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Model calculations of the quantum ballistic transport
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We describe an exact formalism for the calculation of the zero-temperature dc conductance of
various constriction-type microstructures connected to a two-dimensional half plane on both sides.
From our results we obtain quantized conductance as a function of constriction width at integer
'multiples of 2e /h for constrictions shorter than a Fermi wavelength. For longer constrictions, the
conductance oscillates below the quantized values. The effect of impurities is to destroy quantiza-
tion if the impurities are within a few wavelengths of the aperture. We show that there is a weak
diffraction pattern in the transmitted electronic amplitude superimposed on the classical cos(a) be-
havior.

I. INTRODUCTION

Recently much interest has been raised in the quantum
ballistic transport properties of low-dimensional micro-
structures. In particular, the experimental observation
by van Wc:es et al. ' and by Wharam et al. , that the con-
ductance through a narrow constriction de6ned with a
split gate in a GaAs/Al Ga, ,As two-dimensional (2D)
electron gas increases with steps of 2e /h on increasing
the constriction width, has stimulated the discussion con-
cerning the nature of coherent electron transport. In the
discussion of ballistic conductance in mesoscopic struc-
tures the Landauer-type formula 6 =(e /h )Tr(t t ) plays
a central role. This formula, which is a multichannel ver-
sion of a strictly 1D formula originally proposed by Lan-
dauer, has been derived in various ways and forms
the basis of many calculations of the conductance in ul-
trasmall metallic samples. Recently we proposed a mod-
el for the conductance of 2D Sharvin point contacts,
which is strongly related to the Landauer type of ap-
proach, without, however, making explicit use of the
transmission matrix t. Instead we used a T-matrix ap-
proach, which reduces the problem to a numerical matrix
inversion involving only the sites of the aperture and ad-
ditional impurities. In this paper we present a complete
and also extended version of the theory underlying Ref.
7. The extension of the theory allows us to study conduc-
tance in a wide variety of constriction-type geometries,
where the constriction region is flanked by true 2D half-
pl@nes. Our model is based on a tight-binding description
of the electronic states and is fully rigorous regardless of
which part of the Brillouin zone the Fermi surface is lo-
cated in. One of the advantages of the tight-binding
method is that the problem is automatically discretized.
In models based on free-electron wave functions a
discretization stage has to be introduced at some point at
the expense of rigor. Another advantage is that one
avoids the ultraviolet divergencies occurring in the diago-
nal elements of free-electron Green's functions. This is

due to the high-energy cutoff in the density of states in-
trinsic to a tight-binding band.

Calculations of conductance based on tight-binding
schemes have been established by Lee and Fisher in the
context of Anderson localization in two dimensions and
by Stone for the calculation of the magnetoresistance of
wires and rings. These approaches are based on the mul-
tichannel version of the Landauer formula. The conduc-
tance is calculated over a disordered region connected on
both sides to channels of infinite length and with a finite
width. Due to their finite width, the transverse momen-
tum of the connecting wires is quantized and each of
these quantized momenta corresponds to a 1D subband
or "channel. " The applicability of these methods to con-
strictions flanked by 2D regions is limited, due to the fact
that the perturbation potential includes the (infinite) bar-
rier itself. A realistic calculation where the length of the
barrier exceeds the constriction size by at least an order
of magnitude, involves a matrix inversion of the huge
number of points. It is for this reason that we map the
problem onto the limited set of points of the perturbatjon
potential inside and near the aperture.

We will apply our model calculations to the problem of
the conductance of constrictions as a function of width in
the spirit of the experiments by van Wees et al. ' and
Wharam et al. In these experiments it was found that
the two-terminal conductance over a narrow constriction
in a 2D electron gas rises in a stepwise fashion with pla-
teaux at integer multiples of 2e /h. Although this step-
wise rise was nowhere mentioned in the literature before
the experiments were reported, it has been anticipated by
Irnry, ' Biittiker, " and Landauer that a quantized con-
tact resistance exists between a one-dimensional channel
and a reservoir. -Van Gelder' and Garcia' anticipated
oscillating behavior of the conductance as a function of
the tip size of a scanning tunneling microscope, but
without quantization at multiples of 2e /h.

