.
1. For R ~ 1 the potentia1 V, is unbounded from above,
while for R & —1 it is unbounded both from above and
below. In all other cases it is

~ V„~ ~ Uo. More precisely,
for 0&R &1 the potential V„ is always restricted to
values between 0 and Uo, whereas for —1 & R & 0,—U,R & V„& U, holds. Furthermore, there are three
limit configurations: (a) R = —l, where V„can assume

Our model is the one-dimensional tight-binding
Schrodinger equation on a periodic spatial lattice labeled
by the site index n The H. amiltonian &of the system,

~= g V. l &&nl —&(ln &&n+II+ln+I&&nl),
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Position n Pi+, =2( 1+R )P i +2RP( 4—RPiP i,—1 (2.7)
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FIG. 1. Sketch of the hierarchical potential structures for a
system of length n =1,2, . . . , 15 for various 8 values in Eq.
(2.3).

two values only (+Uo) arranged in a special manner
resembling Fibonacci superlattices; (b) R =0 and R =1,
with a periodic potential V„. R =1 is the completely or-
dered case where all V, = Uo. R =0 describes a binary
periodic potential, with V2n+~ = Uo on odd and V2„=0
on even sites.

The spectrum can be calculated by recurring to the
matrix form of the Hamiltonian Eq. (2.1). The matrix
(A —E) „ is symmetric and tridiagonal with diagonal
elements V„—E and ofF-diagonal elements —1. The ei-
genvalues are the roots of the characteristic polynomial
P„(E)satisfying the recursion relation

with initial conditions Po(E)=(Uo E—)/2 and Pi(E)
=Po(E)(U0R —E)—1. From Eqs. (2.6) and (2.7) it is
seen that all eigenvalues of the 2' —1 system remain ei-
genvalues of the 2'+ ' —1 system, and new eigenvalues are
added which split oft' from the old ones, as indicated in
Fig. 2. A more illustrative description of this eigenvalue
tree is given in Fig. 3. As a function of the parameter R
we have evaluated all v e&genvalues EI for a system of
size n =2' —1. For ~R ~

) 1 the largest eigenvalue diverges
(limi „EII

—+~) and for R & —1 the lowest eigenvalue
EI &

tends to minus infinity. The eigenvalue spectrum is
thus bounded for ~R~ & 1 only, when the potential V„ is
bounded as well. Figure 3 also reveals a strong clustering
of eigenvalues for ~R~~~. For large but finite ~R~

values, the eigenvalues appear in groups merging for
~R~~~. Let us consider, as an example, the case
U0=1. For a system of size 2 —1 we obtain I groups of
eigenvalues 1 «p « I with values EI I„I~R" ' and multi-
plicity 2' ". Thus, for R =10 and l =7 we obtain 64
eigenvalues around E7

I & 64 I
—1, 32 eigenvalues

round +7,
I 65, . . . , 98 I

—10, 16 eigenvalues around
E7

I 99 ] J 4 I
100, etc. Moreover, the special values

R =1 and R =0 are accessible to an exact treatment.
For R = Uo = 1 (free particle) the eigenvalues are given by
E =3—4sin (vir/2'+'), with v=1, 3, 7, . . . , 2' —1. In
the infinite system these eigenvalues form a continuous
band —1 & E & 3 and the eigenstates are extended
because limiv „(1/N) g„,P„=const. R =0
corresponds to the binary periodic potential
V„=UO/2[cos(n —1)ir+1]. Setting Uo= 1, there is a
gap (0&E &1) separating the two bands of extended
states. The top and the bottom of the spectrum are given
by E =

—,
' (1+v' l7).

For generic R values, however, the potential is no
longer commensurate with the spatial periodicity of the
lattice. Interesting features of the hierarchical potential
structure cap be anticipated by approximating it with
periodic systems of increasing period. As it is doubled to
reach the quasiperiodic limit, each band is split into sub-
bands, Anally leading to highly fragmented Cantor-like
integrated density of states. ' To confirm this expecta-
tion we have numerically evaluated the integrated density