One of the important questions is how general this type
of conductance quantization is. It is particularly interest-
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ing to know how stable the quantization is against sample
imperfections. As this quantization involves no magnetic
field it could —at least in principle —be an interesting al-
ternative for the quantum Hall eA'ect as a basis for a resis-
tance standard. In Ref. 7 we have already shown that the
quantization occurring in short constrictions is strongly
distorted by impurities in the aperture region. With the
extended formalism presented here, we will show that in
the case of a constriction of finite length (which is closer
to usual experimental conditions) the quantization is also
strongly influenced by impurities at a distance of the or-
der of a wavelength from the aperture. We find that the
formation of horizontal plateaux evolves rapidly as a
function of increasing channel length. The plateaux are
fully developed for a constriction length of the order of a
Fermi wavelength.

In our approach we first derive analytical expressions
for the Green's functions and the wave functions of the
Hamiltonian of a 20 plane with a closed barrier of finite
height V. In the next step we take away part of the bar-
rier by adding a potential —V to a limited set of lattice
points on the barrier. We also put a potential V on a lim-
ited set of lattice points in the plane, which may be ar-
ranged in the shape of a tube or some other microstruc-
ture. In Fig. 1 the arrangement of the various terms of
the potential landscape is displayed. We then calculate
the T matrix due to the presence of the orifice and the ad-
ditional number of lattice points of the localized pertur-
bation potential. This part of the method is strongly re-
lated to the recent work by Lucas et al. ' on the scanning
tunneling microscope. There are two important
di8'erences with their work. (1) We take the simplest
model for the barrier part, which allows us to calculate
the zeroth-order wave functions as well as the Green's
functions analytically. (2) Our results are fully rigorous
for all values of the mesh due to the use of a tight-binding
Hamiltonian. We finally derive a rather simple analytical
expression relating the conductance to the T matrix and
the Green's function of the closed-barrier Hamiltonian,
which can be fed into a computer.

In our theory we can vary the following parameters:
(I) the Fermi energy, (2) the lattice parameter, and (3) the
shape and size of the localized perturbation potential. If
we choose the lattice parameter small with respect to the
Fermi wavelength, we are in the free-electron limit. On
the other hand, if we choose a large Fermi wave vector
we are in the metallic regime, where the Fermi surface
becomes anisotropic. The remaining sections are organ-
ized as foBows. In Sec. II we describe how the Landauer
formula can be written in terms of a Fermi average over
the flux carried by the wave functions and we derive an
expression for the flux in terms of those wave functions in
the case of a tight-binding Hamiltonian. In Sec. III we
derive analytical expressions for the Green's functions
and the wave functions corresponding to the barrier
Hamiltonian, which we consider as the unperturbed
Hamiltonian throughout this paper. In Sec. IV we derive
analytical expressions for the T matrix of the total Harn-
iltonian and we derive the final expressions for the con-
ductance. In Sec. V we discuss numerical examples of
our method and relate them to the experiments. '

FIG. 1. The potential landscape for which we calculate the
conductance. Indicated are the barrier part (H&), the aperture
part {—H& ), the microstructure part (HM ), and the total Ham-
iltonian {H).

II. EXPRESSIONS FOR THK QONDUCTANCK

Although there has been quite some discussion in the
past about which version of the Landauer equation is
applicable, ' it is now generally agreed that the ballistic
two-terminal conductance through a region acting as a
barrier is given by

a2
G =e I @(EF,a) da .

BERE
(2)

where t is the transmission matrix and the trace includes
the spin degeneracy. The general acceptance of the latter
formula in the case of two terminals only is mainly due to
the work of Imry' and Buttiker. " The physical meaning
of the trace over the transmission matrix is that it
represents a sum over states at the Fermi level of the
probability density carried from one side of the barrier to
the other per unit of time. Throughout this paper we will
use the convention that net flux flows from left to right,
i.e., the electrical current flows from right to left. We can
replace the summation over states at the Fermi level with
a weighted angular integration, where the weight is given
by the density of k states per unit angle and per unit ener-
gy. The resulting expression is
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Here the Ilux 4(E+,a) is the rate at which a unit area
corresponding to an eigenstate

~ @~) at the Fermi surface
crosses the constriction. Far away from the constriction
the eigenstates are characterized by the angle of in-
cidence a. The term 8 n/BEBo. represents the spin-
degenerate density of states per unit area and per unit an-
gle, which can in principle depend on a. Equations (I)
and (2) presume the presence of randomizing baths on
both sides of the region where the conductance is calcu-
lated. Even in the absence of elastic scattering we find a
finite flux which is proportional to the sample width, so
that the conductance remains Anite. According to Imry'
this has to be interpreted as a contact resistance between
the reservoir and the ballistic part of the sample and it is
a consequence of the fact that current is carried by parti-
cles with a finite (Fermi) velocity. This is also the origin
of the finite Sharvin resistance' ' of classical ballistic
particles in a point contact.

The Aux of each eigenstate can be calculated by acting
with the time derivative operator on ~g~ and by employ-
ing the time-dependent Schrodinger equation. The eigen-
state i/ has to be split in a left-hand and a right-hand
part, i/ =QL +i/ii, so that the Aux from the set of points
at the left side L to the set of points at the right side R
follows from'

~(@)=—„'I [i/*( )& IH~i/ &
—y, ( )&i/ ~Hl )]d'

(3)

In Sec. III we introduce a tight-binding Hamiltonian with
nearest-neighbor coupling, the hopping part of which is

HO=4t '1 —
—,
' g ~m, n)( +mI, +n1~

m, n

As we consider the case of a constriction in a barrier, a
convenient choice of L is the set of sites at the left side of
the barrier including the barrier itself. We note that the
only nonzero terms in the summation of Eq. (3) come
from the set of points at the dividing line (m =0), so that
Eq. (3) reduces to

e(y) =
„

Im y (q~o, n ) ( I, n ~q)
'

.
n&A

Here 3 is the set of sites constituting the aperture and t is
the hopping parameter.

III. SOLUTION OF THE BARRIER HAMILTONIAN

In this section we calculate wave functions ~P) and the
Green s functions 6 for a 2D tight-binding Hamiltonian
containing a 1D barrier potential with height V. The
Hamiltonian that we will use is

H =Hz +HI

We will discuss the localized part HI in the following
section. The barrier part Hz consists of the tight-binding
Hamiltonian Ho, which is translationally invariant in
both directions, and the barrier potential H, , which has
translational symmetry in the y direction. The tight-

binding wave functions form a 2D square lattice with lat-
tice spacing a. The choice of parameters in Ho is such
that it corresponds to the free-electron Hamiltonian in
the long-wavelength limit. The effective mass equals
A' /(2ta ) in this part of the Brillouin zone. The barrier
Hamiltonian is

H~ =Ho+H),
HO=4t 1 —

—,
' g ~m, n )(m+I, n+1~

m, n

H, =Vy ~o, n &&o, n~ .

The wave functions of H~ are easily obtained by solving
the Schrodinger equation and are presented here for later
reference. Our notation for the projection operators is as
follows: We use

~
k ), Pi, ), and

~ i/k ) to indicate the
eigenstates of Ho, H~, and H, respectively. It is a text-
book exercise to derive that for k )0

For k„&0 the eigenstates of H~ are the mirror images of
Eq. (7). The eigenstates of Ho are normalized on a unit
square. The states of Eq. (7) form an orthonormal set and
represent left-side and right-side lobes, which correspond
to standing waves at the left and the right side of the bar-
rier in the limit of an infinite-barrier potential. The set of
states represented by Eq. (7) is not complete. There are
also bound states located at the barrier, with energies ap-
proximately equal to the barrier potential. These states
can be disregarded in the present discussion, as we are
only interested in the current-carrying states. The ener-
gies of the continuum states of Hz are equal to those of
Ho.

E(i/ik)=E(k)=2t[2 —cos(k a) —cos(k a)] .

The next step is to derive the expressions for the Green's
functions of Hz. As we have already done for the calcu-
lation of the wave functions, we can take advantage of
the fact that Hz has translational symmetry in the y
direction by using inomentum coordinates for the y direc-
tion and direct space coordinates for the x direction. In
this representation the Green's function of Ho is, follow-
ing Economou,

[(g2 I )1/2 g] l~ —~'I
g ( m ky m ky )

2t (g —1)
(10)

where we defined g:E/2t —2+cos(k a—). The Green's
function 6 corresponding to H~ is now obtained from the

i ~ &=ikL &+
V+2it sin(k„a )

X[—
V~ kL)+2—it sin(k, a)~k~ )] . (7)

Here
~ kL ) and

~ k~ ) are the projections of
~
k ) on the left

half-plane and the right half-plane:
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Dyson equation relating G to g and H, :

G(m, k;m', ky ) =g(m, k;m', k )