P„(E)= ( V„E)P„ i(E)—P„2—(E), (2.5)
level

2 -1=1
with initial conditions Pi(E) = Uo Eand P2(E)—
=P, (E)(UOR —E)—1. The recursive relation (2.5) is
formally equivalent to the initial Schrodinger equation
(2.2), with P„+, corresponding to P„(E) with initial con-
ditions P, =1, $0=0. This relationship will be further ex-
ploited in Sec. IV, deriving a recursive relation for the
characteristic polynomial PI of systems of length
n =2'—1. PI satisfies

hl

E

N i

CO

221 3

~'i» «» «4 «'» 2'-i -i5

Pi+, (E)=2Pi(E)Pi(E), (2.6)
Eigenvalue tree

where P&(E) is of degree 2 and satisfies the recursion re-
lation

FICx. 2. Schmetic representation of the tree structure of the
eigenvalues for system sizes n =2' ', I =1,2, 3,4.
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2

a(E)= lim
n=1

(2.13)
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FIG. 3. R dependence of the eigenvalues for a system of size
2 —1=63.

of states N(E), the exponential decay length y(E), and
the participation ratio a(E). To do this, we define the ra-
tio R„,

R„=
n —1

(2.8)

which allows rewriting of the Schrodinger problem as the
nonlinear map

n =1

It measures the number of sites which eftectively contrib-
ute to the eigenstate amplitude. If all sites equally parti-
cipate, a becomes constant, whereas if only few sites par-
ticipate, n tends to zero with increasing chain length X.
In the quasiperiodic case the participation ratio allows
distinction between exponentially localized states and
power-law localized or extended states only. In the latter
cases a tends to a constant. Thus, extended and algebrai-
cally localized states cannot be distinguished.

The expectation of a fragmented Cantor set, like the
integrated density of states N(E), is fully confirmed by
numerical results for N(E). Three typical examples for
N(E), as obtained from Eq. (2.11) by counting nodes, are
shown in Fig. 4 for Uo= l. Here we also induced the in-
verse exponential localization length y(E) and the parti-
cipation ratio a(E). Large gaps are readily identified at
energy intervals where N(E) is constant, y(E) large, and
a(E) small. From the R dependence of the eigenvalue
spectrum shown in Fig. 3, one expects fundamentally
different behavior for R ) 1, ~R ~

~ 1, and R ( —1. Figure
4(a) illustrates the characteristic behavior for R ) l. In
analogy with the potential, top of the spectrum is un-

R„+)=V„—E— 1
(2.9)

The characteristic function I (E) is then defined as

I (E)=lim I (E+ie+)= lim —g lnR„.
N

a~0 n=1

Thus real and imaginary parts are given by
W

Rel (E)=y(E)=—g 1n~R„~,

(2.10)

(2.12)

(2.11)
Iml"(E) =y(E) =m —g e( —R„)=nN(E),

N „
where B(x) is the unit step function, y(E) is the inverse
exponential localization length, and y(E) corresponds to
m times the density of negative, R'„s; i.e., the density of
modes of the wave function. So it is clear that y(E)
equals betimes the inte. grated density of states N(E). In
analogy with y(E), to cover cases where y(E) =0, we in-
troduce the algebraic localization length
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It is important to emphasize that y(E) does not neces-
sarily characterize localization of the wave function. In
fact, y(E) is also finite in gaps where the wave function
grows exponentially.

Another useful parameter characterizing the nature of
the wave functions is the participation ratio a(E):

FIG. 4. Integrated density of states N(E), inverse localiza-
tion length y(E), and participation ratio a(E) for U0=1 and a
system of length N-10 on an equally spaced energy grid of
1000 points. The seven dots mark the eigenvalues of a system of
size 2 —1, corresponding to the third level on the eigenvalue
tree. (a) corresponds to R =1.1, (b) to R =&2—1, and (c) to
R = —1.1.
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lnp
inc

(2.14)

where e is the co width of the box and p is the fraction of
eigenvalues belonging to such an interval. Even this
refined approach, however, exhibits striking contradic-
tions which confirm the anomalous properties of this
fractal. Indeed, when using boxes with the same width to
cover the upper tail of the spectrum, smaller and smaller
masses p are detected, suggesting a diverging dimension