+g(m, k;O, k )VG(O, k;m', k )

which immediately leads to

G(m;rn') =g(m;m')— g (m;0)g (0;m')
g (0;0)

1

Vg (0;0)
'2

in real-space representation by means of a Fourier trans-
formation of Eq. (11) over k . Note that for m =0 or
m'=0 the first two terms in Eq. (11) cancel. Moreover, it
will turn out that for rn =I'=0 we will need the leading
term as well as the second term, due to cancellation of
the former in the expressions for the T matrix. We there-
fore have to consider the three following cases: (1)
m =m'=0, (2) m =0 and m'&0, and (3) m&0 and
m '&0, for which we find, respectively,

G(O, n;O, n')= ——5„„—y(n n')+—O(V ),1 2t

1

Vg (0;0)
+ ~ ~ ~ G(O, n;m', n')= ——co( m', n —n')+O(V ),

G(m, n;m', n')= —A( m, m', n n')—+O(V ') .

We dropped the repeated index k for brevity. We take
the limit of infinite V in the final expressions, so that we
only need the leading orders in 1/V. G is easily obtained

Here we introduce the following functions, with the sub-
stitution P =k a:

)/(n ) = vr
' f—(g —1)' cos(nP)dP,

0

ai(m, n )
—= vr

' f [(g —1)'/ —g]~ ~cos(nP)dP,
0

[(g2 1 )1/2 g] m —m'~ [(g2 1 )1/2 g]~m+m'~
A( m, m', n):—1r

0 ( g2 1 )1/2 cos(nP)dP .

(13a)

(13b)

(13c)

In the next section the following identities will turn out
to be useful:

H, = —V g ~o, n)(O, nl.

co( l, n n') =y(n—n') — ——2—

A, (m, l, n n')= —2ai(m—, n n') . —

(14a)

(14b)
H~= V g ~m, n &(m, n

~
.

(m, n)EM
(17)

Here 3 is some set of points spread over the barrier,
which represents a single- or multiple-slit configuration.
A delta-function impurity located inside the aperture is
incorporated by excluding a site from the row of sites
representing the aperture. The perturbation Hamiltonian
HM is

IV. SOLUTION OF THE FULL HAMILTONIAN

The localized part of the Hamiltonian (Hl ) consists of
two terms. The first term (H„)removes a finite part of
the barrier potential, as discussed in the preceding sec-
tion. It does not make any difference in our analysis how
this part is distributed over the barrier. We define a set
of points A with x coordinate m =0 as the set of points
constituting the aperture(s) which can in principle also
contain delta-function impurities. The second term of
HI, which we will indicate as the microstructure Hamil-
tonian HM, is a set of delta-function potentials represent-
ing any convenient shape in the 2D plane. The total
Hamiltonian to be solved is

H —H~+H~+HM .

T[1 G(H~ +H~ ) ]=—H~ +HM . (18)

As the indices A and M refer to two disjoint regions in
2D space, we can write Eq. (18) in matrix block form

Tw Tw V1 0 —Vl 0

TM TAf GM GM 0 V1

This set of points, can, for example, be used to define a
pipe, fitted to the right side of the aperture A. We will
use it to study the inAuence of the length of a constriction
on its conductance, but other geometries can be studied
equally well with the present formalism. We can obtain
the T matrix from inversion of the T-matrix Dyson equa-
tion,

The barrier Hamiltonian Hz was discussed in the previ-
ous section. The aperture Hamiltonian is or, using Eqs. (12)—(14),

0 (19)
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TM

TM
V

1

2T

'2t 1I ——Q
V2 1 0

0 —1

4 t
C(q, )= „'Im y &y„lT'„6'ln,n&

nEA

Here the matrix elements of I, 0, and A are given by the
functions y, co, and A, defined in Eq. (14) for those sites
which belong to the sets of A and M. The site indices m
and n refer to x and y coordinates respectively,

We now insert Eq. (12) for the barrier Green's functions
and Eq. (22) for the T matrix, and furthermore exploit
the properties of the Green's functions given in Eq. (14).
After these insertions the final expression for the fIux be-
cornes

I~—=y(n; —n ) (R;EA, R&EA),
ni =—co(m, n, n, )—(R; H A, RJ EM),
A~=A(m, , m, n n.;) (R—;EM, RJHM) .