bounded. The rough structure of the participation ratio
and the localization length suggests the existence of ex-
ponentially localized states between the visible gaps. This
turns out to be (Sec. IV) a consequence of numerical inac-
curacy. In fact, no exponentially localized states exist.
For ~R~ (1, the spectrum is unbounded from above and
below, and the result presented in Fig. 4(b) suggests an al-
most continuous behavior. For further clarification we
refer to the next section. Figure 4(c) shows an example
for R & —1. Here, the bottom and the top of the spec-
trum are unbounded. Compared to the previous results
for R )0, and those depicted in Figs. 4(a) and 4(b), the
fragmentation of N(E) is much more pronounced. This
behavior reAects the clustering of the eigenvalues for
R & —1. Another interesting feature appears at energy
E = 1, which belongs to the spectrum for any R, provided
that Vo= 1 (see next section). For R ) 1 there is a gap
above E = 1, for R = 1 the gap is removed and reappears
below E =1 for —1 & R & 1. For R & —1 it is again re-
moved. Indications of this behavior can be anticipated
from the R dependence of the eigenvalues shown in Fig.
3. The dots in Fig. 4 mark energies belonging to the ei-
genvalues tree, shown in Fig. 2 for a system of size 2 —1.
These energies seem to mark gap orders. To substantiate
this expectation, we note that gaps can be labeled by in-
tegers p = 1, . . . , 2' —1 and the fraction N(E) below gap
p is p/(2' —1).

For a more qualitative characterization of the fragmen-
tation of N(E) we turn to the fractal properties. For
~R~ ) 1 the problem is highly nontrivial, due to the un-
boundedness of the spectrum. First we notice that the
standard box-counting algorithm is inapplicable, since an
infinite number of boxes is required to cover the spectrum
at any resolution level. On the other hand, a density of
boxes per unit length be introduced, as the whole mass is
finite [N(ni= ao )=1]. We must therefore consider boxes
centered around points of the spectrum chosen at ran-
dom. In this way we can associate a "local" dimension a
to each box as

[see Eq. (2.14)]. This result, however, is an artifact, since
the true widths of the clusters of eigenvalues are increas-
ingly thinner and the true dimension shrinks to 0. To our
knowledge, this spectrum constitutes the first example of
a fractal set, which can be proper1y analyzed only by us-
ing boxes with variable size (the width of the cluster) and
variable mass. '

For ~R~ (I no problems arise, as the spectrum is
bounded. Figure 4(b) suggests the existence of an almost
continuous structure. In the next section this expectation
will be substantiated by showing that the spectrum is a
so-called "fat" fractal, where the relative weight of the
gaps vanishes with increasing resolution. Such a feature
is analogous to Harper's equation, ' exhibiting extended
eigenfunctions for a certain range of potential strength.
This conclusion is also strongly supported by the behav-
ior of the exponential localization length and the partici-
pation ratio.

III. RKNORMAI. IZATION-GROUP APPROACH

Since the problem involves a hierarchy of energy scales
and has a self-similar structure, one expects an interpre-
tation within the renormalization-group RG context to
be useful. In doing so we implement an exact decimation,
preserving the hierarchical structure. We eliminate all
odd sites. The resulting RG transformation, with rescal-
ing factor equal to 2, yields a Schrodinger equation for
the even sites as

p2„+2+$2„2—[ V2„( U E) (2 E—+E—U)]—$2„=0 .

(3.1)

This equation has exactly the same form as Eq. (2.2), ex-
cept for the parameters which have been changed. In
place of the energy E, there appears E'=2 —E +EU.
Making use of the definition of the potential in the ex-
pression V2„( U E), we obtain—, in place of U,
U'=R U( U E). These re—cursion relations can be inter-
preted in the following way: Given an eigenstate of a sys-
tem of size n =2'+' —1, there exists a corresponding
solution with parameters E' and U' on the lattice with
n '=2' —1. Hence, the transformation can be written as a
recursion relation,

Ei+i 2 Ei2+Ei Ui Ui+ i
=R Ui( Ui Ei ) (3 2)

We have analyzed this map and evaluated the fixed points
and the corresponding eigenvalues listed in Table I. The
recursion relation can also be interpreted as a transfor-

Fixed
point
no.

TABLE I. Fixed points and eigenvalues of RCx [Eq. (3.2)] and trace maps [Eq. (4.10)].

l

2
—2, —R

4,2R
'2 1/2

2R
R —1

1+ 2R
R R —1

1

2R
1

2R
1

2R
1+ — + 1+ +R1 1 2

2R 2R R
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mation of the parameters y =(E,U). For initial values

yo, belonging to the spectrum or corresponding to gap
edges, the iterates remain bounded. Moreover, there are
special Eo values whose iterates lead to a fixed point.
This behavior implies simple scaling properties. Let
Eo +AE belong to the spectrum ~ The integrated density
of states will then behave as