(21)

4 ta

m, n, p, v

X eevgpem] (27)

We finally invert the block matrix Eq. (20) using standard
matrix manipulation techniques and obtain, to leading
order in 1/V,

V'e
2t

Ven~-'TM '

T M—M

—AT A

VA -'n'e —2t(n'r -'n+A)-'
(22)

—MT A

e=(r+n A-'n')-'

%'e can now combine our expressions for the T matrix
with the Lippman-Schwinger equation in order to get the
continuum states leak ) of the total Hamiltonian defined

in Eq. (15):

(23)

with the definition

a„„,=r„„,+2(nA-'n')„„,— ——2 a„„,
1R
2 ~X, I~ —~'I (28)

Note that the two 5 functions in Eq. (28) have zero con-
tribution after carrying out the summations in Eq. (27).
The only other ingredient that we need in the expression
for the conductance is the evaluation of the integral over
all angles of incidence in Eq. (2). The spin degenerate
density of states per unit angle is

8 n 1

4~2ta 2

This can be inserted into the expression for the Aux, Eq.
(4), which leads to the following relation between the fiux
and the T matrix:

w@,)= „'Im y &y„lT'G'lo,n && I,nlG Tly„)
nEA

+o(v-') . (24)

This equation is further evaluated by once again writing
T and 6 in matrix block form and collecting leading or-
ders in 1/V, which is now (1/V) . We have to make a
distinction here between the case where M includes only
sites on the right side of the barrier and the more general
case, where M includes sites on both sides. In the former
case two nonvanishing terms contribute to Eq. (24),
whereas in the latter case there are six additional terms.
This is due to the fact that the wave functions ( m, n l Pk )
are of a different order in 1/V for (m, n ) at the left and
right sides of the barrier, as can be seen from Eq. (7). In
the latter case we find for the flux

X (29)
cosa sin(ka cosa)+sina sin(ka sina)

where k and a are on the fixed-energy contour

E =2t[2 —cos(ka cosa) —cos(ka sina)] . (30)

~n B2n
sin (k, a )cos[k a(n —m )]da—~n BEBa

—1

f (1 g)'~ co—s[(n —m )P]dP
2m ta

—1
, Imr" .

2mta
(31)

We can combine Eqs. (31) and (27), which yields the final
expression for the conductance

The angular integral can be expressed in terms of the pre-
viously defined matrix I by means of the change of vari-
able P =ka sina,

4 ta'
Im y (y, l(T," +TM )G lO, n)

nEA

2e Tr[(ImI ')(Ime *b, e)] .
h

(32)

X ( l, n lG(T "„+TM+T~

+T~™)i&i,& (25)

The situation where M has only sites at the right side of
the barrier is the case that we will discuss in the following
section, so that the expression for the Aux reduces to

6= Tr[(ImI *)(Iml ')] .
h

(33)

In Ref. 7 we consider the situation where HM is absent.
In that case, 8 and 6 are equal to I ' and r, respective-
ly, as can be seen from Eqs. (22) and (28), so that our for-
mula for the conductance reduces to the simple result



7816 D. van der MAREL AND E. G. HAANAPPEL

V. NUMERICAL RESULTS

We begin by discussing how the conductance is
influenced by the choice of the lattice parameter relative
to the Fermi wavelength. As the reader may have no-
ticed, the final expressions Eq. (32) and (33) depend in the
first place on the shape of the microstructure defined by
the sets of lattice sites A and M, and in the second place
on the parameter EFI(2t). The dependence on the latter
is through the matrices I, 5, and 0 which are defined in
Eqs. (13) and (21). For practical purposes it is more con-
venient to think in terms of length scales rather than en-

ergy scales. As we will be mainly interested in the long-
wavelength regime, we can identify A,F as 2vra(t/EF)'
For higher energies there is no well-defined Fermi wave-
length, due to the noncircular shape of the Fermi surface.
(In fact, for E~ =4t the Fermi surface is lozenge-shaped. )

It is perhaps illustrative to point out that in typical
GaAs-based 20 electron gases the Fermi wavelength is
about 400 A, whereas the lattice spacing of the three-

0

dimensional fcc crystal structure of GaAs equals 5.7 A.
So the lattice constant is about 1% of the Fermi wave-
length in a typical experimental situation. This means
that if we want to do a "realistic" calculation of the
quantum ballistic conductance under experimental condi-
tions, we have to use a/A, F=0.005 as a parameter. In
fact, we will see that appreciable inAuence of the finite
lattice parameter only occurs for a /kF & 0.07. We like to
point out that for samples with higher electron densities
our tight-binding method is probably more realistic than
a free-electron approach, because we are able to model
certain deviations of the band structure from the free-
electron parabola.