IN(ED+ bE) N(—EO)I —I AEI "G(I&E/I&I,„I), (3.3)

where the scaling exponent x is given by

O
UJ

-2-
&1

0
L(J

z -4-

ln2

lnl kl, „
(3.4) -b —4 —2 0

a. I a E I

This scaling behavior is easily verified by considering
N(E0+bE) for systems of sizes 2', 2' ', . . . . For
Eo = 1+e we obtain from Eq. (3.2) the recursion relation

N(1+@,Uo = 1)= —,'N(2 —e, —R e)

=
—,'N( —2+ 2@(2—R ), +R e)

,'N( —2 ——8e(2—R) 4R e, ——4R3@)

=
—,', N( —2+ 32m(2 —R )

—8R E+8R e, —8R e)=

FIG. 5. In IN(ED+DE) —N(EO)I vs ln
I AEI illustrating the

scaling behavior [Eq. (3.3)], for (a) R =&3/3, ED= 1+&3,
Up = 1 and (b) R = —0.5, Ep = 1 Up = 1.

ing to fixed point no. 2. The numerical results confirm
the scaling prediction with x =ln2/ln4= —,'.

From the scaling behavior of the integrated density of
states N (E), the ground-state energy Eb„and the top of
the spectrum can be very accurately evaluated. For ex-
ample, considering scaling at the bottom of the spectrum

(3.5) lnN(E —Eb„)=lnc+x ln(E —Eb, ) . (3 7)

It is then easily seen that

N(1+@) N(1)~——
i [N( —2+elk, I',„)—N( —2)]

21

I
, fN(E*+e—A,l',„)—N(E')],

21
(3.6)

where
I ~I „=4f« IR I

(2 and
I
~

I ..=2R for I R I
)2, in

agreement with Table I for fixed point no. 2. The scaling
law Eq. (3.3) is then a solution of Eq. (3.6) and can be ex-
tended to other Eo values belonging to the tree or leading
to fixed point no. 3. Two examples of the scaling behav-
ior are given in Fig. 5 for Uo = 1, R &3/3, and
Eo = 1+v 3, where the energy corresponds to the top of
the spectrum. Since this energy leads to fixed point no. 3,
we expect the scaling exponent to be x=0.498. . . as
confirmed by the numerical analysis. Moreover, the am-
plitude G( I hE /I A, I,„I ) appears to be periodic with
period lnlA, I,„. The lower curve in Fig. 5 illustrates
N(E) for parameters Uo = 1, R = —0.5, and Eo = I lead-

This equation has three unknown variables: c, E»„and
x. Consider the eigenvalues E1 with v=1, 2, and 4 for a
system of size 2' —1. Since we know N(E& ), we can
eliminate c and x from Eq. (3.7) and find

2E12 E11 14Eb„= lim
2E1 2

—E
Similarly, we find for the top of the spectrum

2
E1,1 —

1 EI, I E1,1 —3E„= lim
2E1, 1 —1 E1,1 E1,1 —3

(3.8)

(3.9)

The estimates for the ground-state energy Eb„and the
'

top of the spectrum E„p obtained from these expressions
are listed in Table II for some typical R values. For
R ) 1, E„p, and for R ( —1, both Etop and E»„are
diverging, as they should be. Table II demonstrates that
one can evaluate the values of Eb, and E„with a pre-
cision of more than six digits from a very short system

TABLE II. Estimates of the ground-state energy Eb„and top of the spectrum E„~ for different R values obtained from scaling ar-
guments (3.8) and (3.9).

Ebot E Eb.t E
R =&2—1=0.41. . . R + —'&3=0.57. . .

Ebot Eb.t

R =1
E

—1.561 698
—1.561 562
—1.561 553
—1.561 553

~(1—&17)
—1.561 553

2.561 698
2.561 562
2.561 553
2.561 553

,'(1+~17)

2.561 553

—1.414 324
—1.414 220
—1.414 214
—1.414 214

—1.414 214

2.669 230
2.669 053
2.669 036
2.669 034
2.669 034

—1.336 885
—1.338 783
—1.341 421
—1.345 744
—1.346 350

2.732 168
2.732 058
2.732 051
2.732 051

1+&3

2.732 051

—1.000 125
—1.000 008
—1.000000

3.000 125
3.000 008
3.000 000
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ln(jk. i,„i2)
ln2

(3.11)