In Fig. 2(a) we present a plot of the conductance versus
constriction width for three different values of a /kF, cal-
culated for a zero-length constriction with Eq. (33). We
see that the inhuence of the finite lattice parameter is
small in the entire range of the conductance as long as
a /A, F (0.04. It is interesting to note that the vertical po-
sitions of the points of inAection are at precise integer
multiples of 2e /h for these values of a /A, F. In Fig. 2(b)
we present a different sort of plot, where we vary the Fer-
mi energy from 0 to 4t. The latter value corresponds to
half filling of the tight-binding band, where the Fermi
surface is lozenge-shaped. The result is shown for a con-
striction of the type depicted in Fig. 1 and with a width
of four sites and a length of zero, four, and ten sites.
Only in the case of L =0 are the points of inAection at ex-
act multiple integers of 2e /h; in the other cases, oscilla-
tions on the plateaux (especially the higher ones) inhibit
full quantization. The rest of the discussion relates to the
situation where anisotropy of the Fermi surface can be
neglected.

For larger constriction widths the oscillations decay
and the conductance approaches the linear behavior
of a classical Sharvin point contact, ' i.e., G
=(2e /h )(kt; W/vr), where 8' is the constriction width.
There is, however, a slight offset of about 0.26 (2e /h ),
which indicates that the effective width of the orifice is
reduced by about 13% of a Fermi wavelength due to
diffraction. This also helps us better understand why the

3-
(a)

OlI
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0
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O
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1.0 1.5 2.0

FIG. 2. (a) Conductance vs constriction width of a zero-
length constriction for various values of the lattice parameter.
Dashed curve, a =0.0796K,F, lozenges, a =0.0318K,F; solid
curve, a =0.0159K,F. (b) Conductance vs energy of constrictions
with 8'=4a and L =0, 4a, and 10a from left to right.

conductance is pinched off for kF W/~ below about '0.25.
The limit of very small constriction widths has been in-

vestigated by Rayleigh in a different context as early as
1897. ' There have been numerous other theoretical in-
vestigations on wave propagation and diffraction
throughout the first half of this century where the theory
originated by Rayleigh has been further developed. A
helpful review article covering most of the relevant litera-
ture has been published by Bouwkamp. All of this
work refers to propagation of electromagnetic and acous-
tic waves, which explains why the Fermi averaging re-
quired for the conductance is never carried out in these
studies. We can nevertheless compare the exponent of
the power-law behavior of the Aux through a narrow
aperture to classical results. Rayleigh has already point-
ed out that a narrow aperture acts as a radiating dipole
source, which results in a (kW) behavior of the
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transmitted Aux and a cos a angular distribution of the
transmitted intensity. In Fig. 3 we display a double-
logarithmic plot of conductance versus constriction
width for several values of ka. The solid line corresponds
to (kW)", which agrees well with the curves for ka =0. 1

and 0.2. For very low values of 8 the curve turns up
again, but this is caused by the finite size of the lattice pa-
rameter, which is important if 8' and a are of the same
order of magnitude. We now turn to the eA'ect of con-
striction length on the shape of the conductance steps. A
constriction of width 8' and length I. can be modeled in
the way displayed in Fig. 1. The matrix I is defined on
the set of points A inside the aperture. The matrix A is
on the set M of the pipe and A connects the sets A and
M. With Eq. (32) we calculated several conductance-
versus-length traces. In Fig. 4 we present some examples.
The parameter a was 0.080K,F in Fig. 4(a) and 0.032K,F in
Fig. 4(b). The larger value of the lattice parameter per-
mits a larger range of the channel width, given the con-
straints on matrix size due to computational limitations.
This is, however, at the expense of spatial resolution due
to the discrete nature of a tight-binding lattice.

As seen in Fig. 4, plateaux develop very quickly on in-
creasing the length of the constriction. In order to obtain
more quantitative information we plot in Fig. 5 the data
of Fig. 4 in a different way, i.e., as a plot of mdG/d(kW)
versus conductance. The minima correspond to the sec-
tions of minimal slope in Fig. 4. We checked that the
horizontal positions of the minima correspond to multi-
ples of 2e /h within numerical accuracy, which is better
than 0.5&o. We can study the development of plateaux
by plotting the slope of the plateaux as a function of con-
striction length for each plateau index. The result is
presented in Fig. 6. We see that the slope of each plateau
decreases rapidly as function of constriction length. For
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FIG. 5. m dG/d8'cs constriction width for channels of vari-
ous length. Lower part: a=0.796K,F. Solid, dashed, dash-
dotted, and dotted curves: L /A, F =0, 0.128, 0.255, and 0.350, re-
spectively. Upper part: a =0.0318K,F. Solid, dashed, dash-
dotted, and dotted curves: L /A, F =0, 0.159, 0.239, and 0.319, re-
spectively.
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the first seven steps a Aat plateau is obtained for L small-
er than the Fermi wavelength. Intuitively we might ex-
pect that a Aat plateau should occur if the constriction is
much longer than it is wide. ' In fact, our calculations
show that a much weaker constraint is sufficient. We can
argue in the following way. For relatively short channels
one has also to take into account the evanescent waves in
the constriction, the decay length of which has to be long
enough so that incoming waves on the left side can "tun-
nel" to outgoing waves on the right side. If the width of
the channel is such that the Fermi level is in the n th sub-
band of the constriction, the dominant contribution of
evanescent waves comes from states tunneling below the
(n + 1)th subband. The decay length is given by

2 1 I'2n+1 2
8' A.F

(34)

The minimal slope occurs at kF 8'/m =n +1/2, so that
1/2

2K ~F ~F
2W 8IV

(35)

Tunneling can be neglected if aL exceeds a certain value.
In other words, the n th plateau is. Aat for

2n +1' (4n+3)'" (36)

l. =0.32(2WX )'i (37)

This is indeed a much weaker constraint than the intui-
tive assumption mentioned above. Taking the realistic
parameters A,F =40 nm and L =100 nm, we expect Oat
steps (apart from oscillations) for constriction widths up
to 1.2 pm. This is a nice demonstration of the vitality of

where c is some constant. We can check from Fig. 6 that
the values of I where the plateaux are horizontal indeed
follow this behavior and that the constant c equals 3.16
within 2% accuracy. For sample dimensions large com-
pared to A,F this means that the condition for Aat plateau
1s

the concept of 1D channels, now widely used in studies of
mesoscopic systems. ' "" The steps can be washed out
due to thermal smearing, of course; however, with the
above parameters the energy difference between the
highest subbands 60 and 61 of a constriction 1.2 pm wide
is still of the order of 5 K. If the length of the constric-
tion is increased beyond the point where the plateau be-
comes liat, oscillatory structure sets in. In Fig. 4(b) we
show a plot of the first two plateaux for L =0.987K,F and
1.592K,F. These oscillations are due to the sharp edges at
the ends of the constriction, which results in extra
rejections on the left and right sides of the narrow re-
gion. Oscillations similar to those in Fig. 4(b) have been
found experimentally for samples in the mK regime. If
the edges are very smooth, i.e., if the radius of curvature
is much larger than A,F, the coupling is called "adiabatic"
and the oscillations disappear, as was shown by Glazman
et al. The necessity of adiabatic coupling in order to
avoid rejections has also been pointed out by Landauer.
The oscillations can be qualitatively understood as fol-
lows: On increasing the width of the constriction the
Fermi level crosses a sequence of 1D subbands. Hence
with the Fermi level in the nth subband k„increases
from 0 to &2ln kz inside the narrow region, where the
latter is the point where the (n+1)th step sets in. The
transmission resonates with standing waves in the narrow
region satisfying the soft boundary conditions on both
sides of the constriction. This leads to an oscillation each
time k L approximately equals an integer multiple of ~.
This also implies that the number of oscillations on a pla-
teau is proportional to L. Due to thermal smearing the
oscillations will average out for constrictions beyond a
certain temperature-dependent length.