Note that Eq. (3.11) does not necessarily imply that the
eigenfunction exhibits an algebraic growth rate y on all
sites. In fact, we know from similar models (see Ref. 13)
that other subsequences exist showing different (perhaps
larger) exponents. Interesting considerations on the
structure of the spectrum can be drawn from Eq. (3.2) for
R (1. In such a case, we can reasonably conjecture that

~ VL ~

shrinks to 0 for l~ ~. If this true, the RCx map
asymptotically reduces to the logistic map, '

(approximately 500 sites long).
A similar scaling is also found for the spatial behavior

of wave functions. For Uo =1 and Eo values leading to a
fixed point, the magnitude of the wave function grows
algebraically on sites n =2' —1:

~p(n)~-a p(n/a)= p(n/2)-ny, (3.10)
2

where

E =2—5(U+5), U= —RU5 . (3.15)

From Fig. 7 we see that a small portion of such a parabo-
la lies on the right of 8'z ' and thus escapes. An estimate
of its length is obtained from the crossing point between
the parabola and 8'2 which, in linear approximation, is
given by

fixed point ( —2,0) lies on the border of the basin of at-
traction. In fact, any point ( —2 —e, 0) with e) 0 escapes
to infinity. The natural extension of this observation for
U =0 leads to the conjecture that all points on the left of
the second invariant manifold W2 (the first being the E
axis) escape, as shown in Fig. 7. Additionally, the back-
ward iteration of the map allows all points on the right of
the preimage 8'2 ' of 82 to escape as well. Note now
that the whole straight line U =E is mapped onto
(+2,0), which is on the border of the basin of attraction.
It is therefore interesting to investigate what happens in
the vicinity of this straight line. We start considering a
horizontal segment E = U+6. Its image is the parabola,
written in a paramagnetic form as

EJ+ i
=2—EI'

while the decay of U& is given by

(3.12)

(3.13)
The width 6 is proportional to U:

(3.16)

Accordingly, the evolution of U is completely determined
by that of E. More precisely, being that the Lyapunov ex-
ponent of Eq. (3.12) is given by'

N

cr(E) = —lim —g ln2lEi I
=ln2,x, ,

(3.14)

it is immediately verified [substituting Eq. (3.14) in Eq.
(3.13)] that a vanishing U„ is indeed consistent with the
hypothesis R ( 1. For R = 1, the RG map reduces exact-
ly to the logistic map. Numerical evidence for the reduc-
tion to the logistic map is given in Fig. 6, sho~ing EI+,
versus E& for R = —0.5 and Eo = 1.01.

Which initial conditions are attracted by the energy in-
terval [—2, 2] remain to be seen. The basin of attraction
is not a compact set, and escape is still possible, with a
probability of less than 1. As a first step we note that the

(3.17)

R5—0 2
(3.18)

To investigate the structure of the spectrum around the
(n +2)th preimage of the fixed point no. 2 we note that its
nth iterate hits, be definition, the bisectrix U =E. There-
fore, a small segment adjacent to that point will lie in the
escaping sector. To estimate its length it is sufficient to
analyze the behavior of such a segment during n itera-
tions. From the logistic map we know that the initial
length 5o is stretched by a factor 2" (5o=2"5), while Uo is
contracted to U =R "Uo. Neglecting prefactors and sub-
stituting into Eq. (3.12) yields

n

Eg

FIG. 6. Iterates of trace map E&+, vs E, [Eq. (4.10)] for a
bandlike state with parameters U0=1, R = —0.5, and E =1.01
for the first few hundred iterations.

FIG. 7. Basin of attraction for the RG map [Eq. (3.2)]. The
explanation is given in the text.
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(3.19)

Since the gaps disappear for R & 1, the fractal dimension
tends to 1, and the spectrum is a so-called "fat" fractal
with as strictly positive Lebesgue measure. In the deriva-
tion Eq. (3.19) we have implicitly assumed that no other
invariant sets exist outside the line U =0. This assump-
tion is not correct. Indeed, there are particular energy
values around which a standard fractal structure occurs.
For R =&2—1, the bottom of the spectrum, leading to
fixed point no. 3, seems to be one of such points.

Most initial conditions, however, yield a dynamics
which reduces to that of the logistic map. Therefore,
since the maximum Lyapunov exponent is ln2 [see Eq.
(3.14)], the algebraic exponent y of the eigenfunction is 0
[Eq. (3.11)],indicating its extended nature.

IV. TRACE-MAP ANALYSIS

The problem can also be analyzed in terms of an itera-
tive map for the transfer matrix. Referring to a finite se-
quence of length n =2', Eq. (2.2) can be rewritten as

~2 + I

(4.1)

where
r

V„—E —1
M'= g 1 0

2'

n=1
-=n T (4.2)

By noticing that the two subchains of length 2' compos-
ing the chain of length 2'+' are equal except for the last
barrier, it is possible to derive

M'+'=(1+A(I)(M') A =R A (4 3)

where 1 is the 2X2 unit matrix and I a 2X2 matrix
whose elements are all zero except for I12 = 1, and the ini-
tial conditions becorpe M = T' and Ao= Uo(R —1).
Rewriting Eq. (4.3) in the form

M' '=(1+A I)M'[M'+(M') ']—(1+A I)

and using the equality M'+(M') '=(TrM'} 1 we can
write a recursive relation for xl =

—,'TrM':

x, +, =2xi +xi Ai Tr(IM') —1 . (4.5)

Now we consider the relation for IM':

(4.4)

IM'+ ' =2xl IM —I,
and define

(4.6)

fixing the scale of the gaps in terms of n, the order of
preimage. On the other hand, the width of the bands,
whose number doubles with n, scales as 5& =2 ". Conse-
quently, the ratio between gap and bandwidth shrinks to
zero as

I+1=2xl +2xl Alsl 1, s, +, =2x s2 (4.8}

By finally introducing the variable yI=2xIAI we obtain
the autonomous two-dimensional (2D) map

xI+1=»I —+31 31+1= R...,3I2

or, by eliminating yl,

xi+, =2(1+R)xi +2Rx( 4R—xixi, —1,

(4.9)

(4.10)

where R is restricted to —
—,
' &R & 1. Besides these fixed

points and period-2 solutions we have also found energy
values yielding aperiodic behavior. All these typical
difFerent features of the maps are illustrated and com-
pared in Fig. 8. Figure 8(a) shows the iterates for x&, E„
and Ul for R = —0.5 and an eigenvalue E5 24
=1.850781 059 358 201. . . leading to a fixed point no. 2.
The number of iterates until the fixed point is reached is
directly related to the level on the eigenvalue tree where
the energy eigenvalue appears for the first time. The im-
portance of the numerical accuracy is also demonstrated
in this figure. Using double precision only, instead of ex-
tended precision (on an IBM-3081), numerical instability
is already obtained after around 25 iterations. Figure 8(b)
presents a period-2 cycle. There are two special choices
of E and R such that the initial conditions lie on the Axed
point, and no transient is required to reach the asymptot-
ic behavior. They are given by

with initial conditions x, =( Uo E}l—2, x2 =x, (UOR E)—
—1, and y, =x2 —2x, +1. The equivalence with the RG
map obtained in the previous section is an immediate
consequence of the transformation xi = ( U& E& ) /—2,
yi =(R —1)Ui(Ui E&). —The trace map is also related to
the characteristic polynomial PI. In fact, recalling the
formal equivalent between P& and P &

with initial condi-

tions Pi = 1 and $0=0, it is easily seen from Eq (4.1) that

pi is also equivalent to s&, as seen in Eq. (4.7). As a conse-
quence, Eqs. (4.8) and (4.10) yield Eqs. (2.6) and (2.7).

The fixed points and eigenvalues are listed in Table I.
Using trace map (4.9) we establish the unphysical nature
of fixed point no. 1 noting that y* =0. In fact, by exploit-
ing the knowledge of the determinant [det(M)=1] we
find M»=x*+[(x') —1].' Since M f& must be real,
and x ' = —

—,', Axed point no. 1 is unphysical. Fixed point
no.2 is reached for any xl =0. In fact, according to map
(4.10), x&=0 implies x&+, = —1 and x&+„=I for any
v) 1. Froin the equivalence of trace map (4.10) and the
recursion relation of the characteristic polynomial (2.7) it
then follows that all eigenvalues on the tree will lead to
fixed point no. 2.

%e also found a period-2 cycle x+ ~x* ~x+ ~ .
with

2R +R +1
4R (R +1)

+ [(2R +R +1) —4(R +1) ]'
4R (R +1)

(4.11)

si =
—,'Tr(IM') = —,'M2, .