The more or less regular oscillations due to rejections
at the front and back ends of the constriction can also be
regarded as a more general phenomenon, where
reAections by irregularities both inside and outside the
narrow region cause fluctuations on changing the con-
striction width. In the case of intermediate disorder one
returns to the situation of a quasi-1D lead where univer-
sal conductance Auctuations occur on changing the phase
relations of the wave functions at the Fermi level. This
can, e.g. , be accomplished by changing the channel
width, the Fermi wavelength, or by applying a magnetic
field. ' Here we will only consider the situation of a
constriction with a single impurity, which we believe is
more relevant in the context of the present-day experi-
ments on mesoscopic systems in high-mobility
GaAs/Al Ga, As 2D gases, as the elastic mean free
path in those samples exceeds the constriction dimen-
sions by at least an order of magnitude.

In Fig. 7 we present plots of the conductance versus
constriction width in geometries where an impurity is
added at several positions both inside and outside the
narrow region. We make the following observations: If
an impurity is positioned inside the narrow region, its
effect is always to reduce the conductance and to
suppress the steplike features. An impurity outside the
constriction, however, can both enhance or suppress the
conductance for certain widths. In all cases a delta-
function impurity destroys quantization, i.e., either there
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is additional structure on the plateaux, or the inflection
points shift away from the quantized values quite drasti-
cally, regardless of the length of the constriction. In view
of the oscillatory structures on the steps it is hard to
define a good measure of the effect of an impurity. Our
observation from calculations for various impurity posi-
tions is that the effect on the plateau position varies in-
versely proportional to the distance between the impurity
and the constriction. More explicitly, 5-function impuri-
ty removed a distance kz from one of the ends of the con-
striction shifts the plateau by about 3% of 2e /h. In
high-purity samples, where the elastic mean free path is
of the order of 5-10pm, the typical distance between the
constriction and the impurity would be of the order of a
few micrometers, so that an upper limit for the precision
of quantization would be approximately 0.1%. This
more or less rules out possible applications as an alterna-
tive for the resistance standard based on the quantum
Hall effect.

Finally, we discuss the diffraction pattern of a constric-
tion averaged over all incoming Fermi wave vectors. We
can use Eq. (27) to calculate @(iPk ) as a function of angle
of incidence. This is also the excess electron flux at the
left side of the orifice due to a voltage drop where the
right half-plane is at a higher (negative) voltage than the
left half-plane. In Fig. 8 we display 4 versus exit angle
for several values of the channel width, both for a chan-
nel of zero length arid for a channel with L, /A, +=1.59.
The oscillatory structure is of approximately equal
strength in both cases. For very small widths the distri-
bution follows a cos a behavior, also indicated in the Fig.
8. This is consistent with classical wave mechanics. '
For wide channels the overall pattern follows a cosa be-
havior (dashed curve in Fig. 8), which is consistent with
results for classical ballistic particles. ' In the latter case
there is additional structure, also for very wide constric-

tions. In fact, the number of oscillations is approximately
equal to the number of steps at the width for which the
difFraction pattern is calculated. This behavior can in
principle be studied in a setup with two constrictions,
where a magnetic field is used to move the diffraction pat-
tern of one of the constrictions across the second one.
Care has to be taken, however, to separate the diffraction
pattern from classical electron focusing effects as well as
rapid oscillations due to the mode interference effects ob-
served by van Houten et al. and discussed by Beenakker
et al."

VI. CONCLUSIONS

We conclude that a straightforward tight-binding cal-
culational scheme can be used to obtain numerically ex-
act values of the conductance of a wide variety of micro-
structures in the quantum ballistic regime. We are able
to calculate in detail the behavior of narrow constric-
tions, such as have been studied experimentally by van
Wees et aL' and by Wharam et al. This opens the possi-
bility for predicting the behavior of new devices with a
high degree of accuracy. As the preparation of submi-
crometer devices is a difficult and time-consuming task,
feedback with numerically exact simulations will help to
direct the research in a more efficient way. We find that
steplike structures exist for surprisingly short channels,
even down to zero length. The condition for flat steps is
found to be that the constriction width W, the length I.,
and the Fermi wavelength A,F have to satisfy
2 =0.32(2WA~)'~, which is more or less opposite to
what one expects intuitively. The constriction is allowed
to be much shorter than wide, rather than the other way
around. For longer constrictions, extra oscillatory struc-
ture due to reflections destroys the quantization. The
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presence of impurities also strongly affects the position of
the steps, as well as their shape, regardless of the length
of the constriction. Although conductance steps reason-
ably close to multiples of 2e /h are expected in very pure
samples with optimized geometries, the zero-field con-
ductance quantization effect is in principle unstable with
respect to sample imperfections.
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