Thus, we obtain
E=g'+, R =

(2+g+ —g+ )(1—g+ )
(4.12)
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FIG. 8. Iterates of trace map xI (solid curve) [Eq. (4.10)] and
RG map E& (dashed), U& (dotted) [Eq. (3.2)] vs length l. (a)
R = —0.5, and Eo =1.850781 059 358 201, leading to fixed point
no. 2 and becoming numerically unstable after approximately 25
itrations. (b) 8 = —0.520072 913415 584 086 488 9. . . and E
= —1.741 513025461 32667619. . . , showing a cycle of period
2. (c) 8 = —1.1 and Eo = 1.988 098 03. . ., yielding an aperiodic
sequence. (d) R =0.5 and Eo =1.01 for a bandlike state. In all
cases U0=1. Note that 2' =10". The lines are guides to the
eye. M'+'=2x M']~+A(tI+1 (4.15)

with initial condition to=0. When analyzing the ap-
proach to fixed point no. 2, Eq. (4.14) is not sufficient to
yield the entire dynamics, since SI=O does not allow
determination of M', z. In such a case we must also add

with

=
—,'&u +5+—,'[5—u +(u +4)' ]'~~,

(4.13)

with M &z
= —1. More precisely, if we consider the eigen-

value EI at the I =I. hierarchy level, that is xL, =O,
&L = —1, &&

= 1, we recognize that for l ) I-, M ~q
= —AL,

since xL, =0 and tL = —1. Now we can derive an exact
expression for the matrix elements M, z+'..

u = ——'[(89+6&318)'~ +(89—6&318)' +5] .

t, +1=2x,t, —1, (4.14)

The behavior of an aperiodic solution is shown in Fig.
8(c), for R = —1. 1 and E=1.98809803. . . , plotting X,
U, and E. For completeness, we have examined a band-
like state for R =0.5 and E =1.01 in Fig. 8(d), as di-
cussed in the previous section. Again, we obtain a disor-
dered sequence for x& @nd EI, while U& converges to 0.
The positions of the fixed points and of period-2 cycles
are illustrated in Fig. 9 as functions of R in the x-8 plane.
Fixed point no. 1 bifurcates at R = 1, generating a/

period-2 cycle for R ) 1, as does fixed point no. 2 at
R = —

—,'. The crosses mark the position of the two
analytically obtained period-2 cycles given in Eq. (4.13).
Two other bifurcations occur at A = —1 and —,', where
fixed point no. 3 coincides with nos. 1 and 2, respectively.

Finally, we extend the analysis in terms of recursive re-
lations to all elements of the transfer matrix MI. From
Eq. (4.9) we are already able to find two independent vari-
ables. Moreover, since det(MI)=1, only one more rela-
tion is required to evaluate the whole matrix. The sim-
plest equation is found for tt —=M~z.

1

M +'=2'A
k=0

21+1 g I+1
=R '(R —1)

2 —R

=R '(R —l)2'(l+1), R =2 . (4.16)

Since the matrix M +' relates the wave function
(pgL + /+ t ppL + I ) to the initial pair (p „$0)we can explicitly
evaluate the scaling function on the sublattice points
2 +'+ 1 or 2 +', given by

L+I
PiL+1+I ((~1™1240& LtpL+f 40 (4.17)

It is worth noting that for R =2, Eq. (4.16) leads to loga-
rithmic corrections to the scaling function.

V. PROPERTIES OF SHORT CHAINS

In experimental realizations, physical quantities for
short systems are relevant and of particular interest. For
this reason we consider the resistance pz of systems of
length X on the real lattice. It is defined as the ratio be-
tween total reAection and transmission coeKcient ~z and
is given by' '
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1
I iiM i[ +2(MP, —M &~ )(M, z

—Mz, )cosK

—4M/&M~&cos K —2] .

Here E =2~E „cosK, where ~E~,„denotes the maximum
absolute energy value (~R ~

~ 1) of the spectrum and K the
wave number of the incident wave. (~M ~~

is the Euclide-
an norm of the product of the transfer matrices up to site
X (instead of 2 as in the previous section). Besides the
resistance and the transmission coefticient, we have also
explored the behavior of the Euclidean norm ~~M )( and
the trace of the matrix M on the real lattice as functions
of energy and system size.

In Fig. 10 we show the natural logarithm of the resis-
tance pz versus the logarithm of length N for a system us em up
to 1000 sites. The potential strength is Uo = 1, R
= —&3y3 and the energy value F.3 3 is the third eigen-
value on the third level of the eigenvalue tree. For this

fixed point no. 2 solution, we get an algebraic increase
with increasing length. On dift'erent sublattices we obtain
di6'erent prefactors. The number of the prefactors 2" is
determined by the level of the eigenvalue tree p, to which
the energy value belongs. The situation for a fixed point
no. 3 solution, shown in Fig. 11, looks rather di6'erent.
As an example we present the situation for the same po-
tential strength R = —&3/3 and an energy value
E=1— 3, which, in the spectrum, belongs to an in-
tegrated density of states of —,'. Superimposed on an aver-
age slope, we find a periodic structure exhibiting self-
similar behavior. The peaks marked with the numbers
15,31,63, . . . , 511,1023 indicate the positions of the sub-
lattice n =2' —1. For the period-2 cycle, already dis-
cussed in the previous section, we obtain the same self-
similar behavior for the resistance with, however, dou-
bled period.

An aperiodic solution for Uo = 1, R = —1.1, and
E=1.98809803. . . is investigated in Fig. 12. To illus-
trate the behavior in this case we present the trace x~ as

3I 63 l27 255 5 I I l023
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FIG. 13. X dX dependence of resistance p& {upper part) and
transmission ~~ (lower part) for a bandlike state with U0=1,
R = —+3/3, E = —1.598.
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FIG. 15. Energy dependence of transmission ~~ for the or-
dered system of length X =31 with parameters Uo = 1, R = 1

(upper part) and for Uo=1, R = —1 (lower part). The arrows
indicate the energetic position of the eigenvalues.

VI. SUMMARY

a function of length N. Irregular wild oscillations are the
typical ingredients for energy values associated with
aperiodic solution of the recursive map.

The bandlike behavior is discussed in the next two
figures. Figure 13 shows the resistance pz and transmis-
sion ~z as a function of length X. The observed periodi-
city, in this case for parameters Uo = 1, R = —&3/3, and
E= —1.598, is typical for bandlike behavior. It is also
remarkable that the transmission can change approxi-
mately by a factor 1DO by increasing the system length by
one more site. In Fig. 14 we compare the hierarchical
case R = —&3/3 (lower part) with the completely or-
dered case R =1 (upper part) for an energy E =1.001 in
the vicinity of the eigenvalue energy E» on the highest
level. Other than a factor in the period length, the behav-
ior is completely the same in both cases.

In the last figure we explore the energy dependence of
the transmission coe%cient ~&. The upper part of Fig. 15
shows the ordered case for a system of length % =31.
The transmission peaks ~3,(E)=1 occur in the vicinity of
the energy eigenvalues. The lower part of Fig. 15 illus-
trates the hierarchical case with 8 = —1. For this 8
value, in comparison to the periodic case, the transmis-
sion peaks are much less dense and considerably sharper.
This behavior will become more pronounced for ~R ~

~ ao

because the eigenvalues appear in narrower clusters, as
shown in Fig. 3.

To summarize, we have shown that the Schrodinger
problem with hierarchical barrier structure reveals a very
rich spectrum, as well as interesting resistance and
transmission properties. Reducing the problem to recur-
sion relations for the characteristic polynomials or to RG
and trace maps, it became possible to determine and clas-
sify the energies belonging to the spectrum and identify
scaling properties. %"e established that eigenvalues of the
2'—1 syste~ remain eigenvalues of the 2 —1 system,I+1

and new eigenvalues are created which split off from the
old ones, yielding a tree structure. In terms of the RG
and trace maps describing systems of 2 —1 or 2 —1,1+1

respectively, iterations yield either bounded or exponen-
tially growing iterates. Initial values leading to escape
correspond to gap energies, while for nonescaping situa-
tions the initial value Eo belongs to the spectrum, and
can be classified as follows: (i) Eo leads to a fixed point
(all EO=E belonging to the tree lead to fixed point no.
2); (ii) Eo yields periodic cycles (we found a cycle of
period 2), and finally, (iii) an aperiodic motion is generat-
ed. Scaling properties of the spectrum and wave func-
tions then follow from a linear stability analysis of such
solution. Our numerical results confirm these predic-
tions.

Thus, in contrast to periodic superlattices exhibiting
gaps and bands only, a hierarchical array of barriers
offers much richer properties. %'e hope that these new
features can be observed experimentally and will turn out
to be useful to tailor superlattices.
